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Abstract: Bistable systems present two degenerate metastable configurations separated by an energy barrier. Thermal or
quantum fluctuations can promote the transition between the configurations at a rate which depends on the dynamical
properties of the local environment (i.e., a thermal bath). In the case of classical systems, strong system-bath interaction
has been successfully modelled by the Generalised Langevin Equation (GLE) formalism. Here we show that the efficient
GLE algorithm introduced in Phys. Rev. B 89, 134303 (2014) can be extended to include some crucial aspect of the
quantum fluctuations. In particular, the expected isotopic effect is observed along with the convergence of the quantum and
classical transition rates in the strong coupling limit. Saturation of the transition rates at low temperature is also retrieved, in
qualitative, yet not quantitative, agreement with the analytic predictions. The discrepancies in the tunnelling regime are due
to an incorrect sampling close to the barrier top. The domain of applicability of the quasiclassical GLE is also discussed.
Key words: generalised Langevin equation, quantum fluctuations, Debye bath, quantum transition rate

I. INTRODUCTION

The Generalised Langevin Equation (GLE) [1-4] is
a stochastic equation which describes a mechanical system
subject to a random force or noise. At variance with the orig-
inal Langevin equation [5] used to model Brownian motion,
the GLE can deal with a wider range of random forces, e.g.,
with non-trivial time correlations. The GLE also provides
a theoretical framework for the definition of the frequency

dependent linear response of a mechanical system through
the fluctuation-dissipation theorem [6, 7].

The GLE has been employed to extend the classical tran-
sition rate theory of Kramers [8, 9] to include the coupling
to realistic thermal baths with a frequency dependent spec-
tral function [10-15]. It is even possible to formulate a quan-
tum GLE [16-19] to model the deviation from the classical
transition rate theory at low temperature due to dissipative
tunnelling (i.e., tunnelling without energy conservation) [20-
22]. In fact, the problem of dissipative tunnelling has been

1 Following Dirac [27], c-numbers are “classical numbers” which always commute (e.g., complex numbers), while q-numbers are “quantum numbers”
which do not commute in general (e.g., linear operators).
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solved theoretically by using path-integral techniques [23-
26]. Alternative approaches which make use of a c-number1

quantum GLE [28-34] are in principle better suited for nu-
merical simulations since they are based on real-time equa-
tions of motion. However, the existing approaches are either
more computationally demanding than the classical GLE or
their applicability to the strong system-bath coupling regime
has not been fully demonstrated, yet.

In this article we use a c-number quantum GLE approach
similar to the quasiclassical Langevin equation of Schmid
[28] or the quantum thermal bath of Dammak et al. [33].
On the other hand, the GLE approach considered in this
article is able to model a wider class of thermal bath and
takes full advantage of the algorithmic development intro-
duced in Ref. [35]. In this way, we are able to investigate the
strong coupling regime of a bistable system coupled to a De-
bye bath, i.e., a thermal bath with a sharp frequency cut-off.
Here we employ the adjective “quasiclassical” to distinguish
this approximate scheme from the exact c-number quantum
GLE introduced in Ref. [34]. In particular, the main topic of
this article is the domain of applicability of the quasiclassical
GLE in the case of low temperature and strong system-bath
coupling, while a detailed discussion of the c-number quan-
tum GLE formalism can be found in Ref. [34].

As in the case of similar quasiclassical approximations,
[29] the GLE approach used in this article fails to model tun-
nelling (with or without energy conservation) at low tem-
perature, while dissipative tunnelling — especially in the
weak coupling regime — can be tackled by real-time GLE
approaches which include quantum corrections to the force
field [31, 36, 37]. However, the addition of these quantum
corrections comes at a computational price. In this article
we demonstrate that the results of the quasiclassical GLE
approach — the computational cost of which is essentially
equal to that of its classical counterpart — are in surpris-
ingly good agreement with the analytic predictions for the
quantum transition rates [21, 38] in the strong coupling limit.
In particular, the isotope effect and the convergence of the
quantum and classical transition rates in the strong coupling
limit are correctly modelled.

The article is organised as follows: in Sec. II., the qua-
siclassical GLE is introduced along with the relevant termi-
nology. In Sec. III., the model bistable potential is defined,
the main properties of the Debye bath discussed, and the ca-
pabilities of the quasiclassical GLE to model the quantum
probability densities demonstrated for a light test particle
(hydrogen or deuterium). In Sec. IV. the classical and qua-
siclassical transition rates are investigated as a function of
the particle mass and system-bath coupling strength. Finally,
in Sec. V. and VI. the results of the quasiclassical GLE are
discussed in detail and the conclusions about the domain of
applicability of the quasiclassical GLE approach are drawn.

II. QUASICLASSICAL GLE

In this Section, we complete the GLE formalism in-
troduced in Ref. [35] to include the quantum delocalisa-
tion at low temperature. For the sake of simplicity, we con-
sider only the case of one particle in one spatial dimension.
The generalisation to many particles in three spatial dimen-
sions is straightforward. This extension is similar to other
approaches to the quantum Langevin equation based on
the quantum fluctuation-dissipation theorem (QFDT). [16-
19, 28, 32, 33, 39, 40]

The quasiclassical GLE is integrated by means of the fol-
lowing complex Langevin equations:

ṙ =
p

m
,

ṗ = −∂V (r)

∂r
+

K∑
k=0

Gk (r) s
(k)
1 ,

ṡ
(k)
1 = −s

(k)
1

τk
+ ωks

(k)
2 − µ

m
Gk (r) p

+

√
2µh (ωk) kBT

τk
ξ
(k)
1 ,

ṡ
(k)
2 = −s

(k)
2

τk
− ωks(k)1 +

√
2µh (ωk) kBT

τk
ξ
(k)
2 ,

(1)

where r and p are the physical degrees of freedom (DoFs),
s
(k)
1 and s(k)2 are K + 1 pairs of auxiliary DoFs, m is the

physical mass, µ is the mass of the auxiliary DoFs, V (r)
is the physical potential,2 Gk (r) are the (dimensional) cou-
pling strengths, τk are the relaxation times of the pair of
auxiliary DoFs, ωk ≥ 0 are the frequencies of the auxiliary
DoFs, and ξ(k)1 and ξ(k)2 are pairs of uncorrelated sources of
white Gaussian noise, i.e., stochastic processes with zero av-
erage,〈

ξ
(k)
1 (t)

〉
=
〈
ξ
(k)
2 (t)

〉
=

〈
ξ
(k)
1 (t) ξ

(k′)
2 (t′)

〉
=

=

〈
ξ
(k)
2 (t) ξ

(k′)
1 (t′)

〉
= 0 ,

(2)

and the following 2-point correlation function:3〈
ξ
(k)
2 (t) ξ

(k′)
2 (t′)

〉
=

〈
ξ
(k)
1 (t) ξ

(k′)
1 (t′)

〉
=

= δkk′δ (t− t′) .
(3)

Following the derivation used in Ref. [35], the exact inte-
gration of the equations of motion (EoMs) of the complex

2 In fact, V (r) includes a “polaronic” correction due to the system-bath interaction. For the sake of simplicity, we do not treat this correction explicitly in
the rest of this article and we treat V (r) as if it was independent of the system-bath coupling strength.

3 Higher order correlations function are computed by means of the Wick’s theorem.
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auxiliary DoFs, s(k) = s
(k)
1 + is

(k)
2 , and its substitution into

the second line of Eq. (1) yield the quasiclassical GLE

ṙ =
p

m
,

ṗ = −∂V (r)

∂r
−
∫ t

−∞
dt′ K (t− t′; r (t) , r (t′))

p (t′)

m

+ η (t; r (t)) ,
(4)

with the (classical) memory kernel defined as

K (t− t′; r, r′) = µ

K∑
k=0

[
Gk (r)Gk (r′) e

− 1
τk

(t−t′)

× cos (ωk (t− t′))
]
θ (t− t′) ,

(5)

and the coloured Gaussian noise

η (t; r) = Re

{
K∑
k=0

√
2µh (ωk) kBT

τk

∫ t

−∞
dt′ Gk (r)

× e−
(

1
τk

+iωk

)
(t−t′)ξ(k) (t′)

} ,

(6)
where ξ(k) = ξ

(k)
1 + iξ

(k)
2 . Note that the noise includes the

quantum weight4

h (ω) =
~ω

2kBT
coth

(
~ω

2kBT

)
=

=

{
1
2

~|ω|
kBT

for T → 0 or ω →∞ ,

1 for T →∞ or ω → 0 .

(7)

The parameters τk and ωk, along with the coupling
strengths, Gk (r), can be either deduced from the first prin-
ciple system-bath Lagrangian (in the classical case, [35, 41])
or fitted to an approximate memory kernel,K, obtained from
benchmark molecular dynamics simulations [42-45]. While
the second case is most useful in practise, the exact mapping
between the first principle Lagrangian and the parametrisa-
tion of the GLE kernel ensures that both the equilibrium and
relaxation of the physical DoFs are correctly modelled, at
least in the classical case.

The coloured Gaussian noise defined in Eq. (6) has zero
average, 〈η (t; r (t))〉 = 0, while the 2-point correlation
function is given by

〈η (t; r (t)) η (t′; r (t′))〉 = kBTK(q) (t− t′; r (t) , r (t′)) ,
(8)

where the quantum memory kernel is defined as

K(q) (t− t′; r, r′) = µ

K∑
k=0

[
h (ωk)Gk (r)Gk (r′)

×e−
1
τk

(t−t′) cos (ωk (t− t′))
]
θ (t− t′) .

(9)

A crucial difference between Eq. (5) and Eq. (9) is the pres-
ence of the quantum weight in the second equation, although
we have that K(q) → K in the limit of either T → ∞ or
ω → 0 (i.e., in the classical limit, see Eq. (7)).

In order to faithfully reproduce the quantum delocalisa-
tion close to a minimum of the physical potential, V (r), the
QFDT must hold. This is indeed the case in the limit of in-
finitely many auxiliary DoFs,K →∞. In this limit, we have
that τk →∞ (see Sec. III.) and we can rewrite the quantum
kernel as [39]

K(q) (t− t′; r, r′) =

=µ

∞∑
k=0

[h (ωk)Gk (r)Gk (r′) cos (ωk (t− t′))] θ (t− t′)

=
2

π

∫ ∞
−∞

dω
ω

h (ω) J (ω; r, r′) cos (ω (t− t′)) ,

(10)
where we have introduced the spectral density:

J (ω; r, r′) =
πµω

2

∞∑
k=0

Gk (r)Gk (r′) δ (ω − ωk) θ (ω) .

(11)
By means of Eq. (11) and Eq. (7), the 2-point correlation
functions of the noise, Eq. (8), can be expressed as

〈η (t; r (t)) η (t′; r (t′))〉 =
~
π

∫ ∞
−∞

dω coth

(
~ω

2kBT

)
×J (ω; r, r′) cos (ω (t− t′)) ,

(12)
which is a most familiar form of the QFDT. Note that the
noise correlation saturates in the limit of T → 0, while in
the classical case (obtained by fixing h(ω) = 1) we have
that 〈η (t; r (t)) η (t′; r (t′))〉 → 0.

The QFDT is only approximately satisfied for a finite
number of auxiliary DoFs. In this case, one can still define
a spectral density

J (ω; r, r′) =
µω

2

K∑
k=0

Gk (r)Gk (r′)

×

[
τk

1 + (ω − ωk)
2
τ2k

+
τk

1 + (ω + ωk)
2
τ2k

]
θ (ω)

(13)

so that

K (t− t′; r, r′) =
2

π

∫ ∞
−∞

dω
ω

J (ω; r, r′) cos (ω (t− t′)) .

(14)
However, Eq. (10) does not hold strictly because of the fre-
quency dependence of h (ωk), which cannot be factorised

4 The quantum weight is the ratio between the internal energy of an independent bosonic oscillator, ~ω
2

coth
(

~ω
2kBT

)
, and the internal energy of an inde-

pendent classical oscillator, kBT , of equal frequency, ω. In both cases, “independent” means “in the limit of vanishing small system-bath interaction”.
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out of the (finite) summation over the index, k, of the auxil-
iary degrees of freedom. In practise, numerical convergence
of the correlation functions and other figures of merit must
be verified for each model of the environment. In the case
of the Debye bath considered in Sec. III., convergence is
quickly achieved (namely, for K = 50) in the weak cou-
pling regime, although extra care must be paid to the strong
coupling regime [35].

III. MODEL BISTABLE SYSTEM COUPLED TO A
DEBYE BATH

We model the bistable system by means of the quartic
double-well potential

V (r) = Vb

[
1−

(
r

rmin

)2
]2

, (15)

where Vb is the barrier height and the two equivalent min-
ima are located at r = ±rmin. To investigate the possible
relevance of the isotope effect, the mass of the test particle
is taken either as m = mH = 1.0079 amu (hydrogen) or
m = mD = 2.0141 amu (deuterium). This model is arti-
ficial, but simple enough to provide neat results about the
transition rates (see Sec. IV.). On the other hand, it can also
serve as a first step towards the application of the quasiclas-
sical GLE to model hydrogen-bonded solids and liquids.

A natural unit of energy is provided by the Debye energy
of the bath, kBTD = ~ωD. The barrier height is then fixed to
be Vb = 3kBTD and the potential minima are defined using

rmin =

√
8Vb
mΩ2

0

, (16)

after the harmonic frequency of the two equivalent minima
has been fixed at Ω0 = 0.8

(√
mH/m

)
ωD. The pres-

ence of the square root of the mass ratio makes the har-
monic constant (i.e., the second derivative of the potential
at r = ±rmin), mΩ2

0, a geometric parameter independent of
the particle mass, m, as expected. The selected values of the
barrier height and harmonic constant make possible to sam-
ple the probability densities (see Fig. 1 and 2) and the tran-
sition rates (see Fig. 4 and 4) by direct molecular dynamics
simulations. In the case of the hydrogen mass, the choice of
the harmonic frequency agrees with the example considered
in Ref. [35].

The Debye bath is defined by means of its Debye temper-
ature, TD, the dimensionless system-bath coupling strength,
γ, and the auxiliary mass, µ. In particular, we consider the
values TD = 170 K and γ = 0.1, 0.2, 0.5, 1.0. Having
fixed, µ = m, the parameters Gk,5 τk, and ωk in Eq. (1) de-
pends on TD and γ, only. Following Ref. [35], we choose

a uniform sampling of the frequency interval [−ωD, ωD],
i.e., ωk = k

KωD, with k = 0, 1, 2, . . . ,K. We then write
that Gk = g0ck, where g0 = γ (m/mH) Ω2

0 and

ck =


1

ωD

√
3

(2K + 1)
if k = 0 ,

1

ωD

√
6

(2K + 1)
if k > 0 .

(17)

Once again, the presence of the mass ratio makes the pa-
rameters Gk independent of the particle mass, m, and, in
the case of the hydrogen mass, the choice of the parame-
ters agrees with the example considered in Ref. [35]. For the
sake of simplicity, we choose an equal decay time for all the
auxiliary DoFs,

τk = τ = λ
(2K + 1)

2ωD
, (18)

with the auxiliary constant λ defined through the self-
consistent equation

λ

π
=

(
1 + 2

K∑
k=1

1

1 + k2λ2
(
1 + 1

2K

)2
)−1

(19)

in order to retrieve the exact behaviour of the memory kernel
in the two limits of ω → 0 and ω → ∞ [35]. This choice
of the parameters ωk, ck and τk has been preferred to a least
squares fit because it yields a more transparent convergence
to the spectral density in the limit of K →∞ (see below).

By means of the Mittag-Leffler expansion of the hyper-
bolic cotangent,

coth (z) =
1

z
+ 2z

∞∑
k=1

1

z2 + π2k2
, (20)

in the limit of K →∞, we can express Eq. (19) as

λ

π
=

(
1 + 2x2

∞∑
k=1

1

x2 + k2π2

)−1
=

1

x coth (x)
. (21)

where

x =
π

λ

(
1 +

1

2K

)−1
. (22)

Hence, the self-consistent equation can be written as

x = arcoth
( π
λx

)
(23)

which yields

π

λ
=

(
1 +

1

2K

)
arcoth

(
1 +

1

2K

)
=

=
1

2

(
1 +

1

2K

)
ln (1 + 4K) ,

(24)

5 For the sake of simplicity, here we assume that the Gk are trivial (i.e., constant) function of r.
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where we have used that

arcoth (x) =
1

2
ln

(
x+ 1

x− 1

)
. (25)

Solving the last equation for λ, we can also estimate the
asymptotic behaviour in the limit of K →∞,

λ ∼ 2π

ln (4K)
, (26)

which yields

τ ∼ 2πK

ωD ln (4K)
(27)

and the expected limit of τ →∞ if K →∞ (see Sec. II.).
By means of Eq. (13), we write the spectral density of

the Debye bath as

J (ω) =
2ΓωDω

π (2K + 1)

[ τ

1 + ω2τ2

+

K∑
k=1

(
τ

1 + (ω − ωk)
2
τ2

+
τ

1 + (ω + ωk)
2
τ2

)]
θ (ω) ,

(28)
where the effective friction constant, Γ, is defined by the
equation

Γ

m
=

3

2
πγ2

(
m

mH

)2(
Ω0

ωD

)4

ωD . (29)

As usual, the presence of the mass ratio makes the parameter
Γ/m independent of the particle mass,m, and, in the case of
the hydrogen mass, the definition of Γ agrees with the exam-
ple considered in Ref. [35]. We also note that the integral of
the spectral density∫ ∞

−∞

dω
ω

J (ω) = ΓωD (30)

does not depend on the number of pairs of DoFs, K + 1,
and that the spectral density has an algebraic asymptotic be-
haviour

J (ω) ∼ 2ΓωDω

π

(
τ

1 + ω2τ2

)
θ (ω) , (31)

in the limit of ω � ωD. It can be also proven that, in the
limit of K → ∞, the spectral density in Eq. (28) converges
to the expected

J (ω) = Γωχ[0,ωD] (ω) , (32)

where χ[0,ωD] is the characteristic function of the interval
[0, ωD].

Despite the apparent simplicity of the Debye model, the
limit K → ∞ is not entirely trivial [46]. As shown in

Ref. [35], a persistent (i.e., undamped) oscillation with a fre-
quency larger than the Debye frequency, ωD, is observed
in the strong coupling regime. A thorough discussion of this
persistent oscillation is neither brief nor pertinent to the main
topic of this article and it is then left to a future publication.

In Fig. 1 we show the probability densities obtained
by numerical integration of the quasiclassical complex
Langevin equations introduced in Eq. (1) with K = 50 for
the case of the hydrogen mass. The numerical integration
provides an accurate solution of the equivalent quasiclassical
GLE defined in Eq. (4). Details of the integration algorithm
can be found in Ref. [35]. 6 For each value of the tempera-
ture, T , and the dimensionless coupling strength, γ, 50 inde-
pendent trajectories have been generated to sample the po-
sition histograms. Each trajectory is randomly started at rest
in either the left or the right minima with equal probability.
A time step of 1 fs and 108 steps have been used, while the
configurations in the extended phase space

(
r, p, s

(k)
1 , s

(k)
2

)
have been recorded every 104 steps. In each panel, we have
also indicated the classical probability density, Pcl (x) ∝
exp (−V (x) /kBT ), and the quantum probability density,
Pq (x) ∝

∑
n |φn (x)|2 exp (−En/kBT ), where φn and En

are the eigenvectors and eigenvalues of the Hamiltonian op-
erator H = −

(
~2/2m

)
∇2 + V (x).

From the results shown in the different panels of Fig. 1,
we can conclude that the quasiclassical GLE is rather accu-
rate in modelling the quantum probability density when the
temperature is not too low and the coupling is not too strong.
This conclusion agrees with previous observations [40]. The
capability of a quantum GLE scheme based on the QFDT
to model the quantum delocalisation in a moderately anhar-
monic potential has been exploited to improve the conver-
gence of path-integral molecular dynamics [40, 48]. Discrep-
ancies at low temperature are due to the lack of ergodicity
which follows a reduced transition rate, κgle (see Sec. IV.).
Discrepancies in the strong coupling regime are due to the
non-negligible corrections to the quantum probability den-
sity caused by the system-bath interaction [49]. A detailed
assessment of these corrections depends on the characterisa-
tion of the persistent oscillation of a Debye bath (see above)
and it is therefore left to a future publication. In fact, the
main conclusions about the transition rate in the strong cou-
pling regimes (see Sec. IV.) do not depend on the detailed
assessment of these corrections.

To investigate the isotope effect, in Fig. 2 we show the
probability densities obtained by numerical integration of the
quasiclassical complex Langevin equations for a deuterium
atom. The same trends with decreasing T and increasing γ
are observed, even if the quantum probability densities are
more localised and the ergodicity breaking is then more se-
vere.

6 In fact, in this work we have preferred the “BAOAB” algorithm of Leimkuhler and Matthews which is known to give better estimates of the confrontational
averages [47]. This choice implies a simple rearrangements of the split algorithm employed in Ref. [35].



256 L. Stella, H. Ness, C.D. Lorenz, L. Kantorovich

 0

 0.2

 0.4

 0.6

 0.8

 1

−5 −4 −3 −2 −1  0  1  2  3  4  5

(a) γ=0.1, T=50 K

P
(x

)

x [Å]

Classical
Quantum

GLE
0

50

−5  0  5

V
(x

) 
[m

eV
]

x [Å]

0

0.2

0.4

0.6

0.8

1

−5 −4 −3 −2 −1  0  1  2  3  4  5

(c) γ=0.2, T=50 K

P
(x

)

x [Å]

0

0.2

0.4

0.6

0.8

1

−5 −4 −3 −2 −1  0  1  2  3  4  5

(e) γ=0.5, T=50 K

P
(x

)

x [Å]

0

0.2

0.4

0.6

0.8

1

−5 −4 −3 −2 −1  0  1  2  3  4  5

(g) γ=1.0, T=50 K

P
(x

)

x [Å]

0

0.2

0.4

0.6

0.8

1

−5 −4 −3 −2 −1  0  1  2  3  4  5

(b) γ=0.1, T=25 K

P
(x

)

x [Å]

0

0.2

0.4

0.6

0.8

1

−5 −4 −3 −2 −1  0  1  2  3  4  5

(d) γ=0.2, T=25 K

P
(x

)

x [Å]

0

0.2

0.4

0.6

0.8

1

−5 −4 −3 −2 −1  0  1  2  3  4  5

(f) γ=0.5, T=25 K
P

(x
)

x [Å]

0

0.2

0.4

0.6

0.8

1

−5 −4 −3 −2 −1  0  1  2  3  4  5

(h) γ=1.0, T=25 K

P
(x

)

x [Å]

Fig. 1. Probability density of a hydrogen atom in a bistable potential well (see the inset of panel (b)) for T = 50 K (left panels) and T = 25
K (right panels) and several values of the dimensionless coupling strength, γ (black points with error bars). The probabilities and the errors
have been estimated from the position histograms of the corresponding equilibrated GLE simulations. Analytic estimates of the classical
(red lines) and quantum (blue lines) probability densities are also reported. The dynamics in the cases of T = 25 (low temperature) and

γ ≥ 0.5 (strong coupling) are not ergodic (see text)

IV. TRANSITION RATES

The transition rate, κ, has been estimated from the decay
of the position autocorrelation function [50]

〈r (t) r (t′)〉 ∼ e−2κgle(t−t
′) (33)

sampled at T = 13, 16, 20, 25, 31, 40, 50, 63, 79, 100, 126,
159, 200 K and γ = 0.1, 0.2, 0.5, 1.0. The remaining simu-
lation parameters are the same as for the trajectories used to
investigate the probability density (See Sec. III.).

In Fig. 3 we show the Arrhenius plots for the different
values of the dimensionless coupling strength in the case
of the hydrogen mass (left panels) or in the case of the
deuterium mass (right panels). The transition rates obtained
from the numerical solution of the quasiclassical GLE satu-
rate at very low temperature, while the transition rates from
the classical GLE (obtained by fixing h (ω) = 1 in Eq. (1))
display the familiar linear behaviour.
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Tab. 1. Numerical values of the parameters, A, B, and ω‡ (errors on the last digit) appearing in Eq. (41) as a function of the dimensionless
coupling strength, γ, along with the estimates of the quantum temperature, Tq , the critical temperature, Tc, and the Grote-Hynes-Pollak

frequency, ωghp, in the case of the hydrogen mass.

γ A [fs−1] B [eV] ω‡ [fs−1] Tq [K] Tc [K] ωghp [fs−1]

0.1 0.00157 0.0359 0.0144 67.1 15.1 0.0124

0.2 0.00503 0.0371 0.0139 62.9 14.6 0.0120

0.5 0.00916 0.0403 0.0097 40.5 11.2 0.0092

1.0 0.00439 0.0426 0.0040 15.9 4.6 0.0038

In all the panels of Fig. 3 we also show the analytic es-
timates of the classical transition rate (Grote-Hynes-Pollak
[10, 51])

κghp (T ) =

(
ωghp
ωb

)
κtst (T ) , (34)

where −iωb is the imaginary frequency of the barrier top
(i.e., −mω2

b is the second derivative of the potential at the
barrier top) and

κtst (T ) =

(
Ω0

2π

)
e
− Vb
kBT (35)

is the bare estimate of the transition state theory [52]. In the
case of a Debye bath, the Grote-Hynes-Pollak imaginary fre-
quency, iωghp, is given by the positive solution of the equa-
tion

ω2
b − ω2

gph

[
1 +

2Γ

πmωghp
arctan

(
ωD
ωghp

)]
= 0 . (36)

The numerical values of ωghp are reported in Tab. 1, for the
case of the hydrogen mass, or in Tab. 2 in the case of the
deuterium mass.

The quantum transition rate (Wolynes [20, 53]) is ap-
proximated as [54]

κw (T ) ≈
(
~ωghp
2kBT

)
κtst (T )

sin
(

~ωghp
2kBT

) ≈
≈

[
1 +

1

24

(
~ωghp
kBT

)2
]
κtst (T ) .

(37)

The agreement between the Grote-Hynes-Pollak predic-
tions and the classical GLE is very good in all cases, ex-
cept the very weak, i.e., γ = 0.1, coupling regime. A dis-
agreement is expected in this case since the transitions are

limited more by energy diffusion than spatial diffusion (the
Kramers turnover problem) [9]. Corrections to Eq. (34) are
known, [11, 55, 56] but are not relevant in the strong cou-
pling regime.

The quasiclassical GLE rates are in clear quantitative dis-
agreement with the Wolynes predictions in all cases, except
the very strong, i.e., γ = 1.0, coupling regime. In particular,
the quasiclassical GLE rates saturate at a temperature well
above the so-called critical temperature,

Tc =
~ωghp
2πkB

, (38)

at which Eq. (37) displays an (apparent) divergence [38, 57,
58].

Following Miller, [59] one can use the critical temper-
ature, Tc, to characterise the tunnelling through the barrier
top, approximated as V (r) ≈ Vb − 1

2mω
2
br

2. In this case,
the tunnelling probability is

Pt (E) =
1

1 + exp
(

2π(Vb−E)
~ωb

) =
1

1 + exp
(
Vb−E
kBTc

) ,
(39)

where E is the total energy of the system. By means of Eq.
(39), the quantum transition rate is estimated as

κm (T ) =

(
Ω0

2πKBT

)∫ ∞
−∞

dE e
− E
kBT Pt (E) =

=

(
~ωb

2kBT

)
κtst (T )

sin
(

~ωb
2kBT

) . (40)

Note that Eq. (37) and Eq. (40) differ only in the choice of
imaginary frequency of the barrier top. In fact, we have that
ωghp → ωb in the limit of γ → 0 (see Eq. (36) and Eq. (29)).

Tab. 2. Numerical values of the parameters, A, B, and ω‡ (errors on the last digit) appearing in Eq. (41) as a function of the dimensionless
coupling strength, γ, along with the estimates of the quantum temperature, Tq , the critical temperature, Tc, and the Grote-Hynes-Pollak

frequency, ωghp, in the case of the deuterium mass.

γ A [fs−1] B [eV] ω‡ [fs−1] Tq [K] Tc [K] ωghp [fs−1]

0.1 0.00157 0.0360 0.0105 48.8 10.6 0.0087

0.2 0.00502 0.0386 0.0101 43.8 10.0 0.0083

0.5 0.00699 0.0431 0.0064 25.0 6.6 0.0055

1.0 0.00236 0.0434 0.0029 11.1 2.3 0.0019
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Fig. 2. Probability density of a deuterium atom in a bistable potential well (see the inset of panel (b)) for T = 50 K (left panels) and
T = 25 K (right panels) and several values of the dimensionless coupling strength, γ (black points with error bars). The probabilities
and the errors have been estimated from the position histograms of the corresponding equilibrated GLE simulations. Analytic estimates
of the classical (red lines) and quantum (blue lines) probability densities are also reported. The dynamics in the cases of T = 25 (low

temperature) and γ ≥ 0.5 (strong coupling) are not ergodic (see text)

At low temperature, kBT � Vb, assuming that the zero-
point energy is negligible, ~Ω0/2 � Vb, one can substitute

E ≈ 0 into Eq. (39) to approximate Pt (0) ≈ e
− Vb
kBTc . As

a consequence, tunnelling is expected to be the dominant
transition mechanism for T < Tc. The numerical values of
Tc are reported in Tab. 1 and Tab. 2. The critical temperature,
Tc, is a function of both the dimensionless coupling strength,
γ, and the mass, m, through its dependence on ωghp. The

regions corresponding to T < Tc have been shaded in the
panels of Fig. 3.

To help interpret the quasiclassical GLE results, we
model the quasiclassical transition rate by means of the func-
tion

κfit (T ) =

(
A

2π

)
exp

(
− B

h (ω‡) kBT

)
, (41)
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Fig. 3. Classical and quasiclassical GLE transition rates of a hydrogen (left panels) or deuterium (right panels) atom in a bistable potential
(see the inset of panel (h)) as a function of the inverse temperature for several values of the dimensionless coupling strength, γ. For com-
parison, the analytic estimates from the Grote-Hynes-Pollak, Eq. (34), and the Wolynes, Eq. (37), formulae are also reported. The black

lines are fits of the quasiclassical GLE results (see Eq. (41)) and the regions for which T < Tc are shaded (see Eq. (38))

where A, B, and ω‡ are adjustable parameters, the values of
which are reported in Tab. 1 and Tab. 2. 7 The global accu-
racy of these fits can be better appreciated from Fig. 4, where
we have reported only the quasiclassical GLE rates. By in-
terpreting the exponential in Eq. (41) as a Boltzmann factor,
we can define an effective quantum temperature, Tq , so that

Vb
kBTq

=
B
~ω‡

2

. (42)

The numerical values of Tq are reported in Tab. 1, for the
case of the hydrogen mass, or Tab. 2 in the case of the deu-

7 One can set B = Vb to reduce the number of adjustable parameters, but the fits generally get worse. The difference between B and Vb is due to the
quantum fluctuations [21].
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Fig. 4. Quasiclassical GLE transition rates of a hydrogen (panel (a)) or deuterium (panel (b)) atom in a bistable potential as a function
of the inverse temperature (Arrhenius plots) for several values of the dimensionless coupling strength, γ. The black lines are fits of the

quasiclassical GLE results (see Eq. (41))

terium mass. The quantum temperature can be used to assess
the validity of discrepancy between the quasiclassical GLE
and the analytic predictions (see Sec. V.).

V. DISCUSSION

The quasiclassical GLE formalism considered in this ar-
ticle does not include tunnelling [29]. It is then not surprising
that it fails to model the transition rates in the deep quantum
regime. On the other hand, it is not immediately clear why
such a formalism overestimates instead of underestimating
— as naively suggested by the absence of tunnelling — the
quantum transition rates. In this Section we attempt an an-
swer by discussing in more detail the results of Sec. III. and
IV..

First of all, from the results shown in Figs. 1 and 2, we
know that the quasiclassical GLE reproduces rather accu-
rately the probability density, at least close to the potential
minima. In the limit of T → 0 and γ → 0, the quan-
tum fluctuations close to the minima are entirely due to the
zero-point motion which can be characterised by the effec-
tive temperature Tzp = ~Ω0/2kB . In particular, we have that

Tzp = 136 K in the case of the hydrogen mass or Tzp = 96.2
K in the case of the deuterium mass. Those temperatures are
much larger than Tq and Tc in both cases. Given the good
agreement between the classical GLE rates and the Grote-
Hynes-Pollak formula for moderate to strong system-bath
coupling, we can also exclude a large contribution from the
finite height of the barrier (the condition kBTzp � Vb is
satisfied). It is then plausible that the discrepancies between
the quasiclassical GLE and the analytic predictions originate
from an incorrect sampling of the region close to the barrier
top.

The quasiclassical GLE considered in this article pro-
vides an inherently thermal (i.e., classical) description of
the random forces, although the physical temperature is
weighted by a correcting factor, h (ω), which depends on the
frequency of the oscillations, ω, to mimic the quantum fluc-
tuations. In practise, the quantum temperature, Tq , can be
used to estimate the effective temperature close to the bar-
rier top.

Interestingly, we observe that the ratio between Tq and
Tc is a relatively constant function of γ and m (between
0.4 and 0.5, see Fig. 5). Our results are in agreement with
the findings of Eckern et al. (see Ref. [29], in particular at
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Fig. 5. Correlation between the effective quantum temperature, Tq , and the critical temperature, Tc.

the end of Sec. 2.3). This observation suggests that, despite
the quantitative discrepancy between the quasiclassical GLE
and the analytic predictions, the functional dependence of
κgle (T ) on both γ and m is qualitatively correct. In par-
ticular, the isotope effect and the convergence of the quan-
tum and classical transition rates in the strong coupling limit
are in good qualitative agreement with the analytic predic-
tions [21, 38].

VI. CONCLUSIONS

In this article, we have completed the GLE formalism
introduced in Ref. [35] to include the quantum delocalisa-
tion at very low temperature. Our results confirm the applica-
bility of this formalism to model the equilibrium properties
(e.g., the probability density) of a bistable system coupled
to a Debye bath. In particular, the quasiclassical GLE for-
malism equally applies to both the weak and strong coupling
regimes.

The quantitative discrepancy between the quasiclassical
GLE and the analytic predictions for the quantum transition
rates has been rationalised as the consequence of an incorrect
sampling close to the barrier top. In particular, the quasiclas-
sical GLE predicts a saturation of the transition rate at an ef-
fective quantum temperature, Tq , which is roughly twice as
large as the expected critical temperature, Tc. Since the value
of Tc depends on the imaginary frequency of the barrier top
(see Eq. (38)), we can conclude that the quasiclassical GLE
effectively samples a different imaginary frequency. On the
other hand, the quasiclassical GLE accurately samples the
quantum probability distribution (at least for weak system-
bath interaction) close to the minima of the potential wells.
Since the ratio between Tq and Tc is roughly constant, the
functional dependence of κgle (T ) on both the system-bath

coupling strength, γ, and the particle mass, m, is also quali-
tatively correct. This qualitative agreement includes the iso-
tope effect and the convergence of the quantum and classical
transition rates in the strong coupling limit.

Our results shed more light on the domain of applicabil-
ity of a real-time GLE approach to model the relaxation of
quantum dissipative system. The simple quasiclassical ap-
proach considered in this article ignores both the quantum
corrections to the force field [31, 32, 36, 60] and the proper
treatment of the quantum fluctuations by means of the path
integral formalism [40, 48, 61, 62]. However, it is surpris-
ingly accurate in the limit of strong system-bath interaction,
at a computational cost essentially equal to that of its classi-
cal counterpart.
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