
CMST 24(4) 249–258 (2018) DOI:10.12921/cmst.2018.0000025

Using GPU Accelerators
for Parallel Simulations in Material Physics

Mariusz Uchroński1*, Paweł Potasz2, Agnieszka Szymańska-Kwiecień1, Mariusz Hruszowiec3

1Wroclaw Centre of Networking and Supercomputing (WCSS)
Wroclaw University of Science and Technology

2Department of Theoretical Physics
Wroclaw University of Science and Technology

3Department of Telecommunications and Teleinformatics
Wroclaw University of Science and Technology

*E-mail: mariusz.uchronski@pwr.edu.pl

Received: 13 April 2018; revised: 24 November 2018; accepted: 26 November 2018; published online: 24 December 2018

Abstract: This work is focused on parallel simulation of electron-electron interactions in materials with non-trivial topo-
logical order (i.e. Chern insulators). The problem of electron-electron interaction systems can be solved by diagonalizing
a many-body Hamiltonian matrix in a basis of configurations of electrons distributed among possible single particle energy
levels – the configuration interaction method. The number of possible configurations exponentially increases with the number
of electrons and energy levels; 12 electrons occupying 24 energy levels corresponds to the dimension of Hilbert space about
106. Solving such a problem requires effective computational methods and highly efficient optimization of the source code.
The work is focused on many-body effects related to strongly interacting electrons on flat bands with non-trivial topology.
Such systems are expected to be useful in study and understanding of new topological phases of matter, and in further future
they can be used to design novel nanomaterials. Heterogeneous architecture based on GPU accelerators and MPI nodes will
be used for improving performance and scalability in parallel solving problem of electron-electron interaction systems.
Key words: GPU computing, MPI, OpenMP, material physics

I. INTRODUCTION

In this work a problem of electron-electron interaction sys-
tems was solved by diagonalizing a many-body Hamiltonian
matrix in a basis of configurations of electrons distributed
among possible single particle energy levels – the configu-
ration interaction method [1]. The configuration interaction
method is a universal method for quantum-mechanical many-
body problems. It can be used in quantum chemistry [1], solid
state physics [2–6], to quantum dots [7] and other nanos-
tructures [8] in order to determine their electronic [6], mag-
netic [8] and optical properties [7]. In this particular work,
we apply this method to find the many-body ground state of

a system of a finite number of electrons occupying a topolog-
ically nontrivial energy band, which can lead to appearance
of topological order (i.e. Fractional Chern insulators) [2–6].

To solve the problem of the electron-electron interac-
tion system the Modified Lanczos Method for Two Parti-
cle Creation Annihilation Problem (MLM42PCAP) was im-
plemented. The prepared GPU implementation improved
performance and scalability of solving the considered prob-
lem. During technical work most promising routines of For-
tran/OpenMP code were identified and ported to the GPU
accelerators using CUDA. In many places OpenMP was also
used to utilize processors and the final step was creating
hybrid MPI+CUDA implementation.

250 M. Uchroński, P. Potasz, A. Szymańska-Kwiecień, M. Hruszowiec

II. PROBLEM OF ELECTRON-ELECTRON
INTERACTION SYSTEMS

A fundamental principle of quantum mechanics is quan-
tum superposition. Since the equation describing nonrela-
tivistic quantum objects, the Schroedinger equation, is linear,
any superposition of solutions is also its solution. Thus, if
a quantum system consists of two subsystems, the total space
has to be described by a tensor product of these subspaces,
which states that all possible combinations of solutions of
subspaces has to be taken into account. In the case of the
many-body quantum mechanical problem, when each of n
particles can be in m states, the total number of states is mn

(neglecting particle’s statistics in this analysis), thus increases
exponentially with a system size. If one considers a system
of interacting electrons (fermionic statistic), the total number
of states is given by binomial coefficient of n over m, which
still exponentially increases with the number of particles n.
Among many-body methods, the configuration interaction
method (also called exact diagonalization) is the most exact
method when basis expansion contains also possible parti-
cle distributions (called configurations). The problem is that
the configuration-interaction method can be applied to sys-
tems with a small number of particles due to quick growth
of computational cost. Any truncation of the configuration
space makes it approximate. An important question is when
one can restrict a number of configurations such that desired
accuracy of the results is kept. In typical weakly interacting
systems, mean-field approximation can be applied, corre-
sponding to inclusion of only one dominant configuration.
However, strongly interacting systems require inclusion of
all possible configurations. A system of a finite number of
electrons occupying topologically nontrivial energy band is
an example of such problem.

III. MODIFIED LANCZOS METHOD FOR TWO
PARTICLE CREATION ANNIHILATION PROBLEM

In the Modified Lanczos Method for Two Particle Cre-
ation Annihilation Problem (MLM42PCAP) application sys-

tem with strongly interacting electrons on flat bands with
non-trivial topology is solved. First, the configuration space
of electrons distributed among possible single particle energy
levels is generated. Such configuration space is divided into
subspaces determined by conserved physical quantities, in
this case into momentum subspaces. Next, for each configura-
tion subspace a configuration interaction method is executed.
The main element of this method is a twooper function de-
scribing two-body interaction between particles. The matrix
is in a block diagonal form with row index corresponding
to distributions of particles on states (configuration). In gen-
eral, a new configuration is generated by annihilation of two
particles within a given configuration and creating two new
particles on new positions which correspond to a new config-
uration. Nonzero matrix elements between different configu-
rations are calculated and then the matrix is multiplied by an
initial vector.

IV. IMPLEMENTATION DETAILS

IV. 1. Technology used
Fortran 90 is a widely used version of the world’s old-

est scientific programming language. It was accepted as an
international standard in June, 1990 [9]. It is used in many
computationally intensive areas such as finite element analy-
sis, computational fluid dynamics and computational physics.
It is a popular language for high-performance computing.

OpenMP is a shared-memory application programming
interface (API) which enables programmers to use benefits of
parallel programming in an easy way [10]. The first specifica-
tion of OpenMP was introduced in October 1997 for Fortran,
and the first version for C/C++ was introduced a year later.
It is not a new programming language, but a notation that
can be added to a sequential program written in Fortran, C or
C++ in order to work in the shared-memory model. OpenMP
introduces a set of special directives. The directives enable
a programmer to transform a sequential code into a multi-
threaded one. The latest version of OpenMP is 4.5 and was
announced in November 2015 [11].

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
88.33 1708.73 1708.73 twooper_
6.24 1829.39 120.66 1722550782 0.00 0.00 hash_get_
3.14 1890.22 60.83 frame_dummy
0.89 1907.44 17.22 MAIN__
0.84 1923.69 16.25 271800 0.06 0.06 ortho_
0.31 1929.72 6.02 dlasr_
0.10 1931.62 1.91 218939208 0.00 0.00 sort_two_

Fig. 1. Output of the gprof tool for a single run of the medium problem size (6 particles with 24 states and 5700
maximum number of configurations)

Using GPU Accelerators for Parallel Simulations in Material Physics 251

CUDA was introduced in November 2006 by NVIDIA,
as a general purpose parallel computing platform and pro-
gramming model based on using GPUs [12]. CUDA comes
with a dedicated software environment that enables develop-
ers to use C/C++ high-level programming language. CUDA
has introduced extensions that allow creating GPU dedicated
functions called "kernels". Kernels are executed directly on
GPUs. The idea behind using CUDA is to divide a given prob-
lem to a subset of problems that can be solved independently
in parallel by threads organized in blocks. In this work CUDA
8.0 was used.

The Message-Passing Interface (MPI) is a message-
passing library interface specification [13]. It is based on
a message-passing parallel programming model, in which
data is moved from the address space of one process to
that of another process through communication. MPI is just
a specification, not implementation. In this work OpenMPI
(2.0.1) [14] implementation was used. Programs that use MPI
implementation must be compiled with a dedicated compiler,
e.g. mpif90 and then run with a special command, i.e. mpirun.

IV. 2. Hardware used
The initial version for use with OpenMP and GPU was

developed and tested at Nova system 3 fat nodes with four
sixteen core AMD Opteron 6274 processors with 256 GB of
memory and two NVIDIA Tesla M2075 (448 cores, 6 GB
of memory) each. We have also used the BEM cluster with
720 computing nodes with 24-core Intel Xeon E5-2670 v3
2.3 GHz each, Haswell and 192 nodes with 28-cores Intel
Xeon E5-2697 v3 2.6 GHz, Haswell each. Both systems are
located at Wroclaw Centre for Networking and Supercomput-
ing (WCSS).

Final tests of the hybrid implementation were conducted
at the Prometheus supercomputer at the AGH Cyfronet Su-
percomputing Centre. Nodes used for simulations were based
on Intel Xeon E5-2680v3 processors with 24 cores each and
clock at 2.5GHz working under the Linux CentOS 7 oper-
ating system. Each node has 128 GB system memory and
two Nvidia Tesla K40 XL. The Tesla K40 XL is a GPGPU
accelerator, which has 2880 CUDA cores, its maximum clock
frequency is 928MHz and it has 12 GB DDR5 of available
memory.

IV. 3. Implementation and testing
The implementation work started from basic code im-

provements, such as a porting code from Fortran77 to For-
tran90, code reorganization and refactoring. Some effort was
also put into improving implementation for generation of
configurations of electrons distributed among possible single
particle energy levels. The next step was a compilation of
the MLM42PCAP application using gfortran from the GNU
compiler suite (v4.9.2) and performance analysis in order to
find bottlenecks. The compilation was completed successfully
and the application was analysed with a gprof(v2.20) tool.

The medium size problem was taken as an example for per-
formance tests and it was conducted on the Nova. The source
code contained basic code improvements. The analysis has
shown that the twooper function is using over 80% of the
processor time (Fig. 1). It was an obvious choice to check
if it can be improved, i.e. by implementation on the CUDA
device [15, 16].

IV. 4. Single GPU implementation

In the initial implementation of the MLM42PCAP the
twooper function was called within three, or even four,
nested loops (Fig. 2). As it was noticed, each execution of the
twooper function was independent, so in a natural way it
could be parallelized.

do i x =1 ,Nx
do i y =1 ,Ny

. . . .
do i =1 , i c o n f

c a l l twooper (. . .)
end do

. . .
k=1
do

k=k+1
. . .
do i =1 , i c o n f

c a l l twooper (. . .)
end do

end do
. . .

do i =1 , i c o n f
c a l l twooper (. . .)

end do
. . .

end do
end do

Fig. 2. Skeleton of twooper function calls

The first step was to prepare an implementation of the
twooper function for CUDA, so we can call it as it is shown
in Fig. 3. The most inner loop has been removed. Two addi-
tional functions were written in C and CUDA C to a provide
proper interface for call from the Fortran code.

c a l l cu_ twooper (max_iconf , i c o n f ,
. . .
s d b l _ v e c _ s i z e , 0)

Fig. 3. CUDA function call introduced in the Fortran code

252 M. Uchroński, P. Potasz, A. Szymańska-Kwiecień, M. Hruszowiec

e x t er n "C" void cu_ twooper_ (
c o n s t f i n t 8 ∗max_iconf ,
. . .

c o n s t f i n t 8 ∗ t i d)
{

/ / memory a l l o c a t i o n
checkCuda (cudaMal loc ((void ∗∗)&Mat_P ,
∗ i c o n f ∗ (∗ N_st) ∗ s i z e o f (f i n t 8))) ;

. . .
checkCuda (cudaMal loc ((void ∗∗)&sdb l_vec_P ,

(∗ s d b l _ v e c _ s i z e) ∗2∗ s i z e o f (f i n t 8))) ;

/ / copy da ta t o t h e d e v i c e memory
checkCuda (cudaMemcpy (Mat_P ,

Mat ,
∗ i c o n f ∗ (∗ N_st) ∗ s i z e o f (f i n t 8) ,
cudaMemcpyHostToDevice)) ;

. . .
checkCuda (cudaMemcpy (sdb l_vec_P ,

sdb l_vec ,
(∗ s d b l _ v e c _ s i z e) ∗2∗ s i z e o f (f i n t 8) ,
cudaMemcpyHostToDevice)) ;

unsigned t h r e a d s = 256 ;
/ / number o f t h r e a d s : max i s 65535 i n x , y , z
unsigned g r i d s = (65535 < ∗ i c o n f / t h r e a d s ? 65535 : ∗ i c o n f / t h r e a d s) + 1 ;

c u _ i n n e r _ l o o p <<< g r i d s , t h r e a d s >>>(∗ i c o n f ,
. . .
∗ s d b l _ v e c _ s i z e) ;

/ / copy da ta from t h e p i n memory
checkCuda (cudaMemcpy (r r ,

r r_P ,
(∗ max_iconf) ∗ s i z e o f (fcomplex8) ,
cudaMemcpyDeviceToHost)) ;

/ / r e l e a s e memory
checkCuda (c u d a F r e e (Mat_P)) ;
. . .
checkCuda (c u d a F r e e (s d b l _ v e c _ P)) ;

}

Fig. 4. Interface to call function within the Fortran code

As we used the gfortran compiler, the only way to
connect C code with Fortran was to link it with each other
at the linking stage. Two functions were created; the first
one is the interface to the call function within the Fortran
code (Fig. 4). The C function cu_twooper implements
data transfer from a host to device memory and execution of
a proper kernel function on a GPU device and copying the
results back to the host memory.

In the CUDA kernel function cu_inner_loop (Fig. 5)

each thread calculates a nonzero matrix element and multi-
plies the matrix by an initial vector. The matrix is in a block
diagonal form with a row index corresponding to distribu-
tions of particles on states which is called a configuration.
Each configuration is represented by a binary number. Such
configuration space is divided into sub-spaces. Every CUDA
thread performs computation for one configuration of parti-
cles. In general each thread creates a new configuration by
annihilation "ones" within the given configuration and creates

Using GPU Accelerators for Parallel Simulations in Material Physics 253

_ _ g l o b a l _ _ void c u _ i n n e r _ l o o p (c o n s t f i n t 8 i c o n f ,
. . .
c o n s t f i n t 8 s d b l _ v e c _ s i z e) {

f i n t i , j , k , l ; / / i n d e x e s f o r each t h r e a d

/ / l o c a l v a r i a b l e s
f i n t 8 p , empty [MAX_SIZE] , c f [MAX_SIZE] ;
. . .
_ _ s h a r e d _ _ fcomplex8 r r _ p p [2 5 6] ;

p = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
r r _ p p [t h r e a d I d x . x] = r r [p] ;
_ _ s y n c t h r e a d s () ;
i f (p < i c o n f) { / / check i f i n d e x e s are v a l i d

f o r (i i =0 ; i i < N_par t ; ++ i i)
c f [i i] = Mat_P [p + i i ∗ i c o n f] ;

f o r (k =0; k < N_par t ; ++k) {
f o r (l =k +1; l < N_par t ; ++ l) {

f o r (i n t i i =0 ; i i < N_st−N_par t ; ++ i i)
empty [i i] = emp [p + i i ∗ i c o n f] ;

. . .
f o r (j =0 ; j < N_st−N_par t +1 ; ++ j) {

f o r (i = j +1 ; i < N_st−N_par t +2 ; ++ i) {
empi = empty [i]−1;

b in2 = b i n | (1ULL << (N_st−(empj + 1))) ;
b in2 | = (1ULL << (N_st−(empi + 1))) ;
. . .
r r _ p p [t h r e a d I d x . x] . r e a l = r r _ p p [t h r e a d I d x . x] . r e a l +
(mac . r e a l ∗ vec1 [s_db l −1] . r e a l − mac . imag ∗ vec1 [s_db l −1] . imag) ;
r r _ p p [t h r e a d I d x . x] . imag = r r _ p p [t h r e a d I d x . x] . imag +
(mac . r e a l ∗ vec1 [s_db l −1] . imag + mac . imag ∗ vec1 [s_db l −1] . r e a l) ;

}
}

}
}

}
r r [p] = r r _ p p [t h r e a d I d x . x] ;
_ _ s y n c t h r e a d s () ;

}

Fig. 5. CUDA kernel function cu_inner_loop

new "ones". Index p for a new configuration is calculated
using a hash table. A new configuration is checked if it is in
the same subspace. Finally, a matrix is multiplied by a vector
and results are stored in an output vector.

IV. 5. Multi GPU implementation
After completing the implementation that utilized a single

GPU, a new implementation was designed and programmed,
which can divide all computations between GPUs available

within a node. In order to achieve this goal, one needs to mod-
ify two of the most outer loops in the Fortran code (Fig. 2)
and combine them into one loop (Fig. 6). In the presented list-
ing OpenMP directives are also visible. The idea is to execute
function gpu_sub for a number of GPUs by a given num-
ber of threads. In an ideal case, when the number of threads
is equal to the number of available GPUs, each thread will
execute gpu_sub exactly on one GPU. In the used configu-
ration there were only 2 GPUs, so mod 2 thread executed the

254 M. Uchroński, P. Potasz, A. Szymańska-Kwiecień, M. Hruszowiec

given function on either the first or second GPU.

IV. 6. Hybrid MPI+CUDA implementation
In order to improve time of execution of the

MLM42PCAP code we implemented a version designed to
run in the hybrid environment based on MPI [14] and GPU
computing. MPI is dedicated for splitting problems across
several nodes/processes, and on every node GPU is used inde-
pendently. Based on previous implementations for GPU and
multiGPU code was adapted (with minor changes) for use at
hybrid MPI+GPU nodes.

In this section details of the implementation are presented
along with code and comments. Thanks to work done in im-
plementing the multiGPU version of the MLM42PCAP only
minor changes were needed.

According to the MPI philosophy there is one master
node that distributes work and data between all other nodes.
In the considered case the master node reads data from input
files and then sends it to all other processes (listing 7). The
data is read into four arrays: kxy, kxyid, el and eval, so only
those data structures need to be distributed.

The main loop was divided across many nodes (Fig. 8)
in a way that every node is computing its own subset of
iterations. It was possible to adapt directly multiGPU imple-
mentation which enabled splitting calculations across many
GPUs.

Each call of the subroutine lanczos_sub prepares all the
necessary auxiliary data structures for execution at the GPU,
which is needed to perform main computations. Configura-
tion of electrons for each simulation is also generated in this
subroutine.

i f d e f CUDA
!$OMP PARALLEL DO PRIVATE (myid , i x)

e n d i f
do i x =1 ,Nx∗Ny

myid = omp_get_thread_num ()
c a l l l a n c z o s _ s u b (kxy id (ix , 1) , kxy id

↪→ (ix , 2) ,
N_st , N_par t , Nx , Ny , kxy , e l ,
N_size_T , mod (myid ,

↪→ cuda_gpu_num))
end do

i f d e f CUDA
!$OMP END PARALLEL DO

e n d i f

Fig. 6. The source code executing computations on multi GPU

V. COMPUTATIONAL EXPERIMENTS

A set of computational experiments has been performed
using three a different problem’s sizes (small – eva34,

medium – eva46 and large – eva56). Digits in problem names
denotes Kx and Ky subspace length. Both OpenMP and
CUDA performance were measured for different number of
threads. In an OpenMP experiment the following number of
threads was considered: 1, 2, 4, 8, 16, 32 and 64. The upper
limit for the thread number was set. On the other hand in
a CUDA experiment 8, 16, 32, 64, 128 and 256 threads were
used. Hybrid MPI+CUDA implementation were performed
with a fixed CUDA number of threads: 64 and a changing
number of MPI nodes: 1, 2, 4, 8, 16.

! MPI read l o c a l da ta a t l o c a l node
i f (mpi_my_id == 0) then

open (1 , f i l e = ’ i n p u t / ’ / / a rg1)
open (2 , f i l e = ’ i n p u t / ’ / / a rg2)
! r e a d i n g da ta i n t o v a r i a b l e s e l , eva l

↪→ , kxy , k x y i d
. . .
do i =1 , mpi_num_procs−1

c a l l MPI_SEND(e l , s i z e (e l) ,
↪→ MPI_COMPLEX,
i , 0 , MPI_COMM_WORLD,
i e r r)

. . .
c a l l MPI_SEND(kxyid , s i z e (kxy id) ,

MPI_INTEGER , i , 0 ,
MPI_COMM_WORLD, i e r r)

end do
e l s e

c a l l MPI_RECV(e l , s i z e (e l) ,
↪→ MPI_COMPLEX,
0 , 0 , MPI_COMM_WORLD,
m p i _ s t a t u s , i e r r)

. . .
c a l l MPI_RECV(kxyid , s i z e (kxy id) ,

MPI_INTEGER , 0 , 0 ,
MPI_COMM_WORLD,
m p i _ s t a t u s , i e r r)

e n d i f

Fig. 7. Distributing data across nodes and receiving it

For a reference in every measurement, the time measurement
result of 1 OpenMP thread was considered. As it was men-
tioned above, three different size examples were taken into
account as test samples. In the first example (small) only
4 particles and 12 states with the maximum number of ac-
ceptable configuration 160 were considered. In this example
a Kx and Ky subspace length were 3 and 4, respectively. In
the second example (medium) there were 6 particles with 24
states and 5700 maximum number of configurations with Kx,
Ky subspaces length 4 and 6, respectively. In the last test
case (large) there were 5 particles with 30 states and 150000
maximum configurations with Kx, Ky subspaces length 5

Using GPU Accelerators for Parallel Simulations in Material Physics 255

and 6, respectively. All presented tests were performed at
the Prometheus supercomputer at the AGH Cyfronet super-
computing centre. Nodes used for simulations were based
on Intel Xeon E5-2680v3 processors with 24 cores each and
clock at 2.5GHz. Each node has 128GB system memory and
two Nvidia Tesla K40 XL.

do i x =mpi_my_id +1 , Nx∗Ny , mpi_num_procs
c a l l l a n c z o s _ s u b (kxy id (ix , 1) , kxy id

↪→ (ix , 2) ,
. . .

mod (mpi_my_id , cuda_gpu_num))
end do

Fig. 8. Algorithm main loop

Computation time obtained during test runs was used to
calculate speedup values. The value of relative speedup – s
can be found by the following expression s = ts

tp
, where ts

constitutes the computational time of sequential algorithm
(no GPUs and one OpenMP thread) and tp – computational
time of parallel algorithm. Every test run was repeated 10
times and average computation time was calculated. Tab. 1
contains performance results for OpenMP code executed on
the Prometheus system.

Tab. 1. Performance results (speedup) for OpenMP implementation

OpenMP threads Prometheus(Intel Xeon E5-2680v3)
eva34 eva46 eva56

2 1.20 1.80 1.87
4 1.42 2.74 3.26
8 1.71 4.06 4.04

16 1.36 4.01 4.34
32 0.94 4.00 4.78
64 0.64 4.03 4.85

For eva34 test case the speedup value is increasing from value
1.2 to 1.36 along with increasing the number of OpenMP
threads from 2 to 8. Then the increasing number of OpenMP
threads results in decreasing the speedup value – for a small
problem size there is no significant benefit from parallel
computing. Very similar behaviour can be observed on the
Prometheus system for eva46 test case, but in this case the
speedup is stabilized around factor 4. For eva56 test case
speedup value is increasing along with increasing the number
of OpenMP threads. This behavior of speedup values can
be explained by Amdahl’s law [17] (for fixed problem size
speedup is limited) and Gustafson’s law [18] (the speedup
value increases with the problem size).

Tab. 2 contains performance results for the CUDA code
executed on Tesla K40 XL located within the Prometheus

cluster for one and two GPUs. For eva34 test case speedup
values are very small and do not change with the increasing
number of CUDA threads per block in one and two GPU
cases. For eva46 test case speedup values stabilized around
factor 27 for the single GPU and around factor 52 for two
GPUs. Results are independent of the number of threads per
block. On the other hand, speedup achieved for the largest
dataset (eva56) increased along with the number of threads
per block.

The maximum speedup for this case was a factor 21.76
for a single GPU with the 64 threads per block and factor
41.77 for two GPUs with the 256 threads per block. The best
value of speedup (eva46) for one GPU is equal 27.34 and for
two GPUs is equal 53.31 are, respectively, 5x and 10x better
in comparison with the best OpenMP speedup equals 4.85.

OpenMP GPU 2GPUs MPI+CUDA

0

50

100

150

200

#s
pe

ed
up

eva34 eva46 eva56

Fig. 9. Best speedup values

Tab. 3 contains performance results for hybrid MPI+CU-
DA code executed on nodes based on 2 x Intel Xeon E5-
2680v3 and 2 x Tesla K40 XL. This configuration allowed
reducing the computation time. In the future it will give
a possibility to simulate larger systems. As for previous tests
with GPU implementations this implementation for eva34
resulted in small speedup. Nevertheless, speedup increases
with the number of MPI nodes. For eva46 and eva56 the ob-
tained speedups are larger than those achieved during 2 GPUs
tests. Four MPI nodes ensured better performance than the
best ones achieved in earlier tests. The best speedups were
achieved for 16 MPI nodes, which are 194.03 and 188.02
for eva46 and eva56, respectively. It is 40x and 38x better in
comparison with the best OpenMP speedup equals 4.85.

Best values of speedup for OpenMP, CUDA and hybrid
MPI+CUDA are shown in Fig. 9. It can be seen that speedup
values for the code executed on GPU are significantly larger
than for the code executed on CPU, but using hybrid im-
plementation is most efficient. For large test case data size

256 M. Uchroński, P. Potasz, A. Szymańska-Kwiecień, M. Hruszowiec

Tab. 2. Performance results (speedup) for CUDA implementation

CUDA threads per block speedup on one GPU speedup for two GPUs

eva34 eva46 eva56 eva34 eva46 eva56

8 0.32 27.34 17.39 0.42 53.06 33.22

16 0.32 27.27 17.36 0.42 52.15 33.81

32 0.31 27.15 21.47 0.43 52.61 40.67

64 0.32 27.27 21.76 0.42 53.01 41.17

128 0.31 27.01 21.23 0.43 53.31 41.62

256 0.31 27.18 21.21 0.42 52.84 41.77

copied from the host to device memory is about 15MB and
about 75kB for copying the results back to the host memory.
A similar problem with copying data between nodes occurs
within the hybrid code. As for CUDA it is also visible only
for the smallest example – eva34.

Tab. 3. Performance results (speedup) for hybrid MPI+CUDA im-
plementation. At every node two GPUs were used with 64 threads

per block

MPI Nodes Prometheus(2 x Tesla K40 XL)

eva34 eva46 eva56

1 0.18 19.23 14.48

2 0.27 34.39 26.52

4 0.47 67.58 49.44

8 0.56 132.37 97.84

16 0.70 194.03 188.02

VI. CONCLUSION

In conclusion, our work demonstrated the potential of
using GPU accelerators for improving performance and scal-
ability in material physics simulations. Hybrid architecture
based on nodes with GPUs was also tested and verified for use
in material physics simulations. The main factor in obtaining
high performance GPU computing is to identify promising
areas of application that allow for massive parallelism. For
this purpose a gprof tool was used and a configuration in-
teraction method was identified as most promising to port on
GPU. The prepared GPU implementation provides a signifi-
cant increase of performance (x5 speedup) in comparison
with parallel OpenMP base implementation. The nature of
the problem allows enabling GPU computational potential
by enabling code execution on multiple GPUs. This goal has
been achieved by using the possibility of independent compu-
tations for each subspace of configurations space. Multi GPU

approach results in the next significant increase of perfor-
mance – x10 speedup for execution on two GPUs. The next
step was to split the calculations between independent nodes
with GPUs. Data was distributed within set of MPI nodes,
which has 2 GPUs each. Hybrid MPI+CUDA approach results
in next significant increase of performance – x40 speedup for
execution with 16 MPI nodes. The proposed approach results
in shortening of the computation time and gives a possibility
to simulate larger electron-electron interaction systems in
future exascale HPC systems with GPUs.

Acknowledgments

This research was supported in part by PLGrid Infrastruc-
ture and Wroclaw Centre for Networking and Supercomput-
ing HPC infrastructure (grant No. 368).

This work was financially supported in part by the
PRACE-4IP project funded by the EU’s Horizon 2020 re-
search and innovation programme (2014-2020) under grant
agreement 653838 and by the Polish Ministry of Science
and Higher Education (decision 3563/H2020/2016/2 and
DIR/WK/2016/18).

This work was financially supported in part by the Na-
tional Science Center (NCN), Poland, Grant Sonata No.
2013/11/D/ST3/02703.

References

[1] A. Szabo, N.S. Ostlund, Modern quantum chemistry: intro-
duction to advanced electronic structure theory, New York
1982.

[2] T. Neupert, L. Santos, C. Chamon, C. Mudry, Fractional Quan-
tum Hall States at Zero Magnetic Field, Physical Review Let-
ters 106, 236-804 (2011).

[3] Y. Wang, Z. Gu, C. Gong, D.N. Sheng, Fractional Quantum
Hall Effect of Hard-Core Bosons in Topological Flat Bands,
Physical Review Letters 107, 146-803 (2011).

[4] D.N. Sheng, Z. Gu, K. Sun, L. Sheng, Fractional quantum
Hall effect in the absence of Landau levels, Nature Communi-
cations 2, (2011).

Using GPU Accelerators for Parallel Simulations in Material Physics 257

[5] N. Regnault, B.A. Bernevig, Fractional Chern Insulator, Phys-
ical Review X 1, 21-14 (2011).

[6] B. Jaworowski, A. Manolescu, P. Potasz, Fractional Chern
insulator phase at the transition between checkerboard and
Lieb lattices, Physical Review B 92, 245-119 (2015).

[7] A.D. Güçlü, P. Potasz, O. Voznyy, M. Korkusinski, P. Hawry-
lak, Magnetism and Correlations in Fractionally Filled De-
generate Shells of Graphene Quantum Dots, Physical Review
Letters 103, 246-805 (2009).

[8] A.D. Güçlü, P. Potasz, P. Hawrylak, Electronic Shells of Dirac
Fermions in Graphene Quantum Rings in a Magnetic Field,
Acta Physica Polonica A 116, 832-834 (2009).

[9] T.M. Lahey, T.M. Ellis, FORTRAN 90 Programming, Boston
1994.

[10] B. Chapman, G. Jost, R. van der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming, Cambridge 2007.

[11] OpenMP specification, http://www.openmp.org/specificat
ions/, [Online; accessed 14-November-2018].

[12] NVIDIA CUDA C Programming Guide, https://docs.nvidia.
com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

[13] MPI-forum, http://mpi-forum.org/, [Online; accessed 14-
November-2018].

[14] OpenMPI homepage, https://www.open-mpi.org/, [Online; ac-
cessed 14-November-2018].

[15] M. Hruszowiec, P. Potasz, A. Szymańska-Kwiecień. M.
Uchroński, Using GPU Accelerators for improving Perfor-
mance and Scalability in Material Physics Simulations, www.
prace-ri.eu/IMG/pdf/WP235.pdf, 2017, [Online;
accessed 14-November-2018].

[16] B.B. Gursoy, M. Browne, M. Lysaght, Evaluation of Tools
and Techniques for Future Exascale Systems, www.prace-
ri.eu/IMG/pdf/D7.4_4ip.pdf", 2017, [Online; accessed 14-
November-2018].

[17] G.M. Amdahl, Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities, Proceedings
of the Spring Joint Computer Conference, 483-485 (1967).

[18] J.L. Gustafson, Reevaluating Amdahl’s Law, Communications
of the ACM 31, 532-533 (1988).

Mariusz Uchroński is a lead programmer at Wroclaw Centre for Networking and Supercomputing (WCSS)
and researcher at Wroclaw University of Science and Technology, Department of Control Systems and
Mechatronics. He obtained his PhD from Wroclaw University of Science and Technology, Institute of
Computer Engineering, Control and Robotics in 2014 in the field of control and robotics. His areas of research
interest include parallel algorithms, software design and development, HPC computing, scheduling and discrete
optimization. His scientific achievements: co-author of several scientific papers published in peer-reviewed
journals and conference proceedings in the field of parallel processing, software design and development,
scheduling and optimization. He was involved in several R&D projects, such as PRACE 2IP/3IP/4IP/5IP,
PLGrid, SPIN-LAB, AZON.

Paweł Potasz received his PhD from the Institute of Physics, Wroclaw University of Science and Technology,
in 2012, for his work on electronic and optical properties of graphene nanostructures. His research interests
are concentrated around electronic properties of low-dimensional systems, correlated phases and topological
effects. Currently, he is assistant professor at the Department of Theoretical Physics, Faculty of Fundamental
Problems of Technology, at Wroclaw University of Science and Technology.

Agnieszka Szymańska-Kwiecień received her master’s degree in Computer Science in 2001 from Wroclaw
University of Science and Technology, Faculty of Computer Science and Management. Currently she is head
of the Project Development Team at Wrocław Centre for Networking and Supercomputing and works as
an application and programming technologies expert. Her main interests concern parallel and distributed
computing, resource management in distributed environments and use of novel architectures in HPC. She has
been involved in national and EU projects in the field of HPC and Grid computing, distributed storage and
network security, as coworker, key personnel and task or project manager.

258 M. Uchroński, P. Potasz, A. Szymańska-Kwiecień, M. Hruszowiec

Mariusz Hruszowiec graduated in Applied Computer Science from Wrocław University of Technology in
2012. At present he is a PhD student at the Faculty of Electronics at Wrocław University of Technology.
The main topics of his interest are gyrotron theory, electromagnetic field theory and numerical methods.
Simultaneously he is working at Nokia at the Smart Radio department. His work is focused around digital
signal predistortion.

CMST 24(4) 249–258 (2018) DOI:10.12921/cmst.2018.0000025

