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Abstract: A phenomenon of reflection of plane waves from a thermally insulated surface of a solid half-space is studied
in the context of Lord-Shulman theory of generalized thermo-viscoelasticity with voids. The governing equations of gen-
eralized thermo-viscoelastic medium with voids are specialized in x-z plane. The plane wave solution of these equations
shows the existence of three coupled longitudinal waves and a shear vertical wave in a generalized thermo-viscoelastic
medium with voids. For incident plane wave (longitudinal or shear), three coupled longitudinal waves and a shear vertical
wave reflect back in the medium. The mechanical boundary conditions on the free surface of solid half-space are consid-
ered as impedance boundary conditions, in which the shear force tractions are assumed to vary linearly with the tangential
displacement components multiplied by the frequency. The impedance corresponds to the constant of proportionality. The
appropriate potentials of incident and reflected waves in the half-space will satisfy the required impedance boundary condi-
tions. A non-homogeneous system of four equations in the amplitude ratios of reflected waves is obtained. These amplitude
ratios are functions of material parameters, impedance parameter, angle of incidence, thermal relaxation and speeds of plane
waves. Using relevant material parameters for medium, the amplitude ratios are computed numerically and plotted against
certain ranges of the impedance parameter and the angle of incidence.
Key words: generalized thermo-viscoelasticity, voids, thermal relaxation, plane waves, reflection, amplitude ratios

I. INTRODUCTION

Cowin and Nunziato [1] developed the theory of elas-
tic material with voids. Iesan [2, 3] developed the theory of
thermoelastic material with voids. Various dynamical prob-
lems and plane strain problems in the theory of elasticity
and thermoelasticity with voids have appeared in literature.
For example, Iesan [4], Ciarletta and Scalia [5], Chirita and
Scalia [6], Chirita et al. [7], Iesan and Nappa [8], Chirita and
D’Apice [9, 10] and Ciarletta et al. [11] have studied various
outstanding dynamical problems in the theory of thermoe-
lasticity with voids. Various problems on plane wave prop-
agation in elasticity and thermoelasticity with voids were

also studied by, for example, Puri and Cowin [12], Chan-
drasekharaiah [13, 14], Singh [15], Ciarletta and Straughan
[16], Ciarletta, et al. [17] and Bucur et al. [18].

Iesan [19, 20] developed theories of thermoviscoelastic
materials with voids by incorporating the memory effects.
Some problems on waves and vibrations in thermoviscoelas-
tic material with voids were studied by Sharma and Kumar
[21], Svanadze [22], Tomar et al. [23], Chirita [24], Chirita
and Danescu [25], D’Apice and Chirita [26] and Bucur [27].
Exploring various problems on wave propagation in thermo-
viscoelastic materials with voids is useful in civil engineer-
ing, seismology, nano-technology and bio-materials [28].
In the present paper we consider a generalized thermovis-
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coelastic solid half-space with voids, whose surface is sub-
jected to impedance boundary conditions as in Godoy [29],
where the tangential components of stress tensor depends
linearly on tangential displacement components times fre-
quency, respectively. A problem on reflection of plane (lon-
gitudinal or shear) wave in a generalized thermoviscoelastic
medium with voids under these impedance boundary condi-
tions is considered. The reflection coefficients (or amplitude
ratios) of various reflected waves are analysed numerically
to show the dependence on the angle of incidence, viscous,
thermal and voids parameters and impedance parameters.

II. BASIC EQUATIONS

A fixed system of rectangular Cartesian axes Oxi(i =
1, 2, 3) is referred to the motion of the continuum. We as-
sume that the continuum has achieved the given state at time
t due to some prescribed motion. We restrict to the linear the-
ory to study the behavior of porous solid in which the matrix
is a thermoviscoelastic material and the interstices are void
of material. Initially the body is assumed free from stresses.
In a distributed body, the mass density at time t has the de-
composition γν where γ is the density of the matrix material
and ν is the volume fraction field. For isotropic and homo-
geneous case, the system of field equations for thermovis-
coelastic material with voids given by Iesan [19] are orga-
nized in the context of Lord and Shulman [30] theory after
neglecting body forces and heat sources as
(a) the equations of motion

∂trs
∂xr

=
∂2us
∂t2

, (1)

∂Hr

∂xr
+ g = ρK∗ ∂

2φ

∂t2
, (2)

(b) the energy equation

ρT0
∂η

∂t
=
∂Qr
∂xr

, (3)

(c) the constitutive equations

trs =

(
λ+ λ∗

∂

∂t

)
eppδrs + 2

(
µ+ µ∗ ∂

∂t

)
ers

+

(
b+ b∗

∂

∂t

)
φδrs − βTδrs,

(4)

Hr =

(
α+ α∗ ∂

∂t

)
∂φ

∂xr
+ τ∗

∂T

∂xr
, (5)

g = −
(
b+ γ∗

∂

∂t

)
epp −

(
ξ + ξ∗

∂

∂t

)
φ+mT, (6)

ρη = βepp + aT +mφ, (7)
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∂t

= κ
∂T

∂xr
+ ζ

∂2φ

∂xr∂t
, (8)

ers =
1

2

(
∂ur
∂xs

+
∂us
∂xr

)
, (9)

where subscripts p, r and s range from 1 to 3, trs are the
components of the stress tensor, Hr are the components of
the equilibrated stress vector, g is the intrinsic equilibrated
body force, η is the entropy per unit mass, Qr are the com-
ponents of the heat flux vector, ers are the components of
the strain tensor, ρ is the mass density of the medium, K∗ is
the equilibrated inertia, ur(x1, x2, x3, t) are the components
of the displacement vector, φ(x1, x2, x3, t) is an increment
in void fraction field from constant value ν0 in reference
configuration, T (x1, x2, x3, t) is an increment in tempera-
ture from the constant reference temperature T0, δrs are the
components of the Kronecker delta, λ and µ are well known
Lame’s constant parameters, b, α, ξ and ξ∗ are the constant
parameters corresponding to voids present in the medium,
β, τ∗, m, κ, ζ and a are the constant thermal parameters
and λ∗, µ∗, b∗, α∗ and γ∗ are the constant viscoelastic pa-
rameters, τ0 is thermal relaxation time. In what follows, the
following notations are used

Ce = aT0,

λ0 = λ+ λ∗
∂

∂t
,

µ0 = µ+ µ∗ ∂

∂t
,

b0 = b+ b∗
∂

∂t
,

α0 = α+ α∗ ∂

∂t
,

γ0 = b+ γ∗
∂

∂t
,

ξ0 = ξ + ξ∗
∂

∂t
.

Using equations (4) to (9) in equations (1) to (3), we obtain
the following field equations
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,

(10)
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(12)

We now restrict our attention to plane strain in the (1; 3)
plane with displacement components u1 = u1(x1, x3, t),
u2 = 0, u1 = u3(x1, x3, t). In what follows x1 and x3
are denoted as x and z, respectively. Equations (10) to (12)
are specialized in x− z plane as
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(16)
Using the following Helmholtz representations of displace-
ment components in terms of potentials q and ψ

u1 =
∂q

∂x
− ∂ψ

∂z
, u3 =

∂q

∂z
+
∂ψ

∂x
(17)

the equations (13) to (16) result in the following equations
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We seek the plane wave solutions of equations (18) to (21)
in the following form

{q, φ, T, ψ} = {A,B,C,D}
× exp[ik(x sin θ + z cos θ − V t)],

(22)

where A,B,C and D are arbitrary constants. k is the
wavenumber, V is the complex phase speed and θ is the
angle of propagation. With the help of (22), the non-trivial
plane wave solution of equation (18) leads to

V 2 =
µ0

ρ
. (23)

which is the speed of shear vertical (SV ) wave.
With the help of (22) the plane wave solutions of equations
(19) to (21) lead to following cubic velocity equation

(
1− ξ̄0
ρ
− ε2m̄

)
Γ3 − [κ̄(1− ξ̄0) +

c2
ρ

+ ε3c3

+ε3m̄+
c1(1− ¯ξ0)

ρ
− ε2c1m̄+

b0γ̄0
ρ

+ ε1b0m̄

+βγ0ε2 + βε1(1− ξ̄0)]Γ2 +
[
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ρ
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]
Γ− (c1c2κ̄− c1c3ε3) = 0,

(24)
where

Γ = ρv2,

c1 = λ0 + 2µ0,

c2 =
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c3 = − τ∗

K∗ ,

ε1 =
βT0
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,
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ε2 =
mT0
ρCe

,

ε3 =
ζ∗ω2

Ce
,

κ̄ =
κ

Ce(τ0 + i
ω )
,

γ̄0 =
γ0

ρK∗ω2
,

m̄ =
m

ρK∗ω2
,

ξ̄0 =
ξ0

ρK∗ω2
,

ζ∗ =
iζ

ω(τ0 + i
ω )
.

The real parts of the roots of cubic velocity equation (24)
correspond to the speeds of three coupled (P1, P2 and P3)
waves, which are longitudinal in nature (D’Apice and Chirita
[26]).

III. REFLECTION FROM A PLANE SURFACE

We consider a half-space z < 0 containing a generalized
thermoviscoelastic material with voids. The plane surface
of the half-space is taken along the x-axis. The negative z-
axis is taken as normal into the thermoviscoelastic half-space
z < 0 as shown in Fig. 1. Following Godoy et al. [29], we as-
sume that the surface of half-space is subjected to impedance
boundary conditions, where the tangential tractions are pro-
portional to tangential displacement components time fre-
quency, respectively. Therefore, in the present problem, the
impedance boundary conditions at z = 0 are expressed as

x

O

P
1

or SV
P

1

P
2

P
3

SV

z

Fig. 1. Reflection of plane waves at a stress-free surface of a poro-
thermo-viscoelastic solid half-space

t33 = 0, t31 + ωZu1 = 0, H3 = 0, Q3 = 0, (25)

where

t33 = λ0
∂u1
∂x

+ (λ0 + 2µ0)
∂u3
∂z

+ b0φ− βT,

t31 = µ0

(
∂u3
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∂u1
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,
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∂
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∂z
+ ζ

∂2φ

∂z∂t

H3 = α0
∂φ

∂z
+ τ∗

∂T

∂z
,

and ω is the frequency of wave and Z is the impedance
parameter of dimension stress/velocity, which is assumed
strictly real. For Z = 0, the impedance boundary conditions
reduce to traction-free boundary conditions and |Z| → +∞
corresponds to vanishing of the tangential component of the
displacement vector. An incident P1 or SV wave moves in
half-plane z < 0 and strikes the free surface z = 0, then four
reflected waves, namely, P1, P2, P3 and SV are generated in
the half-plane z < 0. The appropriate potentials for incident
and reflected waves in the half-space are:

q = A0 exp{ik1(x sin θ0 + z cos θ0 − v1t)}

+

3∑
j=1

Aj exp{ikj(x sin θj − z cos θj − vjt)},
(26)

φ = p1A0 exp{ik1(x sin θ0 + z cos θ0 − v1t)}

+

3∑
j=1

pjAj exp{ikj(x sin θj − z cos θj − vjt)},
(27)

T = q1A0 exp{ik1(x sin θ0 + z cos θ0 − v1t)}

+

3∑
j=1

qjAj exp{ikj(x sin θj − z cos θj − vjt)},
(28)

ψ = B0 exp{ik4(x sin θ0 + z cos θ0 − v4t)}
+B1 exp{ik4(x sin θ4 − z cos θ4 − v4t)}.

(29)

where vi = Re(Vi), (i = 1, 2, ., 4) and the expression for
pj
k2j

and
qj
k2j
, (j = 1, 2, 3) are given as

pj
k2j

=
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k2j
)(λ0 + 2µ0 − ρv2j ) + βγ0
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) + β(α0 + ξ0
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,
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qj
k2j

=
−(α0 + ξ0

k2j
− %K∗v2j )(λ0 + 2µ0 − ρv2j ) + b0γ0

k2j

b0(τ∗ − m
k2j
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k2j
− ρK∗v2j )

.

The potentials given in equations (26) to (29) satisfy
boundary conditions (25) if the following relations ( Snell’s
law for present problem) hold

sin θ0
v1 or v4

=
sin θ1
v1

=
sin θ2
v2

=
sin θ3
v3

=
sin θ4
v4

(30)

k1v1 = k2v2 = k3v3 = k4v4 (31)

and
(a) incident P wave

4∑
j=1

aijZj = bi, (i = 1, 2, ., 4) (32)

where
Zj =

Aj
A0

, (j = 1, 2, 3) and Z4 =
B1

A0
are reflection coef-

ficients of reflected P1, P2, P3 and SV waves, and
b1 = −1, b2 = −1, b3 = 1, b4 = 1,
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]
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,
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]
, Z4 =
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µ− iωµ∗ ,

a3j =
(v1vj )(wpjζ + iqjκ)

√
1− (

vj
v1

)2 sin2 θ0

(wp1ζ + iq1κ) cos θ0
, (j = 1, 2, 3),

a34 = 0,

a4j =
( v1vj )[(α− iwα∗)pj + τ∗qj ]

√
1− (

vj
v1

)2 sin2 θ0

[(α− iwα∗)p1 + τ∗q1] cos θ0
,

(j = 1, 2, 3),

a44 = 0,

(b) incident SV wave:

4∑
j=1

cijYj = di, (i = 1, 2, ., 4) (33)

where
Yj =

Aj
B0

(j = 1, 2, 3) and Y4 =
B1

B0
are reflection coefficients of reflected P1, P2, P3 and SV waves, and,

d1 = −1, d2 = −1, d3 = 0, d4 = 0,
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c1j =
( v4vj )2[(λ− iwλ∗) + 2(µ− iwµ∗)[1− (

vj
v4

)2 sin2 θ0]− (b− iwb∗)
pj
k2j

+ β
qj
k2j

]

(µ− iwµ∗) sin 2θ0
, c14 = −1,

c2j = sin θ0(
v4
vj

)

[2
√

1− (
vj
v4

)2 sin2 θ0 + iZj

1− 2 sin2 θ0 − iZ4 cos θ0

]
, (j = 1, 2, 3),

c24 =
1− 2 sin2 θ0 + iZ4 cos θ0

1− 2 sin2 θ0 − iZ4 cos θ0
,

c3j = (
v4
vj

)(wζpj + iκqj)

√
1− (

vj
v4

)2 sin2 θ0, (j = 1, 2, 3), c34 = 0,
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v4
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IV. NUMERICAL RESULTS AND DISCUSSION

Various experimental studies including Hobbs et al. [31],
Wang et al. [32] and Gondcharton et al. [33]) have shown the
presence of voids in copper material. Therefore, it is relevant
to consider an example of copper material for the purpose of
numerical illustration of theoretical results. To illustrate the
dependence of amplitude ratios of various reflected waves
on the angle of incidence, impedance parameter and other
material parameters, the following relevant physical con-
stants of copper material are taken as in Chirita and Danescu
[25] and Bucur [27], that is,

λ = 7.76× 1011 dyn/cm2,

µ = 3.86× 1011 dyn/cm2,

ρ = 8.954 gm/cm3,

c = 3.4303× 104 dyn/cm2 oC,

b = 2× 103 dyn/cm2,

α = 1.688 dyn,

β = 0.4× 10−1 dyn/cm2 oC,

ξ = 1.475 dyn/cm2,

m = 0.2× 107 dyn/cm2 oC,

κ = 0.386× 108 dyn/s oC,

T0 = 293 K,

K∗ = 1.75× 10−11 cm2,

λ∗ = 0.1 dyn s/cm2,

µ∗ = 0.2 dyn s/cm2,

b∗ = 0.1× 10−3 dyn s/cm2,

ξ∗ = 0.3 dyn s/cm2,

α∗ = 0.1 dyn s,

γ∗ = 0.5× 10−7 dyn s/cm2,

τ∗ = 0.3× 10−7 dyn/ oC,

ζ = 1.5× 10−11 dyn.

For the above values of material parameters, the non-
homogeneous systems (32) and (33) of linear equations in
amplitude ratios of reflected waves are solved by using a For-
tran program of Gauss elimination method. For incident P1
wave, the amplitude ratios Z1, Z2, Z3 and Z4 of reflected
P1, P2, P3 and SV waves are plotted against the range 0o ≤
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Fig. 2. Variations of the amplitude ratios of reflected P1, P2, P3 and SV waves against the angle of incidence θ0 of incident P1 wave
when Z = −5, 0 and 5

θ0 ≤ 90o of angle of incidence in Fig. 2 by solid lines, when
impedance parameter Z = 0. The amplitude ratios Z1 of re-
flected P1 wave is 0.98 at θ0 = 0o (normal incidence). It
decreases to value 0.6695 at θ0 = 55o and then increases
to value one at θ0 = 90o (grazing incidence). The ampli-
tude ratios Z2 and Z3 of reflected P2 and P3 waves are
very smaller in comparison to that of P1 wave. The maxi-
mum values of the amplitude ratios Z2 and Z3 of reflected
P2 and P3 waves are 0.4841e-05 and 0.4825e-05 at normal
incidence. These reduce to zero at grazing incidence. The
amplitude ratio Z4 of reflected SV is 0.9742 at normal inci-
dence and it also reduces to zero at grazing incidence. Simi-
lar variations for impedance parameters Z = −5 and Z = 5
are also shown in Fig. 2 by a dashed line and a dashed line
with stars as center symbols, respectively. The comparison

of these dashed lines with a solid line shows the effect of the
impedance parameter at each angle of incidence of P1 wave.

For incident P1 wave, the amplitude ratios Z1, Z2, Z3

and Z4 of reflected P1, P2, P3 and SV waves are plotted
against the range −20 ≤ Z ≤ 20 of impedance parame-
ter in Fig. 3 by dashed line, dashed line with squares and
solid line with stars for θ0 = 30o, 60o and 90o, respectively.
The comparison of these three variations shows the effect of
three different angle of incidences in a particular range of
impedance parameter. It is observed that there is no impact
of impedance at grazing incidence.

For incident SV wave, the amplitude ratios Y1, Y2, Y3
and Y4 of reflected P1, P2, P3 and SV waves are plotted
against the range 1o ≤ θ0 ≤ 45o of the angle of inci-
dence in Fig. 4 by solid lines, when impedance parameter



280 B. Singh

-20 -10 0 10 20
Impedance parameter

0.6

0.7

0.8

0.9

1.0
A

m
p
lit

u
d

e
ra

ti
o
s

Reflected P1 wave

-20 -10 0 10 20
Impedance parameter

0.0E+0

9.0E-7

1.8E-6

2.7E-6

3.6E-6

4.5E-6

A
m

p
lit

u
d

e
ra

ti
o

s

Reflected P2 wave

-20 -10 0 10 20
Impedance parameter

0.0E+0

7.0E-7

1.4E-6

2.1E-6

2.8E-6

3.5E-6

4.2E-6

A
m

p
lit

u
d
e

ra
ti
o
s

Reflected P3 wave

-20 -10 0 10 20
Impedance parameter

0.0

0.2

0.4

0.6

0.8

1.0

A
m

p
lit

u
d

e
ra

ti
o

s
Reflected SV wave

Fig. 3. Variations of the amplitude ratios of reflected P1, P2, P3 and SV waves against the impedance parameter Z for incident P1 wave
when θ0 = 30o, 60o and 90o

Z = 0. Beyond θ0 > 45o, a phase change occurs. The am-
plitude ratios Y1 of reflected P1 wave is zero at θ0 = 1o

(near normal incidence). It increases to its maximum value
0.5472 at θ0 = 34o and then decreases sharply to its min-
imum value zero at θ0 = 90o (grazing incidence). In this
case also, the amplitude ratios Y2 and Y3 of reflected P2 and
P3 waves are observed very smaller in comparison to that
of P1 wave. The maximum values of the amplitude ratios
Y2 and Y3 of reflected P2 and P3 waves are 0.7350e − 04
and 0.7355e − 04 at θ0 = 25o. These amplitude ratios of
reflected P2 and P3 waves reduce to zero at 1oand45o. The
amplitude ratio Y4 of reflected SV is one at θ0 = 1o and it
reduces to 0.5416 at θ0 = 39o and increases sharply to one
at 45o. Similar variations for impedance parameters Z = −5

and Z = 5 are also shown in Fig. 4 by a dashed line and
a dashed line with stars as center symbols, respectively. The
comparison of these dashed lines with solid line shows the
effect of the impedance parameter at each angle of incidence
of SV wave.

For incident SV wave, the amplitude ratios Y1, Y2, Y3
and Y4 of reflected P1, P2, P3 and SV waves are plotted
against the range −20 ≤ Z ≤ 20 of the impedance pa-
rameter in Fig. 5 by a dashed line, a dashed line with stars
and solid line with squares for θ0 = 15o, 30o and 45o, re-
spectively. The comparison of these three variations shows
the effect of three different angle of incidence in a particular
range of the impedance parameter. It is observed that there
is no impact of impedance at θ0 = 45o.
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Fig. 4. Variations of the amplitude ratios of reflected P1, P2, P3 and SV waves against the angle of incidence θ0 of incident SV wave
when Z = −5, 0 and 5

V. CONCLUSIONS

Plane waves in a thermoviscoelastic medium with voids
is studied in the context of the Lord and Shulman theory
of generalized thermoelasticity. The solution of specialized
governing equations of medium shows the existence of three
coupled longitudinal waves (P1, P2 and P3) and a shear
vertical (SV ) wave. The relations between the amplitude ra-
tios of various reflected waves are obtained for incidence
of both P1 and SV waves. For a particular material rep-
resenting the medium, the amplitude ratios of the reflected
waves are computed and plotted against the angle of inci-
dence and impedance parameter. The numerical discussion
of these plots provide some vital observations:

1. Introduction of the impedance parameter in the tan-
gential stress component changes significantly the am-
plitude ratios of all reflected waves for incidence of
both P1 and SV waves.

2. For incident P1 wave, the impedance parameter sig-
nificantly changes the amplitude ratios of all reflected
waves at each angle of incidence except grazing inci-
dences. From Fig. 2 it is also observed that the pres-
ence of impedance parameter changes significantly the
amplitude ratios of reflected SV wave at normal inci-
dence and the amplitude ratios of reflected P1, P2 and
P3 waves remain unaffected at normal incidence.
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Fig. 5. Variations of the amplitude ratios of reflected P1, P2, P3 and SV waves against the impedance parameter Z for incident SV wave
when θ0 = 15o, 30o and 45o

3. For incident SV wave, the impedance parameter sig-
nificantly changes the amplitude ratios of all reflected
waves at each angle of incidence except at θ0 = 45o.
Again from Fig. 4, it is also observed that the pres-
ence of impedance parameter changes significantly the
amplitude ratios of reflected SV wave at normal inci-
dence and the amplitude ratios of reflected P1, P2 and
P3 waves remain unaffected at normal incidence.
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