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Abstract: The time-averaged Lyapunov exponents, {λi}, support a mechanistic description of the chaos generated in and
by nonlinear dynamical systems. The exponents are ordered from largest to smallest with the largest one describing the
exponential growth rate of the (small) distance between two neighboring phase-space trajectories. Two exponents, λ1 + λ2,
describe the rate for areas defined by three nearby trajectories. λ1 + λ2 + λ3 is the rate for volumes defined by four
nearby trajectories, and so on. Lyapunov exponents for Hamiltonian systems are symmetric. The time-reversibility of the
motion equations links the growth and decay rates together in pairs. This pairing provides a more detailed explanation than
Liouville’s for the conservation of phase volume in Hamiltonian mechanics. Although correct for long-time averages, the
dependence of trajectories on their past is responsible for the observed lack of detailed pairing for the instantaneous “local”
exponents, {λi(t)}. The 2017 Ian Snook Prizes will be awarded to the author(s) of an accessible and pedagogical discussion
of local Lyapunov instability in small systems. We desire that this discussion build on the two nonlinear models described
here, a double pendulum with Hooke’s-Law links and a periodic chain of Hooke’s-Law particles tethered to their lattice
sites. The latter system is the φ4 model popularized by Aoki and Kusnezov. A four-particle version is small enough for
comprehensive numerical work and large enough to illustrate ideas of general validity.
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I. INTRODUCTION

The elucidation of Hamiltonian chaos and Lyapunov in-
stability by Poincaré and Lorenz is familiar textbook material.
Models which capture aspects of complexity, the Logistic
and Baker Maps, the Lorenz attractor and the Mandelbrot
Set, combine visual appeal with mechanistic understanding
in the bare minimum of spatial dimensions, two for maps
and three for flows. Mechanical models with only three- or
four-dimensional phase spaces are simple enough that the
entire phase space can be explored exhaustively.“Small Sys-
tems” can augment our understanding of nature in terms of
numerical models by introducing more complexity. Just a few
more degrees of freedom make an ergodic exhaustive sam-
pling impossible. For the small systems we treat here we
take on the more difficult task of defining and analyzing the
time-dependent convergence of “typical” trajectories.

Chaos involves the exponential growth of perturbations.
Joseph Ford emphasized the consequence that the number of
digits required in the initial conditions is proportional to the
time for which an accurate solution is desired. Accordingly
a “typical” nonexhaustive trajectory or history is the best that
we can do. To go beyond the simplest models to those which
elucidate macroscopic phenomena, like phase transitions and
the irreversibility described by the Second Law of Thermo-
dynamics, we like Terrell Hill’s idea of small-system studies
(in the 1960s he wrote a prescient book, Thermodynamics
of Small Systems.) In what follows we describe two small-
system models which are the foci of the Ian Snook Prize
Problem for 2017. These models are Hamiltonian, both with
four degrees of freedom so that their motions are described
in eight-dimensional phase spaces.



74 Wm.G. Hoover, C.G. Hoover

Fig. 1. Snapshots of the two springy pendulum masses at times of 2,
4, 6, and 8. Initially the pendulum is horizontal as at the top right.
The initial configuration has vanishing energy. Only the outermost

particle, Particle 2, responds to the vertical gravitational field

I. 1. The Springy Pendulum and the Springy Double
Pendulum

The double pendulum with rigid links is an excellent
model for the table-top demonstration of chaos. Bill saw one
in action at an all-day Stanford lecture given by James Yorke.
An even simpler mathematical model for chaos can be ob-
tained with a single pendulum. For chaos the single pendulum
needs a spring rather than a rigid link. The single springy pen-
dulum moves in a four-dimensional phase space, just as does
the double pendulum with rigid links. Along with Harald
Posch [1, 2] we investigated mathematical models for chaos
based on chains of pendula, both rigid and springy. We studied
many-body instabilities by characterizing the form of the de-
tailed description of many-dimensional chaos, the Lyapunov
spectrum. We considered two kinds of model Hamiltonians
describing chains in a gravitational field: [1] chains composed
of particles with equal masses, as in a physical length of chain;
[2] chains in which only the bottom mass was affected by
gravity, as in a light chain supporting a heavy weight. Fig. 1
shows five snapshots, equally spaced in time, from a chaotic
double-pendulum trajectory. Initially the motionless chain
was placed in the horizontal configuration appearing at the
top right of Fig. 1. If gravity affects only the lower of the two
masses (as in the type-2 models supporting a heavy weight)
the corresponding Hamiltonian is

H = [p21 + p22]/2 + (κ/2)[(r1 − 1)2 + (r12 − 1)2] + y2.

where r1 and r12 are the lengths of the upper and lower
springs. To enhance the coupling between the springs and
gravity we choose the force constant κ = 4 here.

I. 2. The Spectrum of Time-Averaged Lyapunov
Exponents, {λ}

The Lyapunov exponents making up the spectrum are
conventionally numbered in the descending order of their

long-time-averaged values. We begin with the largest, λ1. λ1
describes the long-time-averaged rate at which the distance
between the trajectories of two nearby phase-space points
increases. That rate, λ1 ≡ 〈 λ1(t) 〉 ≡ 〈 (d ln δ/dt) 〉, is
necessarily positive in a chaotic system. A more detailed de-
scription of rates of change of lengths and areas, and volumes,
and hypervolumes of dimensionality up to that of the phase
space itself, leads to definitions of additional Lyapunov ex-
ponents. The next exponent, λ2, is needed to describe the
rate at which a typical phase-space area, defined by three
nearby points, increases (or decreases) with increasing time,
λ1 + λ2 ≡ 〈 (d lnA/dt) 〉 = 〈 λ1(t) + λ2(t) 〉. Again an
average over a sufficiently long time for convergence is re-
quired. Likewise the time-averaged rate of change of a three-
dimensional phase volume defined by four neighboring trajec-
tories is λ1 + λ2 + λ3. This sequence of rates and exponents
continues for the rest of the spectrum. There are D exponents
for a D-dimensional phase-space description.

I. 3. Local and Global Lyapunov-Exponent “Pairing”
for Hamiltonian Systems

The time-reversibility of Hamiltonian mechanics implies
that all the rates of change change sign if the direction of time
is reversed. This suggests, for instance, that all the exponents,
{λ} and {λ(t)}, are “paired”, with the rates forward in time
opposite to those backward in time. This turns out to be “true”
for the long-time-averaged exponents but could be “false” for
the local exponents. Local exponents depend upon the recent
past history of neighboring trajectories. The global exponents,
which describe the growth and decay of the principal axes of
comoving hyperellipsoids in phase space are paired, though
the time required to show this through numerical simulation
can be long. This exponent pairing is the focus of the 2017
Snook Prize, as we detail in what follows. There is a vast
literature describing and documenting the numerical evalu-
ation and properties of Lyapunov spectra. The theoretical
treatments are sometimes abstruse and lacking in numerical
verification. This year’s Prize Problem seeks to help remedy
this situation. The numerical foundation for the study of Lya-
punov exponents is an algorithm developed by Shimada and
Nagashima in Sapporo [3] and Benettin in Italy, along with
his colleagues Galgani, Giorgilli, and Strelcyn [4], beginning
in the late 1970s. Google indicates hundreds of thousands
of internet hits for “Lyapunov Spectrum”. We mention only
a few other references [5-8] here. The internet makes these
and most of the rest readily available.

I. 4. The φ4 Model for Chaos and Heat Conduction
in Solids

Aoki and Kusnezov popularized the φ4 model as a proto-
typical atomistic lattice-based model leading to Fourier heat
conduction [9-11]. In addition to a nearest-neighbor Hooke’s-
Law potential the model incorporates quartic tethers binding
each particle to its own lattice site.
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Here we denote the displacements of the particles from
their sites as {qi}. In our one-dimensional case the spacing
between the lattice sites does not appear in the Hamiltonian
or in the equations of motion. In numerical work it is conve-
nient to choose the spacing equal to zero while setting the
particle masses, force constants for the pairs, and those for
the tethers all equal to unity. For a four-particle problem in an
eight-dimensional phase space the three-part Hamiltonian is:

H =

4∑
i=1

[(p2i /2) + (q4i /4)] +

springs∑
4

(q2i,j/2).

The periodic boundary condition includes the spring linking
particles 1 and 4:

q̈1 = −q31 + q2 + q4 − 2q1; q̈4 = −q34 + q1 + q3 − 2q4.

See Fig. 2 for two ways of visualizing the periodic boundary
conditions of the φ4 chain.

Fig. 2. The four-body φ4 chain can be pictured as an infinitely-
long chain with a four-particle unit cell (shown in red), or as
an arrangement of masses on a circle with equally-spaced lat-
tice sites to which the particles are tethered. It is convenient
(but not foolproof) to choose an initial condition with velocities
{+v,+v,+v,−v} or {+2v, 0, 0, 0} −→ (E/N) = (v2/2). The
initial conditions {+v,+v,−v,−v} and {+v,−v,+v,−v} are

“normal modes”, discussed at length in References 10 and 11

The energy range over which chaos is observed in the φ4

model includes about nine orders of magnitude [10, 11]. The
chaotic range for a four-body chain includes the two cases we
discuss in the present work, {E = 8, 288 ; (E/N) = 2, 72}.
With both the springy pendulum and the φ4 models in mind
we turn next to a description of their chaotic properties.

II. THE CHAOTIC DYNAMICS OF THE
SPRINGY DOUBLE PENDULUM

Like most smoothly-differentiable Hamiltonian systems
the double springy pendulum has infinitely many periodic or
quasiperiodic phase-space solutions surrounded by a chaotic
sea. Dynamics in the sea is exponentially sensitive to pertur-
bations. The dynamics occurs in an eight-dimensional phase
space. Perturbations oriented along the trajectory or perpen-
dicular to the energy surface, where there is no longtime
growth at all, give two zeroes, so that the maximum number
of nonzero Lyapunov exponents is six.

Each positive exponent is necessarily paired with its nega-
tive twin, with the two changing roles if the direction of time
is reversed. It is often stated that this time-reversible pair-
ing links not only the time-averaged rates of the dynamics,
but also the “local” or “instantaneous” rates [2]. Because
chaotic pendulum problems give different local exponents
if Cartesian and polar coordinates are used one might think
that pairing could be hindered by using a mixture of these
coordinates. To check on this idea we considered a mixed-
coordinate Hamiltonian for the model of Fig. 1 with polar
coordinates for the “inside” Particle 1:

H =(1/2)[p2r + (pθ/r)
2 + p2x + p2y] + y2

+(κ/2)[(r − 1)2 + (r12 − 1)2]; κ = 4;

r12 =
√
x22 + y22 + r21 − 2r1x2 sin(θ1) + 2r1y2 cos(θ1).

Formulating and solving the motion equations in mixed Carte-
sian and polar coordinates is an intricate error-prone task.
It is useful first to solve the problem in Cartesian coordi-
nates. That solution then provides a check for the more
complicated mixed-coordinate case. Energy conservation
is a nearly-infallible check of the programming. We com-
puted spectra of Lyapunov exponents averaged over one
billion fourth-order and one billion fifth-order Runge-Kutta
timesteps, dt = 0.001. This ensures that the numerical trun-
cation errors of order (dt5/120) or (dt6/720) are of the same
order as the double-precision roundoff error. We chose the
initial condition of Fig. 1 with both masses motionless at
the support level, {x1, y1, x2, y2} = {1, 0, 2, 0}, so that the
initial potential, kinetic, and total energies all vanished. Only
the outer Cartesian mass interacts with the gravitational field.

The simplest numerical method for obtaining Lyapunov
spectra [3, 4] is first to generate a D-dimensional “reference
trajectory” in the D-dimensional phase space. Then a set of
D similar “offset” trajectories, an infinitesimal distance away,
δ, are generated in the same space with numerical offset vec-
tors of length δ = 0.00001 or 0.000001. While advancing the
resulting D(D+1)D-dimensional differential equations the
local Lyapunov exponents are obtained by “Gram-Schmidt”
orthonormalization. This process rescales the vectors to their
original length and rotates all but the first of them in order



76 Wm.G. Hoover, C.G. Hoover

Fig. 3. Typical pairing (a) of the eight Lyapunov exponents for the double-pendulum problem using Cartesian coordinates stored in the order
{(x, y, px, py)1, (x, y, px, py)2}, with the ith offset vector initially parallel to the ith member of this set of variables. Typical equilibrating
pair sums {λi(t) + λ9−i(t)} are also shown in (b). Fourth-order double-precision Runge-Kutta integration was used with a timestep

dt = 0.001 and offset vectors of length δ = 0.000001. The initial condition is that shown in Fig. 1

to maintain their orthonormal arrangement. The rescaling
operation portion of the Gram-Schmidt process gives local
values for the D Lyapunov exponents:

λi(t) ≡ (−1/dt) ln(δafteri /δbeforei ); λi ≡ 〈λi(t)〉.

For the type-2 double pendulum of Fig. 1 the time-averaged
Lyapunov spectrum is:

{λ} = {+0.143,+0.076.+ 0.034, 0.000,

0.000,−0.034,−0.076,−0.143}.

The rms fluctuations in these rates are typically orders of
magnitude larger than the rates themselves. The uncertainty
in the exponents as well as the differences between exponents
using fourth-order or fifth-order Runge-Kutta integrators with
dt = 0.001 are both of order ± 0.001. Our numerical work
shows that the pairing of the exponents is maintained if one of
the pendula is described by polar coordinates with the other
pendulum Cartesian. The local exponents are different but
still paired.

III. CONVERGENCE AND ORDERING
OF LOCAL LYAPUNOV EXPONENTS

The algorithm for generating the Lyapunov exponents
[3, 4] requires the ordering of D offset vectors in the vicin-
ity of a reference trajectory. The first vector follows exactly
the same motion equations with the proviso that its length
is constant. The second vector, also of constant length, is
additionally required to remain orthogonal to the first so that
the combination of the two gives the rate of expansion or
contraction of two-dimensional areas in the vicinity of the

reference trajectory. In general the nth offset vector satisfies n
constraints in all, keeping its own length constant while also
maintaining its orthogonality to the preceding n− 1 vectors.

Although the local rates {λ(t)} associated with the vec-
tors are necessarily ordered when time-averaged over a suf-
ficiently long time to give the {λ}, this ordering is regularly
violated, locally, as Figs. 3 and 4 show. Offhand one would
expect that increasing the Lyapunov exponents or decreasing
the accuracy of the simulation would lead to more rapid con-
vergence of the ordering of the vectors. For this reason we
consider a model which is as simple as possible, with a rela-
tively large chaotic range, and is easy to simulate. This φ4

model, named for its quartic tethering potential, has proved
particularly useful in the simulation of heat flow. We consider
the equilibrium version of the model here, an isolated system.

IV. THE DYNAMICS OF ONE-DIMENSIONAL
PERIODIC φ4 MODELS

The simplest Lyapunov algorithm for the φ4 model is
exactly that used with the springy pendula. We follow D + 1
trajectories in the D-dimensional phase space, rescaling them
at every timestep to obtain the complete spectrum of D = 8
instantaneous Lyapunov exponents. This phase-space integra-
tion of nine trajectories, followed by Gram-Schmidt ortho-
normalization, can be modified by using Lagrange multipli-
ers to impose the eight constant-length constraints and the
(1/2)(8 ·7) = 28 orthogonality constraints. A third approach,
particularly simple to implement for the φ4 model with its
power-law equations of motion, is to linearize the motion
equations so that the offset vectors, rather than being small,
can be taken as unit vectors in “tangent space”. By using sepa-
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Fig. 4. Evolution ( a ) of the cumulative Lyapunov spectrum for the φ4 model from the initial condition {p} = {2, 2, 2,−2} with dt = 0.001
and the offset length δ = 0.000001. Simulations using RK4 or RK5 in either phase space or in tangent space all “look” similar in this time
range. Evolution ( b ) of the Lyapunov spectrum over a longer time range showing pairing using RK4. Results were calculated using Karl

Travis’ FORTRAN 90 computer program in the φ4 phase space

rate integrators for the “reference trajectory” and for the eight
unit vectors the programming is at about the same level of dif-
ficulty as is that of the straightforward phase-space approach.
We implemented both approaches for the φ4 problems and
found good agreement for the Lyapunov spectra at a visual
level, even for calculations using a billion timesteps. This
is because the reference trajectories for the phase-space and
tangent-space algorithms are identical.

V. USEFUL INTEGRATION TECHNIQUES

Fourth-order and fifth-order Runge-Kutta integrators are
particularly useful algorithms for small systems. First, these
integrators are easy to program. These integrators are also ex-
plicit, a real simplification whenever a variable timestep is de-
sirable. Their errors are typically opposite in sign. For the sim-
ple harmonic oscillator the fourth-order energy decays while
the fifth-order energy diverges. By choosing a sufficiently
small timestep, for which the two algorithms agree, one can
be confident in the accuracy of the trajectories. Another useful
technique is adapative integration: comparing solutions with
a single timestep dt to those from two successive half steps
with (dt/2). The timestep is then adjusted up or down by
a factor of two whenever it is necessary to keep the root-mean-
squared error in a prescribed band, 10−12 > error > 10−14

for instance. [12]
At the expense of about a factor of fifty in computer time,

FORTRAN makes it possible to carry out quadruple-precision
simulations with double-precision programming by changing
the gnu compiler command:

gfortran −O −o xcode code.f −→
gfortran −O −o xcode −freal−8−real−16 code.f

Here the FORTRAN program is code.f and the executable
is xcode.

VI. THE 2017 IAN SNOOK PRIZE PROBLEM

The springy pendula and φ4 problems detailed here show
that “pairing” is typically present after sufficient time, with
that time sensitive to the largest Lyapunov exponent as well
as to the initial conditions. There are several features of these
introductory problems that merit investigation:

1. To what extent is there an unique chaotic sea? Can the
symmetry of the initial conditions limit the portion of
phase space visited when the dynamics is chaotic?

2. Within the φ4 model’s chaotic sea do the time-averaged
kinetic temperatures {Ti = 〈p2i 〉}, agree for all the
particles? (If not, a thermal cycle applying heat and
extracting work from the chain could be developed so
as to violate the Second Law. [11])

3. Is the pairing time simply related to the Lyapunov ex-
ponents and the chain length?

4. Is the accuracy of the pairing simply related to the
accuracy of the integrator?

The next and last question, which motivated this year’s Prize
Problem seems just a bit more difficult: [5] Can relatively-
simple autonomous Hamiltonian systems be devised for
which long-time local pairing is absent? Our exploratory
work has suggested that dynamical disturbances induced by
collisions, with those collisions separated by free flight, could
lead to repeated violations of pairing [13, 14]. On the other
hand Dettmann and Morriss have published a proof of pairing
for isokinetic systems [15]. A simple gas of several diatomic
or triatomic molecules is likely to be enough to settle that
question.
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dt = 0.001

Fig. 5. We illustrate the dependence of integration errors
(RK4 versus RK5) for low energy and higher-energy φ4

chains with initial values {q} = {0, 0, 0, 0}; {p} = {2, 2, 2,−2}
and {12, 12, 12,−12} respectively. After a linear induction period
the errors grow exponentially, reflecting Lyapunov instability, until

saturation

The 2017 Ian Snook Prize will be awarded to the most
interesting paper discussing and elucidating these questions.
Entries should be submitted to Computational Methods in Sci-
ence and Technology, cmst.eu, prior to 1 January 2018. The
Prize Award of 500 United States dollars sponsored by our-
selves, and the Additional Ian Snook Prize Award, also 500,
will be awarded to the author(s) of the paper best addressing
this Prize Problem.
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