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Abstract: The symmetries of the minimal ¢ theory on the lattice are systematically analyzed. We find that symmetry can
restrict trajectories to subspaces, while their motions are still chaotic. The chaotic dynamics of autonomous Hamiltonian
systems are discussed in relation to the thermodynamic laws. Possibilities of configurations with non-equal ideal gas
temperatures in the steady state in Hamiltonian systems, are investigated, and examples of small systems in which the
ideal gas temperatures are different within the system are found. The pairing of local (finite-time) Lyapunov exponents
are analyzed, and their dependence on various factors, such as the energy of the system, the characteristics of the initial
conditions are studied and discussed. We find that for the ¢* theory, higher energies lead to faster pairing times. We also find
that symmetries can impede the pairing of local Lyapunov exponents and the convergence of Lyapunov exponents.
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I. INTRODUCTION

Chaotic properties of Hamiltonian systems have been
studied for some time, and a general picture of the dynamics
seems to be emerging [1-3]. Yet interesting questions from
the physics point of view still remain. Some of these issues
were raised in [4], which we address in this work. In a dy-
namical system with chaos, trajectories with different initial
conditions diverge exponentially from each other in the phase
space, so that it may seem difficult to control its region of
motion. The domain within the phase space in which it travels
can be restricted for energetic reasons. The possibilities of the
symmetries of the dynamical system limiting the allowed re-
gion of motion is investigated in this work. The symmetries of
the minimal ¢4 theory, which has no additional symmetries,
is investigated systematically. It is found that symmetries can
indeed restrict the trajectories of the dynamical system in the
phase space to its lower dimensional subspace. This property
is not restricted to small systems.

In contrast to regular motions, where the trajectories are
confined to specific regions in the phase space, chaotic trajec-
tories can travel freely within the constant energy subspace
of the phase space. Therefore, chaotic motions are sometimes
used for simulations of finite temperature systems. Indeed,
apart from quantum effects, this should be able to describe
areal physics system, given enough degrees of freedom. The
temperature for such systems can be well defined, but it is
unclear whether the properties of finite temperature systems
are reproduced, in general. In this work, Hamiltonian systems
are used to simulate the dynamics of finite temperature lattice
systems, and the physical properties of the system are inves-
tigated from the point of view of the basic thermodynamic
laws. It is found that the basic law that the temperature within
a thermally equilibriated system is uniform, can be violated
in certain cases. We demonstrate this with a few examples,
and analyze why it can occur.
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Chaoticity of a system can be analyzed quantitatively
through its Lyapunov exponents. For this purpose, the time
averaged Lyapunov exponents over trajectories are usually
studied. For autonomous Hamiltonian systems, these expo-
nents are composed of pairs, which each sum to zero. One
can also study the local, or the finite time, Lyapunov expo-
nents, which have not been averaged over time. Interestingly,
the local Lyapunov exponents are in general not paired, even
in autonomous Hamiltonian systems, but seem to become
paired after some time. This pairing property is studied in
this work for the ¢* theory. It is found that the pairing time is
faster at higher energies, and that the symmetries of the sys-
tem can affect the pairing time, along with the convergence
properties of the Lyapunov exponents. For concreteness and
consistency, we shall work mostly with the one dimensional
lattice ¢* theory in this work, while explaining the differences
and similarities with other models, when appropriate.

The symmetric properties of the dynamical system and
its effects on the chaotic trajectories is analyzed in Sec. II.
The chaotic properties of the dynamical systems in relation
to thermodynamics relations are studied in Sec. III. The pair-
ing properties of local Lyapunov exponents are discussed in
Sec. IV.

II. SYMMETRIES AND CHAOS

Dynamical systems, in general, have various symmetries
that can constrain some of its dynamics. These symmetries
depend strongly on the structure of the model considered. For
concreteness, we use the ¢4 theory in one dimension with N
lattice sites [5, 6]. The Hamiltonian for the model is
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The potential terms at the ends, Hp, depend on the boundary
conditions, and are

1
Hp = §(QN —q1)?  (periodic bc),

1
Hp =5 (4 +47) (fixedbo), )
Hz =0 (free bc).

The non-linearity of the model is contained solely in the local
on-site potentials. The intersite couplings of ¢;’s induce ener-
gy transfer across the sites. The model can be chaotic when
N > 2 [7]. The equations of motion for the model are

4j =Ppj, Dj=qji+1 “v‘qul—qu—q;’ j=1,2,---,N.

3

with the boundary conditions, which can be interpreted as the
following, by adding a site at each end.

4o = 4N,;4dN+1 = q1 (periodic),
o =qn+1 =0 (fixed), 4)
qo = q1,4N+1 = 4N (free).

We can consider more exotic boundary conditions, ¢ =
agn+1, (a: constant) which we shall call twisted boundary
conditions. This corresponds to adding the potential,

Hg = %(q1 —aqn)?  (twisted bc). 5)
A useful example is the antiperiodic boundary condition,
q1 = —qn+1, with the notation used in Eq. (4). The antiperi-
odic boundary condition can appear naturally even within
other boundary conditions, as will be seen below. Antiperi-
odic boundary conditions are also used in fermionic theories.

The minimal ¢* theory, explained above, has a Zy symme-
try, (¢;,p;) <> (—¢;, —p;). The symmetry can be enlarged
by letting (¢;, p;) belong to a representation of a group. The
simplest example would be to let (¢;,p;) be complex, and
let the potential be a function of the complex norm of ¢;. In
this case, there is an additional U(1) symmetry, which rotates
the phase of (g;, p;). Such boundary conditions are used in
the theories of parastatistics [8], anyons [9], theories on orb-
ifolds [10], and higher dimensional representations can lead
to other interesting twisted boundary conditions [11]. Here,
we shall not enlarge the symmetry, but work with the simplest
minimal ¢* theory.

In addition to the Zy symmetry, there are other spatial
symmetries in the lattice model, which depend on the bound-
ary conditions. Here, we consider the model with the peri-
odic boundary conditions, so that the system is essentially on
aring. When the boundary condition is periodic, for any factor
m of N, the system has a translational symmetry, the symme-
try under the transformation, 7, that shifts all the sites by m,
Tindj = qj+m- This reduces the model to the ¢* theory with
m sites. When m is not a factor of [V, the symmetry is incom-
patible with the boundary conditions. Here, for the model with
periodic boundary conditions, we use the convention of iden-
tifying the site labeled by j + /N with that labeled by j. There
is another symmetry, (¢;,p;) <> (qn—j,Pn—j), (J < N/2)
which is essentially the parity symmetry, for any V. This
reduces the model to that of N/2 + 1 sites when N is even,
and (N + 1)/2 sites when odd. When N is even, there is also
an inequivalent symmetry, (g;,p;) < (¢N+1—j,PN+1—j),
(j < N/2), which effectively reduces the number of sites to
N/2.In fact, (¢;,p;) <> (qum—;,prm—j), for any integer M
is a symmetry of the model, for any N. However, by shifting
the labels of the sites, it reduces to the symmetries explained
above. The model with other boundary conditions can also
be considered with their corresponding symmetries.

In theories with chaos, generic trajectories thread through
the allowed region, and since the different trajectories generi-
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Fig. 1. Chaotic trajectories, (g;, p;) for the initial conditions, ¢; = 0, (p;) = (2,1,0,0,2,1,0,0,2,1,0,0) for N = 12, from ¢ = 0 to
t = 100. There are only four distinct trajectories due to symmetry, sites 1 (red), 2 (green), 3 (blue), 4 (cyan)

cally diverge from one another, it seems difficult to restrict
the chaotic trajectories within a subspace. Here, we use the
¢* theory example to show how a symmetry of a model can
restrict the trajectories to a subspace of a dynamical system,
while still being chaotic. First, let us use the translational
symmetry, 7,,, where m is a factor of N: When the initial
conditions also respect this symmetry, the equations of mo-
tion reduce to the ¢* model on the one dimensional lattice
with m sites. The solutions to the equations of motion are
restricted to the subspace, {(¢;,p;)|¢j+m = ¢, Pjtm =
pj,J = 1,2,..., N}, for the initial conditions respecting
this symmetry. The equations of motion can be seen to be

Pj

consistent with the reduction to this subspace. Here, we used
the convention, ¢;4+ y = ¢;,pj+nN = p;. Excluding the trivial
case m = 1, the motion within this subspace is in general
chaotic, since it is identical to that of the one-dimensional ¢4
model for m sites, which can be chaotic, as mentioned previ-
ously. An example of this symmetry for N = 12, q;14 = q;,
Dj+4 = Dj, is shown in Fig. 1. In this example, the maximal
Lyapunov exponent, \; = 0.03. Lyapunov exponents are
discussed systematically in Sec. IV.

A different and slightly less obvious symmetry can be
imposed when N/m is even, with m being a non-trivial factor
of N. Using the Z, symmetry of the ¢* theory, we can restrict

Fig. 2. (Left) Chaotic trajectories, (g;, p;) for the initial conditions, ¢; = 0, (p;) = (2,1,0,0,—2,—1,0,0) for N = 8, from ¢t = 0 to
t = 100. There are only four distinct trajectories, up to sign, due to symmetry, sites 1 (red), 2 (green), 3 (blue), 4 (cyan). (Right) Coordinates
q; (red), —gqj+4 (yellow) as a function of time. Trajectories ¢; = 0, (p;) = (2,1, 0,0) for N = 4 with antiperiodic boundary conditions
are also shown (blue). The trajectories for ¢;, —g;4+4 (N = 8), and ¢; (N = 4) are identical for j = 1, 2, 3, 4, so that the symmetry of the
trajectory for the N = 8 system can be observed, as well as the equivalence to the N = 4 system with antiperiodic boundary conditions
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the orbits to the subspace, {(¢j,;)|¢j+m = —¢j:Dj+m =
—p;,j =1,2,...,N}. The equations of motion are consis-
tent with this restriction, provided that N/m is even. In this
case, the dynamics of the m sites reduce to the ¢* theory with
antiperiodic boundary conditions. In Fig. 2, an example of
this symmetry for the case N = 8, m = 4 is shown. For this
trajectory, A; = 0.06. For comparison, in Fig. 3, an example
for the N = 12 case, with initial conditions similar to those
used for N = &, is shown, which has A\; = 0.05. This case
breaks the symmetry, so that the trajectories are no longer
confined to a lower dimensional subspace within the constant
energy subspace. The trajectories that do and do not respect
symmetry properties are contrasted in Fig. 4.

Another interesting, and somewhat obscure, symmetry
that can restrict the chaotic trajectory to a subspace is the
parity symmetry mentioned above. Here, when N is even,
we can restrict the dynamics to a subspace, {(¢;,p;)|q; =
gN—j,Pj = Pn—j,J = 1,2,..., N}. In this case, the phase
space coordinates (qn, P~ ), (¢n/2, Pn/2) are not restricted at
all. A simple interesting example for N = 4, and an example
for N = 6 are shown in Fig. 5, and Fig. 6. A\; = 0.02,0.04,
for these trajectories, respectively, and the chaoticity of the
former trajectory is revisited in Sec. IV. It should be noted
that in all the cases the dynamics preserves the symmetries
of the model, only provided that the initial conditions respect
them.

Above, the explicit examples used to illustrate the analy-
sis were relatively small systems (/N < 12). However, clearly,
the symmetry properties apply to theories with arbitrarily
large lattice sizes, V. For instance, for an arbitrarily large [V,
a translational symmetry 7, with m being any factor of N
(which can also be large) exists. In this case, the non-trivial
dynamics of the system reduces to that of the ¢* theory with
m lattice sites. This also almost guarantees that the motion
restricted to a lower dimensional subspace within the phase

space can be chaotic, since it is the dynamics of the ¢* theory
which can have an arbitrarily large number of sites. While we
adopted the q54 model for concreteness, it should be noted that
this symmetry argument applies straightforwardly to a one-
dimensional lattice models with any on-site potential, that is
even under the reflection ¢; <+ —q;. The translational sym-
metry can still be used even when the potential is not even.
The symmetry can also be generalized to higher dimensional
lattice theories.

III. CHAOS, IDEAL GAS TEMPERATURE, AND
THERMODYNAMIC LAWS

In theories governed by autonomous Hamiltonians, if we
follow trajectories over time, they are constrained in a con-
stant energy subspace. If the dynamical system has chaos,
we might wonder if it goes “everywhere” within this sub-
space. Clearly, there are cases where the motion is restricted:
First, there is a trivial possibility that the system might be
decoupled into subsystems with no interaction amongst them.
In this case, there might be chaos within each dynamical
system, but trajectories are restricted within product spaces.
These cases include systems which might seem coupled, but
whose phase space coordinates can be decoupled by canon-
ical transformations. Second, even in theories with chaos,
there are non-chaotic orbits, such as periodic orbits [12—18].
Then, as we have seen above, symmetries can constrain a
trajectory to a subspace. Relatedly, conservation laws, often
associated with symmetries, can also constrain the dynamics.
In a dynamical system not reducible to decoupled subsystems,
when we consider an initial condition that respects no symme-
tries, a question naturally arises as to whether the trajectory
ultimately travels densely, or arbitrarily close to any point,
within the constant energy subspace. If such is the case, there

Fig. 3. Chaotic trajectories, (q;, p;) for the initial conditions, ¢; = 0, (p;) = (2,1,0,0,—-2,—1,0,0,2,1,0,0) for N = 12, from ¢ = 0 to
t = 100. The trajectories for first four sites are shown, sites 1 (red), 2 (green), 3 (blue), 4 (cyan)
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qj+4

Fig. 4. The phase space relations of (g1, ¢s) for the trajectories shown in Fig. 1 (red), Fig. 2 (green), and Fig. 3 (blue). (g2, g6 ) trajectory for
Fig. 3 is also shown (cyan). We see that g1 = g5 for the trajectory in Fig. 1, g1 = —g¢s for that in Fig. 2, and that no such simple relation
exists for (¢1, g5), (g2, g6 ), for the trajectory in Fig. 3

is a unique chaotic “sea”, and the system is ergodic. Then,
averaging over a chaotic trajectory within the sea, we may ob-
tain the unique statistical average of any physical quantity. In
a microcanonical average, the probability distribution within
the phase space is uniform over the constant energy surface.
However, it should be noted that even in this idealized case,
the time required to sample broadly enough within the phase
space to evaluate the physical quantity might be prohibitively
long, for computational purposes. Also, even if the trajec-
tory travels densely within the constant energy subspace, the
corresponding probability distribution might not be uniform,
so that the averaging is not microcanonical.

We now investigate these issues in conjunction with the
notion of temperature in Hamiltonian dynamics. While we
will not reach a simple conclusion, we obtain results that are
interesting and deserve further study. In classical theories, it is

70 75 80 85 90 95 100

possible to theoretically apply deterministic thermostats and
analyze their dynamics from first principles. Deterministic
thermostats, such as Nosé-Hoover thermostats [3, 19, 20], or
configurational thermostats [21-23], add additional degrees
of freedom to the system. When the equations of motion is
integrated, the thermostats induce thermal distributions for
the degrees of freedom coupled to the thermostats, as an
ensemble when the trajectory is sampled over time. The tem-
perature, in this context, can be measured by the ideal gas
temperature, which is defined as <p?> for the site 5 in the la-
ttice model, with (- - - ) denoting the time averaged value over
the trajectories, which is also the statistical ensemble average
when the system is ergodic. This ideal gas temperature is
identical to any temperature definition, provided the site is
thermalized. In Hamiltonian dynamics, without thermostats,
one can similarly define the ideal gas temperature locally,

=
Ebblo—vwe

Fig. 5. (Left) The time dependence of ¢; on time with the initial conditions, ¢; = 0, (p;) = (2, 2,2, —2) for N = 4; g1 (green), g2 (red),
g3 (black), and g4 (black). It can be seen that ¢; = g3, and g1, g2, ¢4 have no such simple relation. (Right) Chaotic trajectories of p; against
(q1,g2) from ¢t = 0 to t = 100, with the same colors as the left figure
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Fig. 6. (Left) The time dependence of ¢; on time with the initial conditions, ¢g; = 0, (p;) = (1,0,2,0,1, 3) for N = 6; ¢1 (red), g2 (green),
g3 (blue), qu (magenta) gs (black), and ge (cyan). It can be seen that g1 = ¢5, g2 = qa, and there are no other simple relations.
(Right) Chaotic trajectories of p; against (g1, g2) from ¢ = 0 to ¢ = 100, with the same colors as the left figure

for any site. This definition is naturally motivated from the
physics point of view, in that it is the temperature measured
when one considers ideal gas in thermal equilibrium with the
system. We shall use this definition of the temperature in this
work. A natural question remains as to whether its behavior
is such that it can be interpreted as a thermodynamical tem-
perature. It should be mentioned that a combination of the
coordinates, g;, may also be considered the definition of the
temperature. However, in lattice models such as the ¢* theory,
g; are coupled across sites, and it has a non-linear potential.
For these reasons it is difficult to use coordinates in a simple
unambiguous definition of the local temperature.

In this work, we consider closed autonomous lattice
Hamiltonian systems. There are no thermostats in the system,

4
|
35 ”7”7”””””””7”””””””” 7
— 9
| ]
0.25
25 a 7
02 | - |
N/,\\ 2t g 0.15 7
=3 a |
v 2
sl % 0.1 |
a 005
| ]
. | | ‘ ‘ ) . .
| . 5 1 0 1 2 3 i
P

J

and naively, the “temperature” of all the sites should be iden-
tical in the steady state, which should be the equilibrium state.
If thermodynamic laws apply, the temperature of any matter
that is able to exchange energy with each other would be all
at the same temperature, in a thermal equilibrium. One objec-
tion might be that thermodynamics only applies to systems
with many degrees of freedom and small systems need not
satisfy the law. However, when the averaging is performed
a over large number of configurations, typically by integrat-
ing over a trajectory, the local temperatures are well defined
and the ensemble average should satisfy the thermodynamic
laws. In fact, in thermostated systems, thermodynamic laws
apply well to systems with small degrees of freedom [3]. Ano-
ther issue, which is more essential here, is the assumption

le+07

3
10000
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t

Fig. 7. (Left) Ideal gas temperatures for N = 2 ¢* theory with fixed and free boundary conditions on the both ends. (Inset) p; distribution for

site 1 (red), with the thermal distribution when (p? ) is regarded as the temperature (green). (Nsample, Nstep, dt) = (10%,2 x 10°,107°).

(Right) The change in <p?> with respect to the simulation time. It is seen that their averages are quite stable, and agree for various simulation

parameters. Parameters were (Ngample, Nstep, dt) = (10%,2 x 10%,1073) (red), (10%, 2 x 107,1073) (green), (10*,2 x 10%,5 x 10™%)
(blue), (10%,2 x 107, 5 x 10™*) (magenta), (10*,2 x 10°,3 x 10™%) (cyan)
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P1

Fig. 8. Poincaré sections for (q1,p;) (left), (g2, p2) (right). The sections for the simulations with (Nsample, Nstep, dt) = (10%,2 x

10°,107%) (cyan), (Nsample, Nstep, dt) = (10%,2 x 10°,1072) (yellow), (Nsample, Nstep, dt) = (10,2 x 10%,107%) (red). For the two

sections, the number of points are (103390, 117830), (1038649, 1179563), (104051927, 117436859), respectively for the above three

simulations. The corresponding boundaries of the energetically allowed regions are also shown (black). The Poincaré sections fill out the
allowed regions, as far as it can be observed

of thermalization. Here, thermalization means that the basic
statistical properties of the finite temperature systems are
obeyed, so that the thermodynamics laws apply [24]. If the
system is not thermalized, while the ideal gas temperature
itself is well defined, the definition of the temperature is no
longer unique [25]. For instance, we can define the tempera-

2

ture as <pj> oras 4/ <p;¥> /3, and these values are in general

not equal. If the system is thermalized, the canonical distri-
bution exp(—H/T) dictates a Gaussian distribution for {p; }
since the momenta are quadratic and decoupled amongst the
sites in H, Eq. (1). Therefore, using any even moment of
p; leads to the same temperature. When the system is large,
it is expected to be essentially thermalized after sufficient
time. After all, when the quantum behavior is not essential,
physical systems are governed by classical dynamics and re-
spect the thermodynamic laws. The microcanonical, constant
energy dynamics for the whole system should result in the
canonical ensemble for its subsystems. However, for small
systems there is no rigorous reasoning that the system should
be thermalized. It should be noted that even if the ideal gas
temperatures are different, it does not mean there is a way
to extract energy in a manner that violates the second law
of thermodynamics, since the law does not apply without
thermalization.

The above logic leaves the possibility that in small Hamil-
tonian systems the ideal gas temperature is not identical
within the whole system, even with chaotic dynamics, in
principle. However, even if this is logically possible, it still
remains to find examples of such behavior, if it exists. To
our knowledge, no such system has been found to date. Here,
we investigate this issue explicitly in the ¢* model. First, we
note that the ideal gas temperatures might be identical due

to symmetry reasons. Such is the case for the $* model with
periodic boundary conditions. The ideal gas temperature is

) =>_» ©)
S

where S is the chaotic sea for the given energy, over which
it is averaged. By using the symmetry transformation in the
previous section, we find

P2 = "Tir? => py. %
TS S

The first equality is simply the fact that shifting the site in-
dices is equivalent to relabeling sites. The second equality
holds due to the property 7,,S = S, for any m that is a factor
of N, which always includes the case m = 1 used above.
Given any trajectory {q; }, {¢j+m }. which is the solution just
shifted by m, is also a solution, which leads to this relation.
This relation shows that all sites have the same ideal gas
temperature. This assumes the uniqueness of the chaotic sea
for generic initial conditions. One should be careful even in
this case, since for a particular non-generic initial condition,
ideal gas temperatures for the sites need not be the same. For
instance, periodic orbits, which are non-generic and clearly
non-chaotic exist. In some cases, some sites are stationary so
that in this case, some sites are at zero ideal gas temperature,
while others are not [18]. Also, as studied in the previous
section, we can construct dynamics with chaotic behavior, yet
restricted within a subspace.

A concrete and interesting question is whether, in a micro-
canonical ensemble average of a lattice Hamiltonian system,
all the sites have the same ideal gas temperature. Here, we
provide evidence of a few examples where the temperatures
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are not the same. Ideally, we would like to find the simplest
examples with generic parameters. Let us first consider the
N = 2 model. Here, the symmetry would prevent us from
having different temperatures in the two sites, if the boundary
conditions are identical, so we choose the model with the
fixed and free boundary conditions on the two ends. We pick
E/N = 3, so that the parameters are of order one. Here,
FE is the total energy of the system, which is the value of
the Hamiltonian, Eq. (1). This is, of course, constant along
the trajectory, in theory. In practice, the relative error in F
when integrated along the whole trajectory is less than 10710,
relatively, in this work. The ensemble averaged ideal gas
temperatures are shown in Fig. 7, along with the change in
their values over the simulation times. The simulations are
performed with randomized initial conditions with the same
energies, and averaging over the trajectories and initial con-
ditions. We see that (p?) are unequal for the two sites, con-
sidering the statistical errors. We add that when the boundary
conditions are the same, periodic, fixed, or free, at both ends,
the ideal gas temperatures are identical at both ends. The
momentum distribution for site j = 1 is also shown in Fig. 7,
which can be seen to be far from the Gaussian distribution,
which is required for a thermalized system. To investigate
as much as possible that we have sampled in the constant
energy subspace, we have changed the lengths of each trajec-
tory (number of steps Niep), time step size, dt, number of
samples, Ngample, and also have performed the computation
with the fixed and free boundary conditions reversed. Also,
we have studied the trajectories within the phase space, which
seem to basically fill out the allowed region. In Fig. 8, the
Poincaré sections in the (g1, p;1) plane when ¢go = 0, and
(g2, p2) plane when g; = 0 are shown. In the simulations we
found that when a single trajectory is used, it tends to visibly
leave regions of the phase space unvisited. On the other hand,
for simulations which seem to fill out the phase space, the
temperature profiles are consistent with the results obtained
above. We have studied the projections of the trajectories on
the other coordinate planes, which also seem to fill out the
allowed region. To study if the trajectories are chaotic, as we
expect, we have computed the averaged maximal Lyapunov
exponent, whose time dependence is shown in Fig. 9. This is
seen to be stable and non-zero.

Next, we consider the N = 3 model. In this case, as
long as the boundary conditions are not periodic, there is no
symmetry between the middle site and the sites at the ends,
and we choose fixed boundary conditions at both ends. As
above, the temperature profile and the dependence of the local
temperatures on the simulation time, as well as the momen-
tum distribution at site j = 1 is shown. (p? 5) at both ends
agree, as they should, due to the symmetry of the Hamilto-
nian, (¢1,p1) < (g3, ps). However, <p§> is not governed by
symmetry, so it can be different, and it is. When the boundary
conditions are periodic, the ideal gas temperatures for all
the sites are the same as they should be. In the above sim-

ulations, we used fourth order Runge-Kutta algorithm [26]
to integrate, with random initial conditions generated for
(p;) for a given total energy, E. Mersenne twister [27] was
mainly used for random number generation with some sim-
ulations using Knuth’s pseudo random number generation
algorithm [26].

We have argued why thermodynamic laws do not neces-
sarily preclude different ideal gas temperatures in a simulation
of a Hamiltonian system due to the lack of thermalization.
We have performed some simulations, which suggests that
this indeed does occur in some instances. However, this is
not the last word on this interesting subject which should be
studied more deeply to establish whether such a difference
indeed persists. While a mathematical proof of the uniqueness
of the chaotic sea is undoubtedly difficult, we can examine
its validity within this example. Here, we performed simula-
tions within a set of initial conditions which seem to lead to
a consistent result. This is consistent with a unique chaotic
sea. However, for the single trajectories that were studied,
obvious lacunae in the phase space often remained within the
limited simulation times. Whether more simulation time will
change this situation, within a realistic simulation time, needs
investigation.

IV. PAIRING OF LOCAL LYAPUNOV EXPONENTS

The chaotic properties of dynamical systems can be char-
acterized by their Lyapunov exponents, which shows how
the neighboring trajectories diverge exponentially from each
other. Lyapunov exponents are obtained by averaging local
(or finite time) Lyapunov exponents over the phase space
trajectories [1-3, 28-30]. In autonomous Hamiltonian sys-
tems, the (averaged) Lyapunov exponents are paired in sets
of & (\), due to the time-reversal symmetry. Furthermore,
due to energy conservation, and this pairing property, there is
always at least a pair of zero exponents.
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Fig. 9. The dependence of the averaged maximum Lyapunov expo-
nent on the simulation time. (Nsample, Nstep, dt) =
= (10%,2 x 10%,107%)
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Fig. 10. (Left) Temperature profile for the lattice N = 3 with fixed boundary conditions, for (Nsampie, Nstep, dt) = (10%,2 x 10%,107%).
(Right) The change in <pf> with respect to the simulation time. It is seen that their averages are quite stable, and agree for various simulation

parameters. Parameters were (Nsample; Nstep, dt) = (10%,2 x 10%,1073) (red, blue, green), (10%, 2 x 107, 10~2) (magenta, cyan, yellow),
(10,2 x 107, 3 x 10™*) (black, orange, gray), for the three sites in each parameter set. The first parameter set was used in the left figure

The local Lyapunov exponents are not necessarily paired,
but when a trajectory is followed in phase space, the expo-
nents become paired, in sets of two exponents with sum zero
after some time [3, 4]. We call this time the pairing time,
below. Since different exponents become paired at different
times, the pairing time refers to the time when all the expo-
nents are paired. We investigate what controls the pairing
time below. The pairing time will depend on the dynamics,
so a specific model is required for comparison, for which
we use the ¢* theory to make use of some of the results
in the previous sections. For this study, we choose N = 4
with periodic boundary conditions, to elucidate some of the
properties pointed out in [4]. First, we expect the pairing time
depend on the physics parameters, such as the energy of the
system, and the initial conditions. There are more technical

aspects, such as the type of integrator used, the ordering of the
coordinates, which hopefully do not play an essential role.

The pairing time clearly depends on the initial conditions,
even at the same energy, for the following reason. Since the
local Lyapunov exponents become paired after some time,
the coordinates, including the tangent vectors at that instant
can be used as initial conditions, which essentially means that
the pairing time can be made small as desired. For practical
considerations, however, this is not useful, since finding these
asymptotic coordinates and vectors itself requires computa-
tion. So a more realistic problem is to start from a set of initial
coordinates, without requiring the integration of the equations
of motion, and to measure the pairing time.

Before we investigate the issue of initial conditions more
thoroughly, let us look at the dependence on energy. In-
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Fig. 11. Pairing behaviors, | Ay 4 A5, for N = 4 ¢ theory with respect to time, for typical initial conditions with E/N = 1 (red), 2 (green),
10 (blue). The pair corresponds to the exponents with the smallest averaged absolute values. The pairing occurs quite clearly, and Tpair 1S
smaller for larger E/N
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Tab. 1. Dependence of a5 on E /N, for the N = 4 ¢ theory with periodic boundary conditions. Ratio of the number
of initial conditions for given 7., ranges, out of 20 randomly generated initial conditions

E/N | Tpair <10° | 10® < 7pair < 10* | 7pair > 10*
0.1 0 0 1

1 0 0.45 0.55

2 0 0.8 0.2

10 0.8 0.1 0.1

tuitively, we expect that larger total energies (£) lead to
shorter time scales and shorter pairing time. This, however, is
not obvious, since the oscillatory frequency of the quadratic
part of the Hamiltonian, Eq. (1), does not depend on the en-
ergy of the system. When the system has a higher energy, the
non-linearity plays a larger role, so energy essentially plays
the role of the coupling constant [5]. This means that the
energy transfer between the different modes becomes faster,
which should lead to quicker pairing [31]. The time scale for
the anharmonic oscillator becomes smaller at higher energies,
which may also lead to shorter pairing times. To study the
energy dependence of the pairing time, we prepared twenty
random initial conditions at various values of F, since the
pairing times depend on the initial conditions. The behavior
of pairing times, Tpair, is shown in Tab. 1, and it can clearly be
seen that the pairing times tend to become shorter for larger
values of E'/N. It can also be seen that there is a significant
dependence on the initial condition. In Fig. 11, typical pair-
ing behavior is shown for energies in Tab. 1. Here, only the
last exponent pair to sum to zero is shown for each value of
E/N. The local Lyapunov exponents are ordered A; 2... n
from the exponent with the largest to the smallest averaged
value. In almost all the cases we studied, the pairing time is
smallest for the local Lyapunov exponents that correspond
to the Lyapunov exponents with the largest absolute values,
and vice versa. In the exceptional cases when this ordering is
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not followed, the time differences of the “wrongly” ordered
pairing times are small.

Let us now investigate the initial conditions for the
¢* theory, N = 4 with periodic boundary conditions, at
E/N = 2.1In Fig. 12, the pairing behavior of the exponents
are shown for the initial condition used in [4], ¢; = 0, (p;) =
(2,2,2,—2), and for a typical random initial condition at the
same value of E/N, for comparison. We see that the specific
initial condition, Fig. 12 (left), leads to a much longer pairing
time, Tpair ~ 104, as compared to Tpair ~few x 103 for a ran-
dom initial condition, which is typical, as can be seen from
Tab. 1. Another apparent feature is that the pairing times for
all the pairs are essentially the same in this case, whereas in
Fig. 12 (right), they are distinctly ordered in the decreasing
order of the absolute value of the Lyapunov exponents. The
reason for the above behavior can be understood as follows.
The initial condition ¢; = 0, (p;) = (2,2,2, —2) leads to a
chaotic trajectory that is restricted to the subspace ¢; = g3,
as already discussed in Sec. II (Fig. 5). When the trajectory
is restricted to this subspace, pairing does not occur. For the
fourth order Runge-Kutta integrator with dt = 10~%, with
the algorithm computing the Lyapunov spectrum, q; = g3
starts to break down visibly at t ~ 7.5 x 103, as seen in
Fig. 13 (left). Then the trajectory becomes unrestricted, and
within the additional time of few times 103, the pairing occurs,
which is the typical time for pairing seen in Fig. 12 (right).
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Fig. 12. (Left) Pairing behaviors, |A; + An—;|, j = 1 (red), 2 (green), 3 (blue), 4 (magenta) for N = 4 o theory. Initial condition is
q; = 0,(p;) = (2,2,2,—2). (Right) The pairing behaviors for a random initial configuration at the same energy. We see that the pairing
time is much longer for the former initial condition
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Fig. 13. (Left) Dependence of g1 — g3 on time for the initial condition g; = 0, (p;) = (2, 2,2, —2) (see text). (Right) Averaged Lyapunov
exponents with respect to time. The exponents are shown for the initial condition ¢; = 0, (p;) = (2,2, 2, —2) and the tangent vector

matrix being the identity matrix, with the coordinates ordered as (q1, p1, g2, p2, - - - ) (red), (g1, g2, - - -

,P1,D2, - ) (blue). The spectra for

arandomly generated initial condition is also shown (cyan), which converges more rapidly

The pairing times in Fig. 12 (left) seem similar for all the
pairs, since the difference is roughly an order of magnitude
smaller than the time q; = ¢3 relation breaks down. Once the
trajectory is not restricted to the subspace, the pairing occurs,
and the Lyapunov exponents converge, as seen in Fig. 13
(right). Computations of the maximal Lyapunov exponent for
the trajectory respecting the symmetry results in A\; < 0.03
for 10* < ¢ < 105 [32], which has also been confirmed by
our independent calculations. This would conflict with the
results in [4], and Fig. 13(right) if the symmetry is unbro-
ken, further adding evidence to the strong possibility that the
symmetry was broken in the previous computation [4].

The above consideration brings up another interesting
issue: The Lyapunov exponents for the initial conditions
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t

g; = 0,(p;) = (2,2,2,—2), should be those for the trajec-
tory in the subspace gq; = gs. This is the Lyapunov spectrum
that is being measured up to ¢ ~ 7000 in Fig. 13 (right).
The Lyapunov exponents averaged over subspaces have been
computed for periodic orbits in ¢* theory, for example [18].
However, those spectra exhibit pairing behavior. This is in-
tuitively satisfying, since the periodic orbits are symmetric
under time reversal. It is unclear if the exponents in the sub-
space in this case is unpaired, or not converged enough. For
the random initial condition in Fig. 12 (right), the Lyapunov
exponents start converging from earlier times, as seen in
Fig. 13 (right).

Considerations of some technical aspects are in order:
The pairing time can depend on the integrator, or its preci-

Fig. 14. (Left) The pairing, | A4 + As|, for dt = 1077 (red), dt = 10™* (green), dt = 10~> (blue). While the pairing is not as precise for
larger dt, the pairing time does not change significantly. (Right) Local Lyapunov exponents for ¢ = 0 to ¢ = 20, for the initial condition

q; = 0,(pj) = (2,2,2,—2). Top and bottom figures have the coordinates ordered as (g1, p1, g2, P2, ) (1,42, -

yP1, P2, " )ln the

computation, respectively
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sion, but in an indirect way. To obtain Lyapunov exponents,
a trajectory (or trajectories) are integrated over a relatively
long time. The numerical accuracy of tracking the trajectory
has limitations, especially in a dynamical system with chaos.
Since the local Lyapunov exponent depends on the trajectory
within the phase space, its pairing behavior is also affected.
By varying the time step size in the integrator, dt, we can
control its precision. We studied how the pairing times de-
pend on dt in Fig. 14. Another technical issue is the ordering
of the coordinates within the computation. This affects the
local Lyapunov exponents, but does not substantially change
the (averaged) Lyapunov exponents, or the pairing time. In
Fig. 14 (right), local Lyapunov exponents are shown for the
same initial conditions, but with different ordering of the
coordinates. The local Lyapunov exponents are similar, but
differ in their behavior. The averaged behaviors are compared
in Fig. 13 and are shown to be quite similar. So, the technical
aspects, as far as we have studied, do not influence the pairing
phenomena in an essential way. Considering the results above,
when computing Lyapunov exponents, it seems practical to
start from a few initial conditions, some perhaps random,
since the pairing times, and consequently the convergence
time for the Lyapunov exponents can vary significantly.

For the properties of Lyapunov exponents, such as pairing,
covariant Lyapunov vectors [33-35] can potentially provide
powerful mathematical tools for their analysis. Their relation
to the orthogonal Gram-Schmidt vectors used in this work
are known. While outside the scope of this paper, it would be
interesting to use these relations to help understand how the
pairing times behave. It should be noted, however, that the
covariant Lyapunov vectors themselves require computation
to obtain, so that it is unclear that it provides an advantage
from a practical standpoint.

In this work, we studied symmetry properties, thermo-
dynamic concepts, and the behavior of local Lyapunov ex-
ponents in the ¢* theory. While seemingly unrelated on the
surface, these topics are, as we have seen, closely intertwined.
While clarifying some of the issues, questions remain, which
we feel attests to the depth and the breadth of the subject.
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