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Abstract: The 2016 Snook Prize has been awarded to Diego Tapias, Alessandro Bravetti, and David Sanders for their
paper “Ergodicity of One-Dimensional Systems Coupled to the Logistic Thermostat”. They introduced a relatively-stiff
hyperbolic tangent thermostat force and successfully tested its ability to reproduce Gibbs’ canonical distribution for three
one-dimensional problems, the harmonic oscillator, the quartic oscillator, and the Mexican Hat potentials:

{(q2/2); (q4/4); (q4/4)− (q2/2)}.

Their work constitutes an effective response to the 2016 Ian Snook Prize Award goal, “finding ergodic algorithms for Gibbs’
canonical ensemble using a single thermostat”. We confirm their work here and highlight an interesting feature of the
Mexican Hat problem when it is solved with an adaptive integrator.
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I. NOSÉ AND NOSÉ-HOOVER CANONICAL
DYNAMICS LACK ERGODICITY

In 1984 Shuichi Nosé used “time scaling” [1, 2] to relate
his novel Hamiltonian H to an extended version of Gibbs’
canonical phase-space distribution f , proportional to e−H/kT .
Hoover’s simpler “Nosé-Hoover” motion equations [3] dis-
pensed with Hamiltonian mechanics and time scaling, re-
ducing the dimensionality of the extended phase space by
one. For the special case of a harmonic oscillator the Nosé-
Hoover motion equations and the corresponding modified
Gibbs’ distribution are:

{q̇ = p ; ṗ = −q − ζp; ζ̇ = [ (p2/T )− 1 ]/τ2} −→

−→f(q, p, ζ) ∝ e−(q
2/2T )e−(p

2/2T )e−(ζ
2τ2/2)

[Nosé-Hoover].

Here q and p are the oscillator coordinate and momentum.
ζ is a “friction coefficient”, or “control variable”. In all that
follows we choose the equilibrium temperature T equal to

unity to simplify notation. The timescale of the thermal res-
ponse to the imposed equilibrium temperature is governed
by the relaxation time τ . For simplicity we choose force con-
stants, masses, and Boltzmann’s constant all equal to unity.

Hoover used the steady-state phase-space continuity equa-
tion:

(∂f/∂t) = −∇ · (fv) = 0 ,

to show that Gibbs’ canonical distribution is consistent with
the Nosé-Hoover motion equations. Here the phase-space
flow velocity is v ≡ (q̇, ṗ, ζ̇). Hoover’s numerical work
showed that only a portion of the three-dimensional Gaussian
distribution (typically just a two-dimensional torus) is ge-
nerated. That is, solutions of these three-dimensional motion
equations are not ergodic. Particular solutions fail to cover
the entire (q, p, ζ) phase space.

Considerable numerical work, following the comprehen-
sive analyses of Kusnezov, Bulgac, and Bauer [4, 5], sug-
gested that using two thermostat variables rather than one was
the simplest route to oscillator ergodicity. Including another
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Fig. 1. The p = 0 Mexican Hat cross section for α = 6.5 has four apparent holes, one of which is shown in the closeup to the right.
Here, and also in Figs. 2 and 3, the abscissa is q and the ordinate is the friction coefficient ζ

thermostat variable requires a four-dimensional (q, p, ζ, ξ)
phase space. A successful example [6], ergodic in (q, p, ζ, ξ)
space, controlled two velocity moments, 〈p2〉 and 〈 p4〉 rather
than just one:

{q̇ = p; ṗ = −q − ζp− ξp3;
ζ̇ = p2 − 1; ξ̇ = p4 − 3p2} −→

−→ f(q, p, ζ) ∝ e−(q
2/2)e−(p

2/2)e−(ζ
2/2)e−(ξ

2/2)

[Hoover-Holian].

In 2015 a single-thermostat approach [7] with simultane-
ous weak control of 〈 p2 〉 and 〈 p4 〉 was found to generate
Gibbs’ entire distribution for the harmonic oscillator:

{q̇ = p ; ṗ = −q − ζ(0.05p+ 0.32p3) ;

ζ̇ = 0.05(p2 − 1) + 0.32(p4 − 3p2)}
[0532 Model].

Straightforward generalizations of this single-thermostat ap-
proach failed to thermostat the quartic and Mexican Hat poten-
tials, leading to the posing of the 2016 Snook Prize problem
solved by Tapias, Bravetti, and Sanders [8].

II. TAPIAS, BRAVETTI, AND SANDERS’
“LOGISTIC” THERMOSTAT

The Logistic Map and the Logistic Flow are two simple
models for chaotic behavior:

qn+1 = cqn(1− qn) and q̇ = q(1− q).

A solution of the logistic flow equation is

q̇ =
1

[ e+t/2 + e−t/2 ]2
←→ q =

e+t/2

[ e+t/2 + e−t/2 ]
←→

←→ 2q = 1 + tanh(+t/2).

With these logistic equations in mind Tapias, Bravetti, and
Sanders [8] suggested a hyperbolic tangent form for the
thermostat variable. That form also satisfies the steady-state
phase-space continuity equation. They showed convincing nu-
merical evidence for the ergodicity of their “Logistic Thermo-
stat” motion equations for the harmonic, quartic, and Mexican
Hat potentials.

In the most challenging case, the Mexican Hat potential,
the ergodic set of motion equations found by Tapias, Bravetti,
and Sanders was feasible to solve, but relatively stiff:

{q̇ = p; ṗ = q − q3 − 50p tanh(25ζ); ζ̇ = p2 − 1 }.

Fig. 2. The p = 0 Mexican Hat cross section closeups for α = 6.9 with the rms difference between solutions with timesteps of dt and two
steps of (dt/2) constrained to lie in the range 10−14 to 10−12. The fourth-order section is on the left and the fifth-order section

is on the right
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Fig. 3. The p = 0 Mexican Hat cross section closeups for α = 6.9 with the rms difference between solutions with timesteps of dt and two
steps of (dt/2) constrained to lie in the range 10−17 to 10−15. The fourth-order section is on the left and the fifth-order section

is on the right

In replicating their work we also characterized solutions of
a slight variant:

{q̇ = p; ṗ = q − q3 − αp tanh(αζ); ζ̇ = p2 − 1},

where values of the parameter α in the neighborhood of seven
lead to apparent ergodic behavior in (q, p, ζ) space.

One of the simplest and most useful tests for ergodi-
city in three dimensions is the lack of holes in the two-
dimensional cross-sections (as opposed to projections) of
the three-dimensional flow. For stiff equations it is conve-
nient to use “adaptive” integrations of the motion equations
where the timestep varies to maintain the accuracy of the
integrator [9].

In our own numerical work we integrated for a time
of 10,000,000 using timesteps which maintained the rms
difference between a fourth-order or fifth-order Runge-Kutta
step of dt and two such steps with (dt/2) to lie within a band
varying from

10−12 >
√
δq2 + δp2 + δζ2 > 10−14 to

10−15 >
√
δq2 + δp2 + δζ2 > 10−17.

We generated about 3,000,000 {q, 0, ζ} double-precision
cross-section points in laptop runs taking about an hour each.
Typical timesteps were in the range from 0.0001 to 0.001.

Fig. 1 shows portions of the p = 0 cross section with
α = 6.5 which has evident holes at (q = ±1.92, ζ = ±0.39).
The holes disappear if α is increased to 6.9. But a look at
the (q, 0, ζ) section with an error band of 10−13±1 reveals
not only “normal” (irregularly-dotted) regions but also a few
striped regions. In Fig. 2 we see that the stripes using RK4
differ from those using RK5 showing that the stripes are arte-
facts. Tightening the error band to 10−16±1 confirms this
diagnosis, as shown in Fig. 3. The interesting structure of
these striped regions is a thoroughly unexpected fringe bene-
fit of the new logistic thermostat.
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