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Abstract: The problem of the reflection and refraction phenomenon due to longitudinal and transverse waves incident
obliquely at a plane interface between uniform elastic solid half-space and magneto-thermoelastic diffusive solid half-space
with voids has been studied. It is found that the amplitude ratios of various reflected and refracted waves are functions of
the angle of incidence and frequency of the incident wave. The amplitude ratios and energy ratios have been computed
numerically for a particular model. The variations of energy ratios with angle of incidence are shown graphically.
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I. INTRODUCTION

In classical theory of thermoelasticity, Fourier’s heat con-
duction theory assumes that the thermal disturbances propa-
gate at infinite speed, which is unrealistic from the physical
point of view. Two different generalizations of the classical
theory of thermoelasticity have been developed which predict
only finite velocity of propagation for heat and displacement
fields. The first one, given by Lord and Shulman [1], incorpo-
rates a flux rate term into the Fourier’s law of heat conduction
and formulates a generalized theory admitting finite speed for
thermal signals. The second, given by Green and Lindsay [2],
develops a temperature rate dependent thermoelasticity by
including temperature rate among the constitutive variables,
which does not violate the classical Fourier’s law of heat
conduction. Lord and Shulman [1] theory of generalized
thermoelasticity has been further extended to homogeneous
anisotropic heat conducting materials recommended by Dhali-
wal and Sherief [3]. All these theories predict a finite speed

of heat propagation. Chanderashekhariah [4] refers to this
wave like thermal disturbance as second sound. A survey
article of various representative theories in the range of gene-
ralized thermoelasticity has been brought out by Hetnarski
and Ignaczak [5].

The linear theory of elastic materials with voids is an
important extension to the classical theory of elasticity. This
theory is used for investigating various types of geological
and biological materials, where the classical theory of elastic-
ity is not adequate. In this theory, the elastic materials deal
with the distribution of small voids or pores in which the void
volume is included among the kinematical variables. Nun-
ziato and Cowin [6] developed a nonlinear theory of elastic
materials with voids. In fact, the linear theory of elastic ma-
terial with voids is a special case of the non-linear theory
of elastic material with voids. Cowin and Nunziato [7] de-
veloped a linear theory of elastic materials with voids. They
explained that the linear theory differs significantly from the
classical linear elasticity as the volume fraction correspond-
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ing to the void volume is taken as an independent kinematical
variable. Iesan [8] developed a theory of thermoelastic mate-
rial with voids. Ciarletta and Scalia [9] studied the nonlinear
theory of nonsimple thermoelastic materials with voids.

Diffusion is defined as the spontaneous movement of the
particles from a high concentration region to the low concen-
tration region and it occurs in response to a concentration
gradient expressed as the change in the concentration due to
change in position. Thermal diffusion utilizes the transfer of
heat across a thin liquid or gas to accomplish isotope sepa-
ration. Today, thermal diffusion remains a practical process
to separate isotopes of noble gases (e.g. xexon) and other
light isotopes (e.g. carbon) for research purposes. In most of
the applications, the concentration is calculated using what
is known as Fick’s law. This is a simple law which does
not take into consideration the mutual interaction between
the introduced substance and the medium into which it is
introduced or the effect of temperature on this interaction.
However, there is a certain degree of coupling with temper-
ature and temperature gradients as temperature speeds up
the diffusion process. The thermodiffusion in elastic solids is
due to coupling of fields of temperature, mass diffusion and
that of strain in addition to heat and mass exchange with the
environment.

Nowacki [10-13] developed the theory of thermoelastic
diffusion by using a coupled thermoelastic model. Dudziak
and Kowalski [14] and Olesiak and Pyryev [15], respectively,
discussed the theory of thermodiffusion and coupled quasi-
stationary problems of thermal diffusion for an elastic layer.
They studied the influence of cross effects arising from the
coupling of the fields of temperature, mass diffusion and
strain due to which the thermal excitation results in additional
mass concentration and that generates additional fields of
temperature. Gawinecki et al.[16] proved a theorem about ex-
istence, uniqueness and regularity of the solution to an initial-
boundary value problem for a nonlinear coupled parabolic
system. They used an energy method, method of Sobolev
spaces, semigroup theory and Banach fixed point theorem to
prove the theorem. Gawinecki and Szymaniec [17] proved
a theorem about global existence of the solution to the initial-
value problem for a nonlinear hyperbolic parabolic system of
coupled partial differential equation of second order describ-
ing the process of thermodiffusion in solid body. Uniqueness
and reciprocity theorems for the equations of generalized ther-
moelastic diffusion problem, in isotropic media, was proved
by Sherief et al.[18] on the basis of the variational principle
equations, under restrictive assumptions on the elastic coef-
ficients. Due to the inherit complexity of the derivation of
the variational principle equations, Aouadi [19] proved this
theorem in the Laplace transform domain, under the assump-
tion that the functions of the problem are continuous and the
inverse Laplace transform of each is also unique. Sherief and
Saleh [20] investigated the problem of a thermoelastic half-
space in the context of the theory of generalized thermoelastic

diffusion with one relaxation time. Kumar and Kansal [21]
developed the basic equations of anisotropic thermoelastic
diffusion based upon Green-Lindsay model and proved the
variational principle, uniqueness and reciprocity theorems.

Borejko [22] discussed the reflection and transmission
coefficients for three- dimensional plane waves in elastic
media. Wu and Lundberg [23] investigated the problem of
reflection and transmission of the energy of harmonic elastic
waves in a bent bar. Sinha and Elsibai [24] discussed the
reflection and refraction of thermoelastic waves at an inter-
face of two semi-infinite media with two relaxation times.
Sharma and Gogna [25] discussed the problem of reflection
and refraction of plane harmonic waves at an interface be-
tween elastic solid and porous solid saturated by viscous
liquid. Tomar and Arora [26] studied reflection and trans-
mission of elastic waves at an elastic/porous solid saturated
by immiscible fluids. Kumar and Sarthi [27] discussed the
reflection and refraction of thermoelastic plane waves at an
interface of two thermoelastic media without energy dissipa-
tion. Abd-alla and Al-dawy [28] attempted the problem on
the reflection phenomena of SV- wave in a generalized ther-
moelastic medium. They used the generalized thermoelastic
waves to study the effects of one or two thermal relaxation
times on the reflection plane harmonic waves. Ciarletta and
Sumbatyan [29] discussed the problem of the reflection of
plane waves by the free boundary of a porous elastic half-
space. Singh and Tomar [30] investigated the problem of the
reflection and transmission of transverse waves at a plane
interface between two different porous elastic half-spaces.
They obtained the reflection and transmission coefficients of
the reflected and transmitted waves. Singh [31] investigated
the problem of elastic wave propagation in a generalized
thermoelastic material with voids using the Lord-Shulman
theory. Singh and Tomar [32] attempted the problem of plane
waves in thermo-elastic material with voids by using the lin-
ear theory of thermo-elastic material with voids developed
by Iesan [8]. Das et al.[33] discussed the problem of the re-
flection of generalized thermoelastic waves from isothermal
and insulated boundaries. Singh [34] studied reflection and
transmission of couple longitudinal waves at a plane interface
between two dissimilar half-spaces of thermo-elastic mater-
ials with voids. Kumar and Kumar [35] studied the problem
of reflection and transmission at the plane boundary of elastic
half-space and initially stressed thermoelastic diffusion with
voids half-space.

Abd-alla [36] studied the relaxation effects on the
reflection of generalized magneto-thermoelastic waves.
Othman and Song [37] discussed the reflection of magneto-
thermoelastic waves with two relaxation times in an isotropic
elastic medium under the effect of reference temperature
on the modulus of elasticity. Othman and Kumar [38] in-
vestigated the reflection of plane harmonic waves in mag-
neto generalized thermoelasticity theories and obtained the
expressions for the reflection coefficients. Abo-Dahab [39]
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studied the propagation of plane waves from the stress free
elastic half-space with void, under thermal relaxation and
magnetic field. Othman [40] investigated the propagation
of electromagneto-thermoelastic disturbances produced by
a thermal shock in a finitely conducting elastic half. Singh
et al.[41] discussed the problem of reflection of plane waves
from a free surface of a generalized magneto-thermoelastic
solid half-space with diffusion.

In the present paper, the reflection and refraction phe-
nomenon at a plane interface between an elastic solid medium
and a magneto-thermoelastic diffusive solid medium with
voids has been analyzed. In magneto-thermoelastic diffusive
solid medium with voids, potential functions are introduced
to represent four longitudinal waves and one transverse wave.
The amplitude ratios of various reflected and refracted waves
to that of the incident wave are derived. These amplitude
ratios are further used to find the expressions of energy ra-
tios of various reflected and refracted waves to that of the
incident wave. The graphical representation is given for these
energy ratios for different direction of propagation. The law
of conservation of energy at the interface is verified.

II. BASIC EQUATIONS

The variations of the magnetic field and electric fields
are perfectly slowly moving medium and are given by the
Maxwell’s equations

∇× ~h = ~J + ε0
∂ ~E

∂t
, (1)

∇× ~E = −µ0
∂~h

∂t
, (2)

~E = −µ0

(
∂~u

∂t
× ~H

)
, (3)

∇ · ~h = 0, (4)

Maxwell stress components are given by

Tij = µ0(Hihj +Hjhi − ( ~H · ~h)δij), (5)

where ~H is the external applied magnetic field intensity
vector, ~h is the induced magnetic field vector, ~E is the in-
duced electric field vector, ~J is the current density vector,
~u is the displacement vector, µ0 is the magnetic perme-
ability, ε0 is the electric permittivity, Tij are the compo-
nents of Maxwell stress tensor, δij is the Kroneker delta
and∇ = î ∂∂x + ĵ ∂∂y + k̂ ∂

∂z .
The above equations (1)-(5) are supplemented by the field

of equations of motion and constitutive relations in the theory

of generalized thermoelastic diffusion solid with voids, taking
into account the Lorentz force
(i) Constitutive relations

σij =2µeij + δij [λekk + γ∗φ

−β1(T + τ1Ṫ )− β2(C + τ1Ċ)],
(6)

g∗ = −γ∗ekk − d∗φ+ ξ∗(T + τ1Ṫ ) + ζ∗(C + τ1Ċ), (7)

h∗i = a∗φ,i, (8)

ρT0S = k + ρCE(T + αṪ ) + ξ∗T0φ

+ β1T0ekk + aT0(C + βĊ),
(9)

P = −β2ekk − ζ∗φ+ b(C + τ1Ċ)− a(T + τ1Ṫ ), (10)

(ii) Equations of motion

µui,jj + (λ+ µ)uj,ij + γ∗φ,i

−β1(T + τ1Ṫ ),i − β2(C + τ1Ċ),i + Fi = ρüi,
(11)

a∗φ,ii − d∗φ− γ∗ekk
+ξ∗(T + τ1Ṫ ) + ζ∗(C + τ1Ċ) = ρχφ̈,

(12)

(iii) Equation of heat conduction

ρCE(Ṫ + τ0T̈ ) + β1T0(ėkk + ετ0ëkk)

+ξ∗T0(φ̇+ ετ0φ̈) + aT0(Ċ + γC̈) = KT,ii,
(13)

(iv) Equation of mass diffusion

Dβ2ekk,ii +Dζ∗φ,ii +Da(T + τ1Ṫ ),ii

+(Ċ + ετ0C̈)−Db(C + τ1Ċ),ii = 0,
(14)

where β1 = (3λ + 2µ)αt and β2 = (3λ + 2µ)αc; λ, µ are
Lame′s constants, αt is the coefficient of linear thermal ex-
pansion and αc is the coefficient of linear diffusion expansion.
a, b are, respectively, coefficients describing the measure of
thermodiffusion and of mass diffusion effects, T = Θ−T0 is
small temperature increment; Θ is the absolute temperature
of the medium; T0 is the reference temperature of the body
chosen such that | TT0

| � 1, C is the concentration of the
diffusive material in the elastic body. ui are the components
of the displacement vector ~u, ρ is the density assumed to
be independent of the time, σij , eij(= 1

2 (ui,j + uj,i)) are
the components of the stress and strain tensors, respectively,
ekk is the dilatation, S is the entropy per unit mass, P is
the chemical potential per unit mass, CE is the specific heat
at the constant strain, K is the coefficient of the thermal
conductivity, D is the thermoelastic diffusion constant, k
is a material constant. φ is the volume fraction field, h∗i is
the equilibrated stress vector, g∗ is the intrinsic equilibrated
body force, χ is the equilibrated inertia, a∗, d∗, γ∗, ξ∗, ζ∗ are
constitutive coefficients. τ0, τ1 are diffusion relaxation times
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with τ1 ≥ τ0 ≥ 0 and τ0, τ1 are thermal relaxation times
with τ1 ≥ τ0 ≥ 0. Fi are the components of the Lorentz force
~F given by

~F = µ0( ~J × ~H). (15)

Here k = τ1 = τ1 = 0, ε = 1, γ = τ0 for Lord-Shulman
(L-S) model and ε = 0, γ = τ0 for Green-Lindsay (G-L)
model. In the above equations, a comma followed by a suffix
denotes spatial derivative and a superposed dot denotes the
derivative with respect to time.

The equations of motion in a homogeneous isotropic elas-
tic solid medium are

µeuei,jj + (λe + µe)uej,ij = ρeüei , (16)

where λe, µe are Lame’s constants, uei are the components
of the displacement vector ~ue, ρe is density corresponding to
isotropic elastic solid.

The stress-strain relation in the isotropic elastic solid
medium is given by

σeij = 2µeeeij + λeeekkδij , (17)

where σeij , e
e
ij(=

1
2 (uei,j + uej,i)) are the components of the

stress and strain tensor, respectively, eekk is the dilatation.

III. FORMULATION OF THE PROBLEM

We consider an isotropic elastic solid half-space ly-
ing over a homogeneous isotropic, generalized magneto-
thermoelastic diffusive solid half-space with voids. The origin
of the Cartesian coordinate system (x1, x2, x3) is taken at any
point on the plane surface (interface) and x3-axis points ver-
tically downwards into the magneto-thermoelastic diffusive
solid half-space with voids. The elastic solid half-space oc-
cupies the region x3 ≤ 0(medium I) and the region x3 ≥ 0
is occupied by the dissipative thermoelastic diffusive solid
half-space with voids (medium II) permeated with an initial
magnetic field ~H = (0, H0, 0) acting along the x2− axis as
shown in Figure 1. We consider plane waves in the x1 − x3
plane with wave front parallel to the x2− axis. For two di-
mensional problem, the displacement vectors ~ue in medium I
and ~u in medium II are taken as

~ue = (ue1, 0, u
e
3), ~u = (u1, 0, u3). (18)

From equations (1)-(3), the components of electric field, mag-
netic field and current density vectors are

E1 = µ0H0u̇3, E2 = 0, E3 = −µ0H0u̇1, (19)

h1 = 0, h2 = −H0e
∗, h3 = 0, (20)

J1 = H0(
∂e∗

∂z
− ε0µ0ü3),

J2 = 0,

J3 = H0(−∂e
∗

∂x
+ ε0µ0ü1),

(21)

where e∗ = ∂u1

∂x1
+ ∂u3

∂x3
.
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Fig. 1. Geometry of the problem

Using equations (1)-(3) and (19)-(21) in equation (15),
we obtain

F1 = µ0H
2
0

∂e∗

∂x
− ε0µ2

0H
2
0 ü1,

F2 = 0,

F3 = µ0H
2
0

∂e∗

∂z
− ε0µ2

0H
2
0 ü3.

(22)

We define the following dimensionless quantities

x′1 =
w∗1x1
c1

, x′3 =
w∗1x3
c1

,

u′1 =
w∗1u1
c1

, u′3 =
w∗1u3
c1

,

ue
′

1 =
w∗1u

e
1

c1
, ue

′

3 =
w∗1u

e
3

c1
,

t
′

= w∗1t, T
′

=
β1T

ρc21
,

C
′

=
β2C

ρc21
, τ
′

0 = w∗1τ0,

τ
′

1 = w∗1τ1,

τ0
′

= w∗1τ
0, τ1

′

= w∗1τ
1,
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φ
′

=
χw∗21 φ

c21
, σ

′

ij =
σij
β1T0

, σe
′

ij =
σeij
β1T0

,

P ∗
′

ij =
P ∗ij

β1T0c1
, P ∗e

′
=

P ∗e

β1T0c1
,

(23)

where w∗1 =
ρCEc

2
1

K , c1 =
√

λ+2µ
ρ .

Upon introducing the quantities (23) in equations (11)-
(14) with the aid of (18) and (22) and after suppressing the
primes, we obtain

δ1∇2u1 + δ2e
∗
,1 + δ3φ,1 − τ1t T,1 − τ1cC,1 =

=(1 +
ε0µ

2
0H

2
0

ρ
)ü1,

(24)

δ1∇2u3 + δ2e
∗
,3 + δ3φ,3 − τ1t T,3 − τ1cC,3 =

=(1 +
ε0µ

2
0H

2
0

ρ
)ü3,

(25)

(δ5∇2 − δ6)φ− δ4e∗ + δ7τ
1
t T + δ8τ

1
cC = φ̈, (26)

ζ2τ
0
e ė
∗ + ζ3τ

0
e φ̇+ τ0t Ṫ + ζ1τ

0
c Ċ = ∇2T, (27)

q∗1∇2e∗+q∗4∇2φ+q∗2τ
1
t ∇2T−q∗3τ1c∇2C+τ0f Ċ = 0, (28)

where

δ1 =
µ

λ+ 2µ
, δ2 =

λ+ µ+ µ0H
2
0

λ+ 2µ
,

δ3 =
γ∗

ρχw∗21
, δ4 =

γ∗

λ+ 2µ
, δ5 =

a∗

χ(λ+ 2µ)
,

δ6 =
d∗

ρχw∗21
, δ7 =

ξ∗

β1
, δ8 =

ζ∗

β2
,

ζ1 =
aT0c

2
1β1

w∗1Kβ2
, ζ2 =

β2
1T0

ρKw∗1
, ζ3 =

ξ∗β1T0c
2
1

ρχKw∗31
,

q∗1 =
Dw∗1β

2
2

ρc41
, q∗2 =

Dw∗1β2a

β1c21
,

q∗3 =
Dw∗1b

c21
, q∗4 =

Dζ∗β2
ρχw∗1c

2
1

,

τ1t = 1 + τ1
∂

∂t
, τ1c = 1 + τ1

∂

∂t
,

τ0t = 1 + τ0
∂

∂t
, τ0c = 1 + γ

∂

∂t
,

τ0e = 1 + ετ0
∂

∂t
, τ0f = 1 + ετ0

∂

∂t
, ∇2 ≡ ∂2

∂x21
+

∂2

∂x23
.

We introduce the potential functions φ̂ and ψ̂ through the
relations

u1 =
∂φ̂

∂x1
− ∂ψ̂

∂x3
, u3 =

∂φ̂

∂x3
+
∂ψ̂

∂x1
, (29)

where φ̂ and ψ̂ are the displacement potentials of longitudinal
and transverse waves.

Substituting equation (29) in the equations (24)-(28), we
obtain

δ9∇2φ̂− δ10 ¨̂
φ = −δ3φ+ τ1t T + τ1cC, (30)

∇2ψ̂ =
δ10
δ1

¨̂
ψ, (31)

(δ5∇2 − δ6)φ− φ̈ = δ4∇2φ̂− δ7τ1t T − δ8τ1cC, (32)

∇2T = τ0t Ṫ + ζ1τ
0
c Ċ + ζ2τ

0
e∇2 ˙̂

φ+ ζ3τ
0
e φ̇, (33)

q∗3τ
1
c∇2C = τ0f Ċ + q∗1∇4φ̂+ q∗2τ

1
t ∇2T + q∗4∇2φ, (34)

where

δ9 = 1 +
µ0H

2
0

λ+ 2µ
, δ10 = 1 +

ε0µ
2
0H

2
0

ρ
.

Assuming the motion to be harmonic, we can write

{φ̂, ψ̂, φ, T, C}(x1, x3, t) = { ¯̂
φ,

¯̂
ψ, φ̄, T̄ , C̄}e−ιωt, (35)

where ω is the angular frequency of vibrations of material
particles.

Substituting the expressions of φ̂, ψ̂, φ, T, C given by
equation (35) in the equations (30)-(34), we obtain

[δ9∇2 + δ10ω
2]

¯̂
φ+ δ3φ̄− τ11t T̄ − τ11c C̄ = 0, (36)

[∇2 +
δ10ω

2

δ1
]
¯̂
ψ = 0, (37)

(δ5∇2−δ6+ω2)φ̄−δ4∇2 ¯̂
φ+δ7τ

11
t T̄ +δ8τ

11
c C̄ = 0, (38)

−ζ2τ10e ∇2 ¯̂
φ− ζ3τ10e φ̄+ [∇2− τ10t ]T̄ − ζ1τ10c C̄ = 0, (39)

q∗1∇4 ¯̂
φ+ q∗4∇2φ̄+ q∗2τ

11
t ∇2T̄ − [q∗3τ

11
c ∇2 − τ10f ]C̄ = 0,

(40)
where

τ11t = 1− ιωτ1, τ11c = 1− ιωτ1,
τ10t = −ιω(1− ιωτ0), τ10c = −ιω(1− ιωγ),

τ10e = −ιω(1− ιωετ0), τ10f = −ιω(1− ιωετ0).

Solving equations (36), (38)-(40), we obtain
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[Z1∇8 + Z2∇6 + Z3∇4 + Z4∇2 + Z5]
¯̂
φ = 0, (41)

where

Z1 = (q∗1 − q∗3δ9)δ5τ
11
c ,

Z2 =− τ11c (q∗1 − q∗3δ9)(δ5τ
10
t + δ6 − ω2)

+ζ1δ5τ
10
c τ11t (q∗1 + q∗2δ9) + ζ2δ5τ

10
e τ11t τ11c (q∗2 + q∗3)

−δ5(q∗3τ
11
c δ10ω

2 − τ10f δ9) + δ8τ
11
c (q∗1δ3 − q∗4)

−δ4τ11c (q∗3δ3 − q∗4),

Z3 =(q∗3τ
10
t τ11c + τ10f + ζ1τ

10
c q∗2τ

11
t )((δ10δ5 + δ9)ω2

+δ3δ4 − δ6δ9)− τ11t τ11c τ10e (q∗2δ8 + q∗3δ7)

×(−ζ2δ3 + ζ3δ9)

+(q∗1δ3 − q∗4δ9)(δ7ζ1τ
10
c τ11t − δ8τ11c τ10t )

+δ10ω
2τ11c ((δ6 − ω2)q∗3 − δ8q∗4)

−τ10e τ11t τ11c (−q∗4ζ2 + q∗1ζ3)(δ8 − δ7)

+(q∗4δ4 − q∗1(δ6 − ω2))(ζ1τ
10
c τ11t − τ11c τ10t )

−τ10e τ11t τ11c (−ζ3δ4 + ζ2(δ6 − ω2))(q∗2 + q∗3)

−τ10f δ5(ζ2τ
10
e τ11t + τ10t δ9),

Z4 =− τ10f τ10t ((δ10δ5 + δ9)ω2 + δ3δ4 − δ6δ9)

+τ10e τ10f τ11t [ζ3(δ9δ7 − δ4)− ζ2(δ7δ3 − δ6 + ω2)]

−δ10ω2[(δ6 − ω2)× (q∗3τ
10
t τ11c + τ10f + ζ1τ

10
c τ11t q∗2)

+ζ3τ
11
t τ11c τ10e (δ8q

∗
2 + δ7q

∗
3)

+q∗4(δ7ζ1τ
10
c τ11t − δ8τ11c τ10t )],

Z5 = τ10f δ10ω
2[(δ6 − ω2)τ10t + δ7ζ3τ

10
e τ11t ].

The general solution of equation (41) can be written as

φ̄ = φ̄1 + φ̄2 + φ̄3 + φ̄4, (42)

where the potentials φ̄i, i = 1, 2, 3, 4 are solutions of wave
equations, given by

[∇2 +
ω2

V 2
i

]φ̄i = 0, i = 1, 2, 3, 4. (43)

Here V1, V2, V3 and V4 are the velocities of four longitudi-
nal waves, that is, P, MD(Mass Diffusive), T(Thermal) and
VF(Volume fraction) waves and derived from the roots of
biquadratic equation in V 2, given by

Z5V
8−Z4ω

2V 6 +Z3ω
4V 4−Z2ω

6V 2 +Z1ω
8 = 0. (44)

From equation (37), we obtain

[∇2 +
ω2

V 2
5

]ψ̄ = 0, (45)

where V5 =
√

δ1
δ10

is the velocity of SV wave.

The general solutions for φ̂, φ, T and C are obtained as

{φ̂, φ, T, C} =

4∑
i=1

{1, q̂i, r̂i, ŝi}φ̂i, (46)

where

q̂i = − [−X5ω
6 + V 2

i ω
4X6 − ω2V 4

i X7]

−ω6X1 + V 2
i ω

4X2 − V 4
i ω

2X3 + V 6
i X4

,

r̂i =
[−X8ω

6 + V 2
i ω

4X9 − ω2V 4
i X10]

−ω6X1 + V 2
i ω

4X2 − V 4
i ω

2X3 + V 6
i X4

,

ŝi = − [X11ω
8 − V 2

i ω
6X12 + ω4V 4

i X13]

V 2
i [−ω6X1 + V 2

i ω
4X2 − V 4

i ω
2X3 + V 6

i X4]
,

i = 1, . . . , 4,

X1 =− δ5q∗3τ11c ,

X2 =− q∗3τ11c (−δ6 + ω2)

+δ5(τ10f + q∗3τ
11
c τ10t + q∗2τ

11
t ζ1τ

10
c )− δ8q∗4τ11c ,

X3 =− δ5τ10f τ10t

+(−δ6 + ω2)(τ10f + q∗3τ
11
c τ10t + q∗2τ

11
t ζ1τ

10
c )

−τ11t τ11c τ10e ζ3(q∗2δ8 + q∗3δ7)

−q∗4(δ7ζ1τ
10
c τ11t − δ8τ11c τ10t )

X4 = (δ6 − ω2)τ10f τ10t + δ7ζ3τ
10
e τ10f τ11t ,

X5 = τ11c (δ4q
∗
3 − δ8q∗1),

X6 =− δ4(τ10f + q∗3τ
11
c τ10t + q∗2τ

11
t ζ1τ

10
c )

−τ11c τ11t τ10e ζ2(q∗2δ8 + q∗3δ7)

−q∗1(τ11t ζ1τ
10
c δ7 − τ11c τ10t δ8),

X7 = τ10f (τ10t δ4 + ζ2τ
10
e τ11t δ7),

X8 = −δ5ζ1(q∗1τ
10
c + q∗3τ

11
c τ10e ),

X9 =τ11c δ8τ
10
e (q∗1ζ3 − q∗4ζ2)

−ζ1τ10c (q∗4δ4 + q∗1(ω2 − δ6))

−q∗3τ11c τ10e (ζ3δ4 + ζ2(ω2 − δ6)) + τ10e τ10f δ5ζ1,

X10 = τ10f τ10e × (ζ3δ4 + ζ2(ω2 − δ6)),
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X11 = δ5q
∗
1τ

10
t ,

X12 = q∗4δ4 + q∗1(ω2 − δ6) + δ5(q∗2τ
11
t ζ1τ

10
e − q∗1τ10t ),

X13 =δ7τ
11
t τ10e (q∗1ζ3 − q∗4ζ2)

+q∗2τ
11
t τ10e (ζ3δ4 + ζ2(ω2 − δ6)).

Applying the dimensionless quantities (23) in the equa-
tion (16) with the aid of (18) and after suppressing the primes,
we obtain

βe
2

c21
[ue1,11+ue1,33]+

(αe
2 − βe2)

c21
[ue1,11+ue3,13] = üe1, (47)

βe
2

c21
[ue3,11+ue3,33]+

(αe
2 − βe2)

c21
[ue1,13+ue3,33] = üe3, (48)

where αe =
√

λe+2µe

ρe , βe =
√

µe

ρe are velocities of lon-
gitudinal and transverse waves corresponding to medium I
respectively.

The components ue1 and ue3 are related by the potential
functions as

ue1 =
∂φ̂e

∂x1
− ∂ψ̂e

∂x3
, ue3 =

∂φ̂e

∂x3
+
∂ψ̂e

∂x1
, (49)

where φ̂e and ψ̂e satisfy the wave equations as

∇2 φ̂e =
¨̂
φe

α′2
, ∇2 ψ̂e =

¨̂
φe

β′2
, (50)

where α′ = αe

c1
and β′ = βe

c1
.

IV. REFLECTION AND REFRACTION

We consider a plane wave (P or SV) propagating through
the isotropic elastic solid half-space and is incident at the
interface x3 = 0, as shown in Figure 1. Corresponding to
this incident wave, two homogeneous waves (P and SV) are
reflected in isotropic elastic solid half-space and five inho-
mogeneous waves (P, MD, T, VF and SV) are refracted in
isotropic magneto-thermoelastic diffusion solid half-space
with voids.

In elastic solid half-space, the potential functions satisfy-
ing equation (50) can be written as

φ̂e =Ae0e
[ιω{(x1 sin θ0+x3 cos θ0)/α

′−t}]

+Ae1e
[ιω{(x1 sin θ1−x3 cos θ1)/α

′−t}],
(51)

ψ̂e =Be0e
[ιω{(x1 sin θ0+x3 cos θ0)/β

′−t}]

+Be1e
[ιω{(x1 sin θ2−x3 cos θ2)/β

′−t}].
(52)

The coefficientsAe0(Be0),Ae1 andBe1 represent the amplitudes
of the incident P(or SV), reflected P and reflected SV waves,
respectively.

Following Borcherdt [42], in isotropic magneto-thermo-
elastic diffusive solid half-space with voids, the potential
functions satisfying equations (43) and (45) can be written as

{φ̂, φ, T, C} =

4∑
i=1

{1, q̂i, r̂i, ŝi}Bie(
~Ai.~r)e{ι(

~Pi.~r−ωt)},

(53)

ψ̂ = B5e
( ~A5.~r)e{ι(

~P5.~r−ωt)}. (54)

The coefficients Bi, i = 1, ...., 5 represent the amplitudes
of refracted P, MD, T, VF and SV waves, respectively. The
propagation vector ~Pi, i = 1, ...., 5 and attenuation factor
~Ai, i = 1, ...., 5 are given by

~Pi =ξRx̂1 + dViRx̂3,

~Ai =− ξI x̂1 − dViI x̂3,
i = 1, . . . , , 5

(55)

where

dVi =dViR + ιdViI = p.v.(
ω2

V 2
i

− ξ2)1/2,

i = 1, . . . , 5.

(56)

and ξ = ξR + ιξI is a complex wave number. The subscripts
R and I denote the real and imaginary parts of the correspond-
ing complex quantity and p.v. stands for the principal value
of the complex quantity obtained after square root. ξR ≥ 0
ensures propagation in the positive x1-direction. The complex
wave number ξ in the isotropic thermoelastic diffusion solid
medium is given by

ξ = |~Pi| sin θ′i − ι| ~Ai| sin(θ′i − γi), i = 1, ...., 5, (57)

where γi, i = 1, ...., 5 is the angle between the propagation
and attenuation vector and θ′i, i = 1, ...., 5 is the angle of
refraction in medium II.

V. BOUNDARY CONDITIONS

The boundary conditions to be satisfied at the interface
x3 = 0 are:

(i) Continuity of stress components

σe33 = σ33, (58)

σe31 = σ31, (59)

(ii) Continuity of displacement components

ue1 = u1, (60)
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ue3 = u3, (61)

(iii) Thermally insulated boundary

∂T

∂x3
= 0, (62)

(iv) Impermeable boundary

∂C

∂x3
= 0, (63)

(v) Void Condition

∂φ

∂x3
= 0. (64)

Making use of potentials given by equations (51)-(54),
we find that the boundary conditions are satisfied if and only
if

ξR =
ω sin θ0
V0

=
ω sin θ1
α′

=
ω sin θ2
β′

, (65)

and

ξI = 0, (66)

where

V0 =

{
α′, for incident P− wave
β′, for incident SV − wave

(67)

It means that waves are attenuating only in x3-direction.
From equation (57), it implies that if | ~Ai| 6= 0, then
γi = θ′i, i = 1, ...., 5, that is, attenuated vectors for the
four refracted waves are directed along the x3-axis.

Using equations (51)-(54) in the boundary conditions
(58)-(64), with the aid of equations (29), (49), (65)-(67), we
obtain a system of seven non-homogeneous equations which
can be written as

7∑
j=1

âijR
∗
j = S∗i , (68)

where R∗j = |R∗j |eιψ
∗
j , |R∗j |, ψ∗j , j = 1, ...., 7 represent am-

plitudes ratios and phase shift of reflected P-, reflected SV-,
refracted P-, refracted MD-, refracted T-, refracted VF- and
refracted SV-waves to that of incident wave, respectively, and

â11 = 2µe(
ξR
ω

)2 − ρec21, â12 = 2µe
ξR
ω

dVβ′

ω
,

â17 = 2µ
ξR
ω

dV5
ω
, â21 = 2µe

ξR
ω

dVα′

ω
,

â22 = µe[(
dVβ′

ω
)2 − (

ξR
ω

)2], â27 = µ[(
ξR
ω

)2 − (
dV5
ω

)2],

â31 =
ξR
ω
, â32 =

dVβ′

ω
,

â37 =
dV5
ω
, â41 = −dVα

′

ω
, â42 =

ξR
ω
,

â47 = −ξR
ω
, â51 = â52 = â57 = 0,

â61 = â62 = â67 = 0, â71 = â72 = â77 = 0,

â1j = λ(
ξR
ω

)2 + ρc21(
dVj
ω

)2 +
ρc21(q̂jτ

11
t + r̂jτ

11
c + ŝjδ3)

ω2
,

â2j = 2µ
ξR
ω

dVj
ω
, â3j = −ξR

ω
, â4j = −dVj

ω
,

â5j = q̂j
dVj
ω
, â6j = r̂j

dVj
ω
, â7j = ŝj

dVj
ω
, j = 3, ..., 6

dVα′

ω
=

(
1

α′2
− (

ξR
ω

)2
)1/2

=

(
1

α′2
− sin2 θ0

V 2
0

)1/2

,

dVβ′

ω
=

(
1

β′2
− sin2 θ0

V 2
0

)1/2

,

and

dVj
ω

= p.v.

(
1

V 2
j

− sin2 θ0
V 2
0

)1/2

, j = 1, ..., 5.

Here p.v. is evaluated with restriction dVjI ≥ 0 to satisfy
decay condition in magneto-thermoelastic diffusion medium
with voids. The coefficients S∗i , i = 1, ..., 7 on right side of
the equation (68) are given by
(i) For incident P-wave

S∗1 = −â11, S∗2 = â21, S
∗
3 = −â31,

S∗4 = â41, S
∗
5 = 0, S∗6 = 0, S∗7 = 0.

(69)

(ii) For incident SV-wave

S∗1 = â12, S
∗
2 = −â22, S∗3 = â32,

S∗4 = −â42, S∗5 = 0, S∗6 = 0, S∗7 = 0.
(70)

Now we consider a surface element of the unit area at the
interface between two media. The purpose is to calculate the
partition of energy of the incident wave among the reflected
and refracted waves on the both sides of surface. Following
Achenbach [43], energy flux across the surface element, that
is, rate at which the energy is communicated per unit area of
the surface is represented as

P ∗ = σlmnmu̇l, (71)

where σlm is the stress tensor, nm are the direction cosines
of the unit normal n̂ outward to the surface element and u̇l
are the components of the particle velocity.

The time average of P ∗ over a period, denoted by 〈P ∗〉,
represents the average energy transmission per unit surface
area per unit time. Thus, on the surface with normal along
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x3-direction, the average energy intensities of the waves in
the elastic solid half-space are given by

〈P ∗e〉 = Re〈σ〉e31 Re(u̇e1) + Re〈σ〉e33 Re(u̇e3). (72)

Following Achenbach [43], for any two complex functions f
and g, we have

〈Re(f) Re(g)〉 =
1

2
Re(f ḡ). (73)

The expressions for energy ratios Ei, i = 1, 2 for the re-
flected P- and reflected SV are given by

Ei = −〈P
∗e
i 〉

〈P ∗e0 〉
, i = 1, 2, (74)

where

〈P ∗e1 〉 =
ω4ρec21
α′

|R∗1|2Re(cos θ1),

〈P ∗e2 〉 =
ω4ρec21
β′

|R∗2|2Re(cos θ2),

and

(i) For incident P-wave

〈P ∗e0 〉 = −ω
4ρec21
α′

cos θ0, (75)

(ii) For incident SV-wave

〈P ∗e0 〉 = −ω
4ρec21
β′

cos θ0, (76)

are the average energy intensities of the reflected P-, reflected
SV-, incident P- and incident SV-waves respectively. In equa-
tion (74), negative sign is taken because the direction of
reflected waves is opposite to that of incident wave.

For magneto-thermoelastic diffusion solid half-space with
voids, the average energy intensities of the waves on the sur-
face with normal along x3-direction, are given by

〈P ∗ij〉 = Re〈σ〉(i)31 Re(u̇
(j)
1 ) + Re〈σ〉(i)33 Re(u̇

(j)
3 ). (77)

The expressions for energy ratios Eij , i, j = 1, ...., 5 for the
refracted P-, refracted MD-, refracted T- , refracted VF- and
refracted SV-waves are given by

Eij =
〈P ∗ij〉
〈P ∗e0 〉

, i, j = 1, . . . , 5, (78)

where

〈P ∗ij〉 = −ω4Re[{2µdVi
ω

ξR
ω

ξ̄R
ω

+ {λ(
ξR
ω

)2 + ρc21(
dVi
ω

)2

+
ρc21(q̂iτ

11
t + r̂iτ

11
c + ŝjδ3)

ω2
} d̄V j
ω
}R∗i+2R̄

∗
j+2],

〈P ∗i5〉 = −ω4Re[{−2µ
dVi
ω

ξR
ω

¯dV5
ω

+{λ(
ξR
ω

)2 +ρc21(
dVi
ω

)2

+
ρc21(q̂iτ

11
t + r̂iτ

11
c + ŝjδ3)

ω2
} ξ̄R
ω
}R∗i+2R̄

∗
7],

〈P ∗5j〉 =− ω4Re[{µ((
ξR
ω

)2 − (
dV5
ω

)2)
ξ̄R
ω

+2µ
ξR
ω

dV5
ω

d̄V j
ω
}R∗7R̄∗j+2],

〈P ∗55〉 =− ω4Re[{−µ((
ξR
ω

)2 − (
dV5
ω

)2)
d̄V 5

ω

+2µ
ξR
ω

dV5
ω

ξ̄R
ω
}R∗7R̄∗7], i, j = 1, ..., 4.

The diagonal entries of energy matrix Eij in equation (78)
represent the energy ratios of P, MD, T, VF and SV waves,
respectively, whereas the sum of the non-diagonal entries
of Eij give the share of interaction energy among all the
refracted waves in the medium and is given by

ERR =

5∑
i=1

(

5∑
j=1

Eij − Eii). (79)

The energy ratios Ei, i = 1, 2, diagonal entries and
sum of non-diagonal entries of energy matrix Eij , that is,
E11, E22, E33, E44, E55 and ERR yield the conservation
of incident energy across the interface, through the relation

E1 +E2 +E11 +E22 +E33 +E44 +E55 +ERR = 1. (80)

VI. PARTICULAR CASES

1. In the absence of magnetic field, that is, we take
H0 = 0 in the equations (68) and (78), we obtain the results
for amplitude and energy ratios of reflected P-, reflected SV-,
refracted P-, refracted MD-, refracted T-, refracted VF-and re-
fracted SV-waves in thermoelastic diffusion solid half-space
with voids to that of the incident wave.

2. In the absence of void effect, If we take γ∗ = ξ∗ =
ζ∗ = 0, in the basic equations (11)-(14) and follow the simi-
lar procedure, we obtain the corresponding expressions for
amplitude and energy ratios of reflected P-, reflected SV-,
refracted P-, refracted MD-, refracted T- and refracted SV-
waves to that of incident wave. In these expressions the ve-
locities Vi, i = 1, 2, 3 are derived from the roots of cubic
equation in V 2, given by
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Y4V
6 − Y3ω2V 4 + Y2ω

4V 2 − Y1ω6 = 0, (81)

where

Y1 =(q∗1 − q∗3δ9)τ11c ,

Y2 =δ9τ
10
f + (q∗1 + q∗2δ9)ζ1τ

10
c τ11t

+(q∗2 + q∗3)ζ2τ
11
t τ10e τ11c

−(q∗1 − q∗3δ9)τ10t τ11c − q∗3δ10τ11c ω2,

Y3 =τ10f (δ10ω
2 − δ9τ10t − ζ2τ11t τ10e ) + q∗3δ10τ

10
t τ11c ω2

+q∗2δ10ζ1τ
10
c τ11t ω2,

Y4 =− δ10ω2τ10f τ10t

and the coupling coefficients q̂i, r̂i i = 1, 2, 3 are given as

q̂i =
[q∗3τ

11
c ζ2τ

10
e + q∗1ζ1τ

10
c ]ω4 + ζ2τ

10
e τ10f ω2V 2

i

τ10t τ10f V 4
i + [q∗3τ

11
c τ10t + τ10f + q∗2τ

11
t ζ1τ

10
c ]

× ω2V 2
i + q∗3τ

11
c ω4

,

r̂i =
−q∗1ω6 + [q∗2τ

11
t ζ2τ

10
e − q∗1τ10t ]ω4V 2

i

V 2
i [τ10t τ10f V 4

i + [q∗3τ
11
c τ10t + τ10f + q∗2τ

11
t ζ1τ

10
c ]

× ω2V 2
i + q∗3τ

11
c ω4]

,

i = 1, 2, 3.

3. In the absence of void and magnetic field, that is by
taking γ∗ = ξ∗ = ζ∗ = H0 = 0 in equations (68) and (78),
the same results are obtained as in Kumar and Kansal [44].

VII. NUMERICAL RESULTS AND DISCUSSION

With the view of illustrating theoretical results obtained in
the preceding sections and comparing these in the context of
various theories of thermoelastic diffusion, we now represent
some numerical results for copper material [20], the physical
data for which is given below:

λ = 7.76× 1010Kg m−1s−2,

µ = 3.86× 1010Kg m−1s−2, T0 = 0.293× 103K,

CE = .3831× 103JKg−1K−1,

αt = 1.78× 10−5K−1, αc = 1.98× 10−4Kg−1m3,

a = 1.2× 104m2s−2K−1, b = 9× 105Kg−1m5s−2,

D = 0.85× 10−8Kg s m−3, ρ = 8.954× 103Kg m−3,

K = 0.383× 103Wm−1K−1.

The relaxation times are:

τ0 = 0.8 s, τ1 = 0.85 s, τ0 = 0.9 s, τ1 = 0.95 s.

The values of δ9 and δ10 are taken as 1.8 and 1.7, respectively.

Following Bullen [45], the numerical data of granite in
elastic medium is given by

ρe = 2.65× 103Kg m−3,

αe = 5.27× 103m s−1, βe = 3.17× 103m s−1,

The void parameters are

χ = 1.75× 10−15m2, γ∗ = 1.139× 1010Kg m−1 s−2,

a∗ = 3.688× 10−5Kg m s−2,Kgms−2,

d∗ = 1.475× 1010Kg m−1 s−2,

ξ∗ = 2.0× 106Kg m−1 s−2 K−1, ζ∗ = 2.9× 106m2 s−2.

The software Matlab 7.0.4 has been used to determine the
values of energy ratios Ei, i = 1, 2 and an energy matrix
Eij , i, j = 1, ...., 5 defined in the previous section for differ-
ent values of incident angle (θ0) ranging from 0o to 90o for
fixed frequency ω = 2 × π × 2000 Hz. For numerical pur-
pose, only L-S theory of thermoelastic diffusion with voids
has been considered. Corresponding to incident P and SV
waves, the variations of these energy ratios with respect to an-
gle of incidence have been plotted in Figs. 2-5 and Figs. 6-9,
respectively. Due to negligible values of E11, E22, E33, E44

the values of these energy ratios are not shown in figures. In
all the Figures, the vertical and horizontal lines correspond
to theories of magneto-thermoelastic diffusion with voids
(MTDV) and thermoelastic diffusion with voids (TDV), re-
spectively.
Incident P wave

It is clear from Figure 2 that for MTDV and TDV the-
ories, the values of energy ratio E1 decrease with the in-
crease of the angle of incidence(θ0) from 0o to 69o and
0o to 75o, respectively, and then increase as θ0 increases
further. Figure 3 shows that the values of energy ratio E2

increase upto at θ0 = 72o and thereafter decrease continu-
ously. From Figure 4, it is noticed that values of energy ratio
E55 increase to their highest values at θ = 72o and then de-
crease continuously. Figure 5 shows that initially the values
of energy ratio ERR decrease, but finally increase slowly and
steadily. It is noticed that the sum of the values of energy
ratios E1, E2, E11, E22, E33, E44, E55 and ERR is found
to be exactly unity at each value of θ0 which proves the law
of conservation of energy at the interface. However, if we
see Figures 2-5 closely, we find that the sum does not looks
to be unity. The reason is that we are plotting 3D graphs in
origin software. On the other hand, if we plot 2D graphs in
any other software, the sum will come out exactly unity.
Incident SV wave

From Figure 6, it is evident that there is a rapid increase
in the values of energy ratio E1 initially, but after θ = 36o
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Fig. 2. Variations of energy ratio (E1) with respect to angle of
incidence (θ0) for P-wave
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Fig. 3. Variations of energy ratio (E2) with respect to angle of
incidence (θ0) for P-wave
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Fig. 4. Variations of energy ratio (E55) with respect to angle of
incidence (θ0) for P-wave

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

B

C

0 10 20 30 40 50 60 70 80 90

E
RR

 

 MTDV
 TDV

Fig. 5. Variations of energy ratio (ERR) with respect to angle
of incidence (θ0) for P-wave
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Fig. 6. Variations of energy ratio (E1) with respect to angle of
incidence (θ0) for SV-wave
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Fig. 7. Variations of energy ratio (E2) with respect to angle of
incidence (θ0) for SV-wave
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Fig. 8. Variations of energy ratio (E55) with respect to angle of
incidence (θ0) for SV-wave
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Fig. 9. Variations of energy ratio (ERR) with respect to angle
of incidence (θ0) for SV-wave

and onwards, values of energy ratio E1 decrease and become
negligible small. Figure 7 depicts that the values of energy
ratio E2 initially fluctuate, but finally reach to nearly unity.
We notice from Figures 8 and 9 that firstly, the values of ener-
gy ratios E55 and ERR show fluctuating behavior and then
decrease and increase respectively. Like in case of incident P
wave, the sum of all energy ratios is also found to be unity in
case of incident SV wave.

VIII. CONCLUSIONS

In the present article, the phenomenon of reflection and re-
fraction of obliquely incident elastic waves at the interface be-
tween an elastic solid half-space and a magneto-thermoelastic
diffusive solid half-space with voids has been studied. The
five waves in magneto-thermoelastic diffusive medium with
voids are identified and explained through different wave
equations in terms of displacement potentials. Due to the
presence of dissipation, the waves in magneto-thermoelastic
diffusive medium with voids are considered to be inhomo-
geneous waves. The energy ratios of different reflected and
refracted waves to that of the incident wave are computed
numerically and presented graphically with respect to the
angle of incidence.

From numerical results, we conclude that the effect of
angle of incidence on the energy ratios of the reflected and
refracted waves is significant. The sum of all energy ratios of
the reflected waves, refracted waves and interference between
refracted waves is verified to be always unity, which ensures
the law of conservation of incident energy at the interface.
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