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Abstract: Quantitative structure-retention relationship (QSRR) analysis is a useful technique capable of relating chromato-
graphic retention time to the chemical structure of a solute. Using the sub-structural molecular fragments (SMF) derived
directly from the molecular structures, the gas chromatographic relative retention times (RRTs) of 209 polychlorinated
biphenyls (PCBs) on the SE-54 stationary phase were calculated. An eight-variable regression equation with the correlation
coefficient of 0.9945 and the root mean square errors of 0.0134 was developed. Forward and backward stepwise regression
variable selection and multi-linear regression analysis (MLRA) are combined to describe the effect of molecular structure on
the RRT of PCB according to the QSRR method. To quantitatively relate RRT with the molecular structure MLR analysis
is performed on the set of 163 sub-structural molecular fragments (SMF) provided by the ISIDA software. The eight
fragments selected by variable subset selection, all belonging to the sub-fragments, adequately represent the structural factors
influencing the affinity of PCB to SE-54 stationary phase in the separation process. Finally, a QSRR model is selected based
on leave-one-out cross-validation and its prediction ability is further tested on 42 representative compounds excluded from
model calibration. The prediction results from the MLR model are in good agreement with the experimental values. By
applying the MLR method we can predict the test set with squared cross validated correlation coefficient (Q2

ext) of 0.9913
and root mean square error (RMSE) of 0.0169.
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I. INTRODUCTION

Polychlorinated biphenyls (PCB) that were widely used
in industry as dielectric fluids in transformers and capacitors,
as hydraulic and heat transfer fluids, and as plasticizers, are
now of concern as prevalent, persistent, and toxic pollutants
[1, 2]. PCB produced widespread global contamination of
water and soil and bio-accumulated in food chains due to
their high hydrophobicity and chemical stability [3, 4]. The
following examples emphasize the importance of bioaccu-
mulation of PCB and their high impact on different aspects
of the biosphere pollution. Contamination of surface soil by
PCB remains a serious problem in Dalian, Liaoning Province,
China [5]. Not only are surface soils exposed to PCB con-
tamination, but various aquatic species are endangered as

well used isotope dilution HRGC/HRMS method to deter-
mine polybrominated/chlorinated biphenyls (Co-PXB) in 18
different Japanese fish fillets [6]. The eggs of San Francisco
Bay aquatic birds contain high PCB concentrations [7]. PCB
congeners are adversely affecting sediments and the crab
population density in mangroves near Rio de Janeiro, Brazil
[8]. PCB concentration can be used to assess risks related to
the exposure to other persistent bio-accumulative and toxic
compounds. Mori et al. [9] showed that the total PCB con-
centration in human blood is potentially a reliable indicator
of the total dioxin concentration, which is of special con-
cern in Japan because of the Kanemi Yusho tragedy [10].
Polychlorinated biphenyls (PCBs) are a class of discrete or-
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ganic compounds with one to ten chlorine atoms attached
to a biphenyl nucleus and a general chemical formula of
C12H10−nCln, where n = 1÷ 10 [11]. A general chemical
structure of polychlorinated biphenyls is shown in Fig. 1.

Fig. 1. General structural formula and substitution positions
of the PCBs

The composition of PCBs is summarized in Tab. 1 [12].
PCBs are hydrophobic compounds with low volatility, and the
highly chlorinated ones have poor water solubility. Moreover,
they are resistant to acids, bases, and (generally) environ-
mental degradation processes. They are, therefore, highly
persistent in the environment. A series of properties and activ-
ities of PCBs have been investigated by QSPR/QSAR model-
ing: aqueous solubility [13], gas/particle partitioning in the
atmosphere [14], photo degradation half-life in n-hexane so-
lution under UV irradiation [15], n-octanol/water partition
coefficients [16, 17], vaporization [18, 19], and sublimation
enthalpy [20]. The retention time of PCB congeners has also
been previously investigated and reported [21-24]. Due to
the need to control the PCBs level in the environment, one
of the most commonly used methods for their analysis in
environmental samples is gas chromatography coupled with
an electron-capture detector, because of its high sensitivity
toward halogenated compounds [25, 26], but easy identifi-
cation of individual congeners remains unresolved for the
moment [27,28]. Retention in chromatography is the result
of a competitive distribution process of the solute between
mobile and stationary phases, in which the partitioning of
the solute between these phases is largely determined by the
molecular structure. Based on this approach, many authors
have described multiple regression models for predicting gas-
chromatographic relative retention time [RRT] on a SE-54
stationary phase using different kinds of molecular descrip-
tors [29-31]. A range of empirical and semi-empirical tools
have been developed for the prediction of retention behavior
of different classes of compounds under various chromato-
graphic conditions. Many of these predictive models fall into
the category of quantitative structure-retention relationships
(QSRR) which derive relationships between chromatographic
parameters and molecular structure properties (descriptors)
of the analytes. These quantitative structure property rela-
tionships (QSPR) are generally used to correlate the biolog-
ical, chemical, or physical property of a compound with its
physico-chemical characteristics. In some of our previous

papers, we reported on the application of QSPR techniques
to develop a new, simplified approach to prediction of com-
pound properties [32-41]. For the first time we applied the
sub-structural molecular fragment (SMF) method for mod-
eling gas chromatographic relative retention times of PCBs.
The goal of this study is to develop an SMF method and
the related software tools to model relationships between the
structure of 209 polychlorinated biphenyls and their relative
retention times on the SE-54 stationary phase. This method is
based on to represent a molecule by its fragments and on to
calculate their contributions to a given property. It uses two
types of fragments: (i) the sequences of atoms and/or bonds
(atom and/or bond paths up to specified maximal length) and
(ii) ”augmented“ represented by a selected atom and/or bonds
with its environment. In fact, it represents an extension of
empirical methods used to calculate physical or chemical
properties of molecules using atomic or bond increments.

II. DATA AND METHODS

To undertake QSRR studies two kinds of input data are
needed. One is a set of quantitatively comparable retention
data (dependent variable) for a sufficiently large (for the sta-
tistical reason) set of analytes. The other is a set of quantities
(independent variables) assumed to account for structural
differences among the studied analytes. Through the use of
chemometric computational techniques, retention parame-
ters are characterized in terms of various descriptors of an-
alytes (and/or their combinations) or in terms of systematic
knowledge extracted (learnt) from these descriptors. To ob-
tain statistically significant and physically meaningful QSRR,
reliable input data are required and a stringent mathemati-
cal analysis must be carried out. The great advantage of the
QSRR analysis over other quantitative structure property re-
lationship studies is that chromatography can readily produce
a large amount of relatively precise and reproducible data. In
a chromatographic process all conditions may be kept con-
stant and hence the structure of an analyte becomes the single
independent variable in the system.
The QSRR model for the estimation of the RRT of PCB con-
geners is established in the following six steps: the molecular
structure input and generation of the files containing the chem-
ical structures is stored in a computer-readable format; quan-
tum mechanics geometry is optimized with a semi-empirical
(AM1) method; sub-structural molecular fragments are com-
puted; molecular fragments are selected; and the molecular
fragments – RRT model is generated by the multi-linear re-
gression analysis (MLRA), and statistical approval techniques
and prediction analysis.

II. 1. Data set
The relative response times of all PCBs obtained by using

temperature-programmed, high resolution gas chromatogra-
phy on a capillary column of SE-54 (Methyl 5% Phenyl
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Tab. 1. Composition of PCBs by homologs

Homolog Molecular formula Chlorine(%by weight) Number of isomers
Monochlorobiphenyl C12H9Cl 19 3
Dichlorobiphenyl C12H8Cl2 32 12
Trichlorobiphenyl C12H7Cl3 41 24
Tetrachlorobiphenyl C12H6Cl4 49 42
Pentachlorobiphenyl C12H5Cl5 54 46
Hexachlorobiphenyl C12H4Cl6 59 42
Heptachlorobiphenyl C12H3Cl7 63 24
Octachlorobiphenyl C12H2Cl8 66 12
Nonachlorobiphenyl C12HCl9 69 3
Decachlorobiphenyl C12Cl10 71 1
Total congeners - - 209

poly-siloxane, non-polar), reported by Mullin et al. [29,42]
served as experimental data in this study. The values were
used as a dependent variable in the following analyses and

the values ranged from 0.1544 to 1.0496. The names of the
compounds used in this study with their relative retention
times are listed in Tab. 2.

Tab. 2. Experimental data of relative retention times of polychlorinated biphenyls

No Molecule RRT(exp) No Molecule RRT(exp)
1 2-chloro-1,1’-biphenyl 0.1544 2 3-chloro-1,1’-biphenyl 0.1937
3 4-chloro-1,1’-biphenyl 0.1975 4 2,6-dichloro-1,1’-biphenyl 0.2243
5 2,2’-dichloro-1,1’-biphenyl 0.2245 6 2,4-dichloro-1,1’-biphenyl 0.2566
7 2,5-dichloro-1,1’-biphenyl 0.257 8 2,3’-dichloro-1,1’-biphenyl 0.2709
9 2,4’-dichloro-1,1’-biphenyl 0.2783 10 2,3-dichloro-1,1’-biphenyl 0.2785
11 3,5-dichloro-1,1’-biphenyl 0.2973 12 2,6,2’-trichloro-1,1’-biphenyl 0.3045
13 2,4,6-trichloro-1,1’-biphenyl 0.3165 14 3,3’-dichloro-1,1’-biphenyl 0.3238
15 3,4-dichloro-1,1’-biphenyl 0.3298 16 3,4’-dichloro-1,1’-biphenyl 0.3315
17 2,5,2’-trichloro-1,1’-biphenyl 0.3378 18 4,4’-dichloro-1,1’-biphenyl 0.3387
19 2,4,2’-trichloro-1,1’-biphenyl 0.3398 20 2,3,6-trichloro-1,1’-biphenyl 0.3508
21 2,6,3’-trichloro-1,1’-biphenyl 0.3521 22 2,3,2’-trichloro-1,1’-biphenyl 0.3625
23 2,6,4’-trichloro-1,1’-biphenyl 0.3636 24 2,3,5-trichloro-1,1’-biphenyl 0.377
25 2,3’,5’-trichloro-1,1’-biphenyl 0.3782 26 2,6,2’,6’-tetrachloro-1,1’-biphenyl 0.38
27 2,4,5-trichloro-1,1’-biphenyl 0.382 28 2,5,3’-trichloro-1,1’-biphenyl 0.3911
29 2,4,3’-trichloro-1,1’-biphenyl 0.3937 30 2,4,6,2’-tetrachloro-1,1’-biphenyl 0.4007
31 2,5,4’-trichloro-1,1’-biphenyl 0.4024 32 2,4,4’-trichloro-1,1’-biphenyl 0.4031
33 2,3,4-trichloro-1,1’-biphenyl 0.4135 34 2,3’,4’-trichloro-1,1’-biphenyl 0.4163
35 2,3,3’-trichloro-1,1’-biphenyl 0.417 36 2,5,2’,6’-tetrachloro-1,1’-biphenyl 0.4187
37 2,4,2’,6’-tetrachloro-1,1’-biphenyl 0.4242 38 2,3,4’-trichloro-1,1’-biphenyl 0.4267
39 2,3,6,2’-tetrachloro-1,1’-biphenyl 0.4334 40 3,5,3’-trichloro-1,1’-biphenyl 0.4375
41 2,3,2’,6’-tetrachloro-1,1’-biphenyl 0.445 42 3,5,4’-trichloro-1,1’-biphenyl 0.4488
43 2,4,6,3’-tetrachloro-1,1’-biphenyl 0.451 44 2,6,3’,5’-tetrachloro-1,1’-biphenyl 0.4554
45 2,5,2’,5’-tetrachloro-1,1’-biphenyl 0.4557 46 2,3,5,2’-tetrachloro-1,1’-biphenyl 0.4587
47 3,4,5-trichloro-1,1’-biphenyl 0.4593 48 2,4,2’,5’-tetrachloro-1,1’-biphenyl 0.461
49 2,4,2’,4’-tetrachloro-1,1’-biphenyl 0.4639 50 2,4,6,4’-tetrachloro-1,1’-biphenyl 0.4643
51 2,4,5,2’-tetrachloro-1,1’-biphenyl 0.4651 52 2,3,5,6-tetrachloro-1,1’-biphenyl 0.4671
53 2,3,4,6-tetrachloro-1,1’-biphenyl 0.4685 54 3,4,3’-trichloro-1,1’-biphenyl 0.4738
55 2,4,6,2’,6’-pentachloro-1,1’-biphenyl 0.4757 56 2,3,2’,5’-tetrachloro-1,1’-biphenyl 0.4832
57 3,4,4’-trichloro-1,1’-biphenyl 0.4858 58 2,3,6,3’-tetrachloro-1,1’-biphenyl 0.486
59 2,3,2’,4’-tetrachloro-1,1’-biphenyl 0.487 60 2,5,3’,5’-tetrachloro-1,1’-biphenyl 0.4984
61 2,6,3’,4’-tetrachloro-1,1’-biphenyl 0.4989 62 2,3,4,2’-tetrachloro-1,1’-biphenyl 0.499
63 2,3,6,4’-tetrachloro-1,1’-biphenyl 0.4999 64 2,4,3’,5’-tetrachloro-1,1’-biphenyl 0.504
65 2,3,6,2’,6’-pentachloro-1,1’-biphenyl 0.5057 66 2,3,2’,3’-tetrachloro-1,1’-biphenyl 0.5102



44 S. Saaidpour

Tab. 2 – continued:

No Molecule RRT(exp) No Molecule RRT(exp)
67 2,4,6,2’,5’-pentachloro-1,1’-biphenyl 0.5142 68 2,3,5,3’-tetrachloro-1,1’-biphenyl 0.5155
69 2,4,6,2’,4’-pentachloro-1,1’-biphenyl 0.5212 70 2,4,5,3’-tetrachloro-1,1’-biphenyl 0.5214
71 2,3,3’,5’-tetrachloro-1,1’-biphenyl 0.5267 72 2,3,5,4’-tetrachloro-1,1’-biphenyl 0.529
73 2,3,4,5-tetrachloro-1,1’-biphenyl 0.5331 74 2,3,5,2’,6’-pentachloro-1,1’-biphenyl 0.5331
75 2,4,5,4’-tetrachloro-1,1’-biphenyl 0.5341 76 2,5,3’,4’-tetrachloro-1,1’-biphenyl 0.5407
77 2,3’,4’,5’-tetrachloro-1,1’-biphenyl 0.5408 78 2,3,2’,4’,6’-pentachloro-1,1’-biphenyl 0.5415
79 2,4,5,2’,6’-pentachloro-1,1’-biphenyl 0.5431 80 2,3,5,6,2’-pentachloro-1,1’-biphenyl 0.5437
81 2,4,3’,4’-tetrachloro-1,1’-biphenyl 0.5447 82 3,5,3’,5’-tetrachloro-1,1’-biphenyl 0.5464
83 2,3,6,2’,5’-pentachloro-1,1’-biphenyl 0.5464 84 2,3,4,6,2’-pentachloro-1,1’-biphenyl 0.5486
85 2,4,6,3’,5’-pentachloro-1,1’-biphenyl 0.5518 86 2,3,6,2’,4’-pentachloro-1,1’-biphenyl 0.5549
87 2,3,4,3’-tetrachloro-1,1’-biphenyl 0.5562 88 2,4,6,2’,4’,6’-hexachloro-1,1’-biphenyl 0.5666
89 2,3,3’,4’-tetrachloro-1,1’-biphenyl 0.5676 90 2,3,4,4’-tetrachloro-1,1’-biphenyl 0.5676
91 2,3,5,2’,5’-pentachloro-1,1’-biphenyl 0.5742 92 2,3,6,2’,3’-pentachloro-1,1’-biphenyl 0.5744
93 2,3,4,2’,6’-pentachloro-1,1’-biphenyl 0.5779 94 2,3,5,2’,4’-pentachloro-1,1’-biphenyl 0.5814
95 2,4,5,2’,5’-pentachloro-1,1’-biphenyl 0.5816 96 2,3,6,3’,5’-pentachloro-1,1’-biphenyl 0.5862
97 2,4,5,2’,4’-pentachloro-1,1’-biphenyl 0.588 98 3,4,3’,5’-tetrachloro-1,1’-biphenyl 0.5894
99 2,4,6,3’,4’-pentachloro-1,1’-biphenyl 0.5968 100 2,3,6,2’,4’,6’-hexachloro-1,1’-biphenyl 0.5969
101 2,3,5,6,3’-pentachloro-1,1’-biphenyl 0.5986 102 2,3,4,6,3’-pentachloro-1,1’-biphenyl 0.6016
103 3,4,5,3’-tetrachloro-1,1’-biphenyl 0.6024 104 2,3,5,2’,3’-pentachloro-1,1’-biphenyl 0.6029
105 2,3,5,6,2’,6’-hexachloro-1,1’-biphenyl 0.6062 106 2,3,2’,4’,5’-pentachloro-1,1’-biphenyl 0.61
107 2,3,4,5,2’-pentachloro-1,1’-biphenyl 0.6105 108 2,3,4,5,6-pentachloro-1,1’-biphenyl 0.6132
109 2,6,3’,4’,5’-pentachloro-1,1’-biphenyl 0.6142 110 3,4,5,4’-tetrachloro-1,1’-biphenyl 0.6149
111 2,3,4,6,2’,6’-hexachloro-1,1’-biphenyl 0.6149 112 2,3,5,6,4’-pentachloro-1,1’-biphenyl 0.615
113 2,3,4,6,4’-pentachloro-1,1’-biphenyl 0.6171 114 2,3,4,2’,5’-pentachloro-1,1’-biphenyl 0.6175
115 2,3,5,3’,5’-pentachloro-1,1’-biphenyl 0.6183 116 2,3,4,2’,4’-pentachloro-1,1’-biphenyl 0.6224
117 2,3,5,2’,4’,6’-hexachloro-1,1’-biphenyl 0.6243 118 2,4,5,3’,5’-pentachloro-1,1’-biphenyl 0.6256
119 2,3,6,2’,3’,6’-hexachloro-1,1’-biphenyl 0.6257 120 3,4,3’,4’-tetrachloro-1,1’-biphenyl 0.6295
121 2,3,6,3’,4’-pentachloro-1,1’-biphenyl 0.6314 122 2,4,5,2’,4’,6’-hexachloro-1,1’-biphenyl 0.6349
123 2,3,4,2’,3’-pentachloro-1,1’-biphenyl 0.6453 124 2,3,5,6,2’,5’-hexachloro-1,1’-biphenyl 0.6499
125 2,3,5,2’,3’,6’-hexachloro-1,1’-biphenyl 0.6563 126 2,3,4,6,2’,5’-hexachloro-1,1’-biphenyl 0.6563
127 2,5,3’,4’,5’-pentachloro-1,1’-biphenyl 0.6584 128 2,3,5,6,2’,4’-hexachloro-1,1’-biphenyl 0.6608
129 2,3,4,3’,5’-pentachloro-1,1’-biphenyl 0.6626 130 2,3,5,3’,4’-pentachloro-1,1’-biphenyl 0.6628
131 2,4,3’,4’,5’-pentachloro-1,1’-biphenyl 0.6658 132 2,3,6,2’,4’,5’-hexachloro-1,1’-biphenyl 0.6672
133 2,3,4,5,3’-pentachloro-1,1’-biphenyl 0.668 134 2,4,5,3’,4’-pentachloro-1,1’-biphenyl 0.6693
135 2,3,4,6,2’,4’-hexachloro-1,1’-biphenyl 0.6707 136 2,3,4,2’,4’,6’-hexachloro-1,1’-biphenyl 0.6707
137 2,3,4,5,2’,6’-hexachloro-1,1’-biphenyl 0.6789 138 2,3,5,6,2’,3’-hexachloro-1,1’-biphenyl 0.6796
139 2,3,4,5,4’-pentachloro-1,1’-biphenyl 0.6828 140 2,3,4,5,6,2’-hexachloro-1,1’-biphenyl 0.6848
141 2,3,4,6,2’,3’-hexachloro-1,1’-biphenyl 0.6853 142 2,3,3’,4’,5’-pentachloro-1,1’-biphenyl 0.6871
143 2,3,5,2’,3’,5’-hexachloro-1,1’-biphenyl 0.6871 144 2,3,5,6,3’,5’-hexachloro-1,1’-biphenyl 0.692

145
2,3,5,6,2’,4’,6’-heptachloro-1,1’-
biphenyl

0.692 146 2,3,5,2’,4’,5’-hexachloro-1,1’-biphenyl 0.6955

147 2,3,4,6,3’,5’-hexachloro-1,1’-biphenyl 0.6968 148
2,3,4,6,2’,4’,6’-heptachloro-1,1’-
biphenyl

0.7016

149 2,3,4,2’,3’,6’-hexachloro-1,1’-biphenyl 0.7035 150 2,4,5,2’,4’,5’-hexachloro-1,1’-biphenyl 0.7036
151 2,3,4,3’,4’-pentachloro-1,1’-biphenyl 0.7049 152 2,4,6,3’,4’,5’-hexachloro-1,1’-biphenyl 0.7068
153 3,4,5,3’,5’-pentachloro-1,1’-biphenyl 0.7078 154 2,3,4,5,2’,5’-hexachloro-1,1’-biphenyl 0.7203

155
2,3,5,6,2’,3’,6’-heptachloro-1,1’-
biphenyl

0.7205 156 2,3,4,2’,3’,5’-hexachloro-1,1’-biphenyl 0.7284

157
2,3,4,6,2’,3’,6’-heptachloro-1,1’-
biphenyl

0.7305 158 2,3,4,5,2’,4’-hexachloro-1,1’-biphenyl 0.7329

159 2,3,4,5,6,3’-hexachloro-1,1’-biphenyl 0.7396 160 2,3,5,6,3’,4’-hexachloro-1,1’-biphenyl 0.7396
161 2,3,6,3’,4’,5’-hexachloro-1,1’-biphenyl 0.7399 162 2,3,4,2’,4’,5’-hexachloro-1,1’-biphenyl 0.7403

163
2,3,4,5,6,2’,6’-heptachloro-1,1’-
biphenyl

0.7416 164 2,3,4,6,3’,4’-hexachloro-1,1’-biphenyl 0.7429
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Tab. 2 – continued:

No Molecule RRT(exp) No Molecule RRT(exp)
165 2,3,4,5,2’,3’-hexachloro-1,1’-biphenyl 0.7501 166 3,4,5,3’,4’-pentachloro-1,1’-biphenyl 0.7512

167
2,3,5,6,2’,3’,5’-heptachloro-1,1’-
biphenyl

0.7537 168 2,3,4,5,6,4’-hexachloro-1,1’-biphenyl 0.7572

169
2,3,4,6,2’,3’,5’-heptachloro-1,1’-
biphenyl

0.7611 170
2,3,4,5,2’,4’,6’-heptachloro-1,1’-
biphenyl

0.7653

171
2,3,5,6,2’,4’,5’-heptachloro-1,1’-
biphenyl

0.7654 172 2,3,4,5,3’,5’-hexachloro-1,1’-biphenyl 0.7655

173
2,3,4,6,2’,4’,5’-heptachloro-1,1’-
biphenyl

0.772 174 2,3,5,3’,4’,5’-hexachloro-1,1’-biphenyl 0.7737

175 2,3,4,2’,3’,4’-hexachloro-1,1’-biphenyl 0.7761 176 2,4,5,3’,4’,5’-hexachloro-1,1’-biphenyl 0.7814

177
2,3,4,5,6,2’,5’-heptachloro-1,1’-
biphenyl

0.7848 178
2,3,4,5,2’,3’,6’-heptachloro-1,1’-
biphenyl

0.7965

179
2,3,4,5,6,2’,4’-heptachloro-1,1’-
biphenyl

0.7968 180
2,3,4,2’,3’,5’,6’-heptachloro-1,1’-
biphenyl

0.8031

181
2,3,4,6,2’,3’,4’-heptachloro-1,1’-
biphenyl

0.8089 182
2,3,5,6,2’,3’,5’,6’-octachloro-1,1’-
biphenyl

0.8089

183 2,3,4,5,3’,4’-hexachloro-1,1’-biphenyl 0.8105 184
2,3,4,5,6,2’,3’-heptachloro-1,1’-
biphenyl

0.8152

185 2,3,4,3’,4’,5’-hexachloro-1,1’-biphenyl 0.8184 186
2,3,4,6,2’,3’,5’,6’-octachloro-1,1’-
biphenyl

0.8197

187
2,3,4,5,6,2’,4’,6’-octachloro-1,1’-
biphenyl

0.8217 188
2,3,4,5,6,3’,5’-heptachloro-1,1’-
biphenyl

0.8269

189
2,3,4,5,2’,3’,5’-heptachloro-1,1’-
biphenyl

0.8278 190
2,3,4,6,2’,3’,4’,6’-octachloro-1,1’-
biphenyl

0.8293

191
2,3,4,5,2’,4’,5’-heptachloro-1,1’-
biphenyl

0.8362 192
2,3,5,6,3’,4’,5’-heptachloro-1,1’-
biphenyl

0.8397

193
2,3,4,6,3’,4’,5’-heptachloro-1,1’-
biphenyl

0.8447 194
2,3,4,5,6,2’,3’,6’-octachloro-1,1’-
biphenyl

0.8494

195 3,4,5,3’,4’,5’-hexachloro-1,1’-biphenyl 0.8625 196
2,3,4,5,2’,3’,4’-heptachloro-1,1’-
biphenyl

0.874

197
2,3,4,5,6,3’,4’-heptachloro-1,1’-
biphenyl

0.874 198
2,3,4,5,6,2’,3’,5’-octachloro-1,1’-
biphenyl

0.8845

199
2,3,4,5,2’,3’,5’,6’-octachloro-1,1’-
biphenyl

0.8875 200
2,3,4,5,2’,3’,4’,6’-octachloro-1,1’-
biphenyl

0.8938

201
2,3,4,5,6,2’,4’,5’-octachloro-1,1’-
biphenyl

0.8938 202
2,3,4,5,3’,4’,5’-heptachloro-1,1’-
biphenyl

0.9142

203
2,3,4,5,6,2’,3’,5’,6’-nonachloro-1,1’-
biphenyl

0.932 204
2,3,4,5,6,2’,3’,4’-octachloro-1,1’-
biphenyl

0.9321

205
2,3,4,5,6,2’,3’,4’,6’-nonachloro-1,1’-
biphenyl

0.9423 206
2,3,4,5,2’,3’,4’,5’-octachloro-1,1’-
biphenyl

0.962

207
2,3,4,5,6,3’,4’,5’-octachloro-1,1’-
biphenyl

0.9678 208
2,3,4,5,6,2’,3’,4’,5’-nonachloro-1,1’-
biphenyl

1.0103

209
2,3,4,5,6,2’,3’,4’,5’,6’-decachloro-1,1’-
biphenyl

1.0496

II. 2. Computer Hardware and Software
All calculations were run on a Dell Inspiron N5010 laptop

computer with Intel R© CoreTM i7 processor with Windows 7
operating system.

II. 3. Computational Procedure
II. 3. 1. Sub-structural Molecular Fragments

The ISIDA/QSPR program realizes the sub-structural
molecular fragments (SMF) method [43-49] which is based

on the splitting of a molecular graph on fragments (sub-
graphs) and on the calculation of their contributions to a given
property Y. Two classes of fragments are used: “sequences”
(I) and “augmented” (II). Three sub-types AB, A and B
are defined for each class. For fragments I, they represent
sequences of atoms and bonds (AB), of atoms only (A),
or of bonds only (B). The shortest or all paths from one
atom to the other are used. For each type of sequences, the
minimal (nmin) and maximal (nmax) number of constituted
atoms must be defined. Thus, for the partitioning I (AB,
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nmin − nmax), I (A, nmin - nmax) and I (B, nmin - nmax),
the program generates “intermediate” sequences involving
n atoms (nmin ≤ n ≤ nmax). In the current version of
ISIDA/QSPR, nmin ≥ 2 and nmax ≤ 15. An “augmented”
represents a selected atom with its environment including
both neighboring atoms and bonds (AB), or atoms only (A,
without taking hybridization of neighbors into account, or Hy,
where hybridization of neighbors is accounted for), or bonds
only (B).

II. 3. 2. Variable Selection Procedures

The generated pool of descriptors is generally much larger
than the number of compounds in the training set; therefore
procedures for selecting variables should be applied to build
statistically significant multi-linear regressions. In ISIDA,
a combination of forward and backward stepwise variable
selection procedures is used.
1). Filtering stage. The program eliminates variables Xi

which have small correlation coefficient with the property,
Ry,i < R0

y,i, and those highly correlated with other variables
XjPi,j > R0

i,j), which were already selected for the model.
In this work, the values R0

y,i = 0.001, . . . and R0
i,j = 0.75,

. . . were used. Fragments always occurring in the same com-
bination in each compound of the training set (concatenated
fragments) are treated as one extended fragment.
2). Forward stepwise pre-selection stage. The suite of for-
ward and backward stepwise algorithms has been used for
variable pre-selection in ISIDA/QSPR studies by the vari-
able selection suite (VSS) program. Three algorithms for
forward stepwise variable selection are based on the calcula-
tions of correlation coefficients and subtractions. This is an
iterative procedure, on each step of which the program selects
one Xi (two Xi and Xj or three variables Xi, Xj and Xk)
maximizing the correlation coefficient Ry,j (Ry,ij or Ry,ijk)
between Xi (Xi and Xj or Xi , Xj and Xk) and dependent
variable Y . At the first step (s = 1), the modeled property
for each compound is taken as its experimental one Ys = Y .
At each next step s, as the property value Ys is used residual
Ys = Ys−1−Ycalc, where Ycalc = ciXi(Ycalc = ciXi+cjXj

or Ycalc = ciXi + cjXj + ckXk). is the calculated property
by the one-variable (two- or three-variables) model with se-
lected variable Xi (variables Xi and Xj or Xi, Xj and Xk).
This loop is repeated until the number of variables k reaches
a user-defined value; in this work, k was analyzed from 0.1n
to 0.9n, where n is the number of the molecules in the training
set.
3). Backward stepwise selection stage. The final selection is
performed using backward stepwise variable selection pro-
cedure based on the t statistic criterion. Here, the program
eliminates the variables with low ti = ci/si values, where si
is standard deviation for the coefficient ci at the i-th variable
in the model. First, the program selects the variable with the
smallest t < t0, then it performs a new fitting excluding that
variable. This procedure is repeated until t ≥ t0 for selected

variables or if the number of variables reaches the user’s
defined value. Here, t0, the tabulated value of the Student’s
criterion is a function of the number of data points, the num-
ber of variables, and the significance level. Default value of
the t0 is 1.96; it can be analyzed from 1.96 to 3.9.

II. 3. 3. Multi-linear Regression Model

The modeled physical or chemical property Y can be quan-
titatively calculated accounting for contributions of fragments
using linear (1) fitting equation.

Y =
∑
i

Ai ×Ni, Additive Model, (1)

where Ai is a fragment a contribution, Ni is the number of
fragments of i type. Contributions of Ai are calculated by
minimizing a functional

U [ai] =

n∑
i=1

wi (Yexp,i − Ycalc,i)2 => min, (2)

where n is the number of compounds in the training set, wi

the weight accounting for the accuracy of the experimen-
tal data, Yexp and Ycalc are, respectively, experimental and
calculated according to property values. The equation (1)
represents calculation of property Y by using additive con-
tributions of fragments. The coefficients of the equation (1)
being optimized at the training stage are then used to esti-
mate Y values of the compounds from the test set or to screen
external databases of real or virtual compounds.

Using the singular value decomposition method (SVD),
ISIDA/QSPR fits the ai terms in equation (2) and calculates
corresponding statistical characteristics (correlation coeffi-
cient (R), standard deviation (s), Fischer’s criterion (F ), cross-
validation correlation coefficient (Q), standard deviation of
predictions (Spress), Kubyni’s criterion (FIT), RH -factor of
Hamilton and matrix of pair correlations (covariation matrix)
for the terms ai) and performs statistical tests to select the
best model. The prediction ability of the model is charac-
terized by leave-one-out correlation coefficient Q2 and by
leave-one-out standard deviation(SDEP), as well as by dis-
persions of predicted values of 〈Ypred〉 averaged over several
models.

II. 3. 4. Validation of QSRR Model

In ISIDA/QSRR calculations, each initial data set was
split into two sub-sets: training (167 compounds) and test
(42 compounds) sets. The QSRR models were built on the
training set followed by “prediction” calculations for the test
set. Before a QSRR model is used to predict the properties for
new compounds, it should be validated both internally and
externally to ensure that the built model is robust, reliable, sta-
ble and predictive. In the current work, several statistic terms
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Tab. 3. Set of fragments, Coefficients (Ai) of the equation, standard deviations for coefficients and their t-Test for RRT =
∑

(Ai ×Ni)

No Variable[i] Contribution (Ai) Standard deviation (∆A) t-Test
1 C-C=C-H 0.0050 0.0005 10.63
2 Cl-C=C-H 0.0587 0.0025 23.58
3 Cl-C-C-H 0.0635 0.0024 26.06
4 Cl-C-C=C-C-H 0.0133 0.0012 11.37
5 Cl-C-C=C-H 0.0171 0.0013 13.03
6 Cl-C-C-Cl 0.1380 0.0044 31.57
7 Cl-C-C-C=C-H 0.0184 0.0030 6.06
8 Cl-C=C-Cl 0.1274 0.0044 29.07

such as squared correlation coefficient R2 for the training
set fitness and Q2

ex for the external predictive ability, leave-
one-out (LOO) cross-validated Q2

LOO and root mean square
error (RMSE) were used to assess the internal and external
predictive ability of the proposed model. The corresponding
statistical parameters were defined as:

R2 = 1−
∑n

i (yip−yie)
2∑n

i (yie−y
training
mean )

2 (3)

Q2
LOO = 1−

∑n
i (yip − yicv)

2∑n
i (yie − y

training
mean )

2 (4) (4)

Q2
ext = 1−

∑n
i (yip − yie)

2∑n
i (yie − ytestmean)

2 (5)

RMSE =

√∑n
i (yip−yie)

2

n
, (6)

where i represents ith molecule, yie is the desired output (ex-
perimental property), yip the actual output, yicv is the output
of leave-one-out cross-validation, ymean

training and ymean
test are the

mean values of yip for the training and test sets, respectively.
N is the number of compounds in the training or test set. In
addition, the built model was also validated externally using
the test set compounds due to the fact that the best way to
evaluate the predictive ability of a QSRR model is its valida-
tion using compounds not included in the training set with
known properties.

III. RESULTS AND DISCUSSION

The ISIDA program has been developed to establish
structure-retention relationship based on the SMF partitioning.
The program inputs data in the SDF format [50] containing
structural and properties information. The graphical interface
of ISIDA allows to attribute data to the learning or validation
sets, and to set up the parameters of calculations (type of
fragments, minimal and maximal number of atoms/bonds in
the sequences, type of equation). A QSRR is a mathemat-
ical relationship between a property of a chemical, in this

Fig. 2. Plot of predicted RRT and residuals versus experimental RRT of training set
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Fig. 3. Plot of predicted RRT and residuals versus experimental RRT of test set

case relative retention times, and molecular fragments of the
chemical. The fragments are obtained from the structure of
the chemical. First, a training set of 167 compounds is used
to statistically establish the relationship between RRT and
the molecular fragments. The QSRR can then be used to
predict the retention times of test set (42 compounds) for
which the fragments are known. Thus the fragments selected
to describe this process in a QSRR should be able to describe
the relative affinities of chemicals for the stationary phase.
To establish relationships between the structure of PCBs and
their retention times, we used the recently developed sub-
structural molecular fragments (SMF) method which is based
on the representation of the molecular graph by fragments
and on the calculation of their contributions to a given prop-
erty. The sequences fragments represent sequences of atoms
and bonds (AB), of atoms only (A), or of bonds only (B).
The length of sequences varies from 2 to 15 atoms. For any
sequence containing from nmin to nmax atoms, all fragments
of nmax, nmax−1, nmax−2, . . ., nmin length are considered.
In this work, the I (AB, 4-6) decomposition scheme corre-
sponds to eight sequences containing 4, 5 and 6 atoms and
linking bonds are selected. To select the most relevant frag-
ments to the RRTs, 15 groups of fragments calculated by
ISIDA for each compound were used as the inputs for step-
wise regression. The optimum subset size was reached when

adding another fragment did not significantly improve perfor-
mance of the model. Through this procedure, the 8-parameter
model was selected as the best model. It can be described in
Tab. 2. The quality of a QSRR model is generally expressed
by its fitting ability and prediction ability, and the latter one
is more important. Statistical parameters for the test set were
Q2

ext of 0.9913 and the standard deviation error of prediction
(SDEP) of 0.0139. When a compound is split into constitu-
tive fragments, the fragments contributions to the RRT or to
any other physical or chemical property are calculated using
linear fitting equation:

RRT =
∑

(Ai ×Ni). (7)

Here, Ai is contribution of fragment, and Ni is the number
of fragments of i type. The fragments contributions as fitted
coefficients in the equation (9) at the learning stage are used
to predict RRT for the compounds from the validation set.
The set of fragments, coefficients of the equation, standard
deviations for coefficients and their t-test for equation (9) are
shown in Tab. 3.

The experimental, predicted and residuals data for the
training set (167 compounds) and the test set (42 compounds)
are shown in Tab. 4 and 5. The plot of predicted RRT and
residuals versus experimental RRT of the training set and the
test set are showed in Fig. 2 and 3.

Tab. 4. Data of experimental, predicted and residual for training set (167) of PCB compounds

No RRT(exp) RRT(pred) Residual NO RRT(exp) RRT(pred) Residual
2 0.1937 0.1906 0.0031 3 0.1975 0.1944 0.0031

4 0.2245 0.2282 −0.0037 5 0.2785 0.2856 −0.0071

7 0.2566 0.2612 −0.0046 8 0.2783 0.2783 0.

9 0.257 0.265 −0.008 10 0.2243 0.2295 −0.0052

12 0.3298 0.3349 −0.0051 13 0.3315 0.3249 0.0066
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Tab. 4 – continued:

No RRT(exp) RRT(pred) Residual NO RRT(exp) RRT(pred) Residual
14 0.2973 0.3212 −0.0239 15 0.3387 0.3287 0.01

17 0.3398 0.3454 −0.0056 18 0.3378 0.3491 −0.0113

19 0.3045 0.3136 −0.0091 20 0.417 0.4199 −0.0029

22 0.4267 0.4199 0.0068 23 0.377 0.3894 −0.0124

24 0.3508 0.3444 0.0064 25 0.3937 0.3955 −0.0018

27 0.3521 0.3638 −0.0117 28 0.4031 0.3955 0.0076

29 0.382 0.3932 −0.0112 30 0.3165 0.3295 −0.013

32 0.3636 0.3638 −0.0002 33 0.4163 0.4188 −0.0025

34 0.3782 0.3917 −0.0135 35 0.4738 0.4692 0.0046

37 0.4858 0.4692 0.0166 38 0.4593 0.4765 −0.0172

39 0.4488 0.4554 −0.0066 40 0.5102 0.514 −0.0038

42 0.487 0.4869 0.0001 43 0.4587 0.4736 −0.0149

44 0.4832 0.4736 0.0096 45 0.4334 0.4285 0.0049

47 0.4639 0.4625 0.0014 48 0.4651 0.4773 −0.0122

49 0.461 0.4492 0.0118 50 0.4007 0.4137 −0.013

52 0.4557 0.453 0.0027 53 0.4187 0.4026 0.0161

54 0.38 0.3487 0.0313 55 0.5562 0.5471 0.0091

57 0.5155 0.5237 −0.0082 58 0.5267 0.5333 −0.0066

59 0.486 0.4786 0.0074 60 0.5676 0.5471 0.0205

62 0.4685 0.4544 0.0141 63 0.529 0.5237 0.0053

64 0.4999 0.4786 0.0213 65 0.4671 0.4582 0.0089

67 0.5214 0.5275 −0.0061 68 0.504 0.5089 −0.0049

69 0.451 0.4638 −0.0128 70 0.5407 0.5446 −0.0039

72 0.4984 0.5127 −0.0143 73 0.4554 0.4772 −0.0218

74 0.5341 0.5275 0.0066 75 0.4643 0.4638 0.0005

77 0.6295 0.6145 0.015 78 0.6024 0.6108 −0.0084

79 0.5894 0.5826 0.0068 80 0.5464 0.5688 −0.0224

82 0.6453 0.6412 0.0041 83 0.6029 0.6179 −0.015

84 0.5744 0.5728 0.0016 85 0.6224 0.6141 0.0083

87 0.6175 0.6007 0.0168 88 0.5486 0.5385 0.0101

89 0.5779 0.5504 0.0275 90 0.5814 0.5907 −0.0093

92 0.5742 0.5774 −0.0032 93 0.5437 0.5423 0.0014

94 0.5331 0.527 0.0061 95 0.5464 0.5323 0.0141

97 0.61 0.6007 0.0093 98 0.5415 0.5233 0.0182

99 0.588 0.5945 −0.0065 100 0.5212 0.5308 −0.0096

102 0.5431 0.5308 0.0123 103 0.5142 0.5175 −0.0033

104 0.4757 0.4487 0.027 105 0.7049 0.6924 0.0125

107 0.6628 0.6691 −0.0063 108 0.6626 0.6605 0.0021

109 0.6016 0.5887 0.0129 110 0.6314 0.624 0.0074

112 0.5986 0.5925 0.0061 113 0.5862 0.592 −0.0058

114 0.6828 0.6619 0.0209 115 0.6171 0.5887 0.0284

117 0.615 0.5925 0.0225 118 0.6693 0.6728 −0.0035

119 0.5968 0.6091 −0.0123 120 0.6256 0.6409 −0.0153

122 0.6871 0.6886 −0.0015 123 0.6658 0.6962 −0.0304

124 0.6584 0.668 −0.0096 125 0.6142 0.6325 −0.0183

127 0.7078 0.7242 −0.0164 128 0.7761 0.7694 0.0067

129 0.7501 0.7561 −0.006 130 0.7284 0.7279 0.0005

132 0.7035 0.6947 0.0088 133 0.6871 0.7046 −0.0175

134 0.6796 0.6866 −0.007 135 0.6563 0.6713 −0.015

137 0.7329 0.729 0.0039 138 0.7403 0.7279 0.0124

139 0.6707 0.6557 0.015 140 0.6707 0.6504 0.0203

142 0.6848 0.6634 0.0214 143 0.6789 0.6653 0.0136

144 0.6563 0.6424 0.0139 145 0.6149 0.5736 0.0413

147 0.6608 0.6595 0.0013 148 0.6243 0.6271 −0.0028
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Tab. 4 – continued:

No RRT(exp) RRT(pred) Residual NO RRT(exp) RRT(pred) Residual
149 0.6672 0.6595 0.0077 150 0.5969 0.5636 0.0333

152 0.6062 0.5774 0.0288 153 0.7036 0.7083 −0.0047

154 0.6349 0.6309 0.004 155 0.5666 0.5488 0.0178

157 0.8184 0.8158 0.0026 158 0.7429 0.734 0.0089

159 0.7655 0.7754 −0.0099 160 0.7396 0.7136 0.026

162 0.7737 0.7925 −0.0188 163 0.7396 0.7378 0.0018

164 0.7399 0.7474 −0.0075 165 0.692 0.7059 −0.0139

167 0.7814 0.7962 −0.0148 168 0.7068 0.7325 −0.0257

169 0.8625 0.8795 −0.017 170 0.874 0.8843 −0.0103

172 0.8278 0.8428 −0.015 173 0.8152 0.8077 0.0075

174 0.7965 0.8095 −0.013 175 0.7611 0.7695 −0.0084

177 0.8031 0.7924 0.0107 178 0.7537 0.7733 −0.0196

179 0.7205 0.7217 −0.0012 180 0.8362 0.8428 −0.0066

182 0.7653 0.7653 0. 183 0.772 0.7695 0.0025

184 0.7016 0.6737 0.0279 185 0.7848 0.7672 0.0176

187 0.7654 0.7733 −0.0079 188 0.692 0.6774 0.0146

189 0.9142 0.9307 −0.0165 190 0.874 0.8589 0.0151

192 0.8269 0.827 −0.0001 193 0.8397 0.8612 −0.0215

194 0.962 0.981 −0.019 195 0.9321 0.9359 −0.0038

197 0.8293 0.829 0.0003 198 0.8845 0.8944 −0.0099

199 0.8494 0.8428 0.0066 200 0.8197 0.8157 0.004

The statistical results of training and external validation
of the model are shown in Tab. 6.

Before we begin to investigate stationary phase types
and their interaction with analyte molecules, it is essential
to understand the concept of molecular polarity and dipole

interactions. These interactions form the basis of fundamental
adsorption mechanisms that cause analyte retention in gas
chromatography (GC). We also classify GC stationary phase
types according to their polarity (non-polarity) and so a good
understanding is very important.

Tab. 5. Predicted and residual relative retention time for test set (42) of PCB compounds

No RRT(exp) RRT(pred) Residual NO RRT(exp) RRT(pred) Residual
1 0.1544 0.1441 0.0103 106 0.668 0.6619 0.0061

6 0.2709 0.2783 −0.0074 111 0.6183 0.6371 −0.0188

11 0.3238 0.3249 −0.0011 116 0.6132 0.5793 0.0339

16 0.3625 0.3697 −0.0072 121 0.5518 0.5772 −0.0254

21 0.4135 0.4128 0.0007 126 0.7512 0.7561 −0.0049

26 0.3911 0.3993 −0.0082 131 0.6853 0.6828 0.0025

31 0.4024 0.3993 0.0031 136 0.6257 0.6078 0.0179

36 0.4375 0.4554 −0.0179 141 0.7203 0.7156 0.0047

41 0.499 0.4969 0.0021 146 0.6955 0.7046 −0.0091

46 0.445 0.4232 0.0218 151 0.6499 0.6461 0.0038

51 0.4242 0.3988 0.0254 156 0.8105 0.8073 0.0032

56 0.5676 0.5652 0.0024 161 0.6968 0.7021 −0.0053

61 0.5331 0.5277 0.0054 166 0.7572 0.7136 0.0436

66 0.5447 0.5408 0.0039 171 0.8089 0.811 −0.0021

71 0.4989 0.5091 −0.0102 176 0.7305 0.7179 0.0126

76 0.5408 0.5471 −0.0063 181 0.7968 0.7806 0.0162

81 0.6149 0.6108 0.0041 186 0.7416 0.6985 0.0431

86 0.6105 0.6118 −0.0013 191 0.8447 0.8574 −0.0127

91 0.5549 0.5457 0.0092 196 0.8938 0.9207 −0.0269

96 0.5057 0.4636 0.0421 201 0.8875 0.9073 −0.0198

101 0.5816 0.5812 0.0004 206 1.0103 1.0326 −0.0223
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Polysiloxanes are the most common stationary phases. They
are available in the greatest variety and are the most stable,
robust and versatile. Standard Polysiloxanes are character-
ized by the repeating siloxane backbone. Each silicon atom
contains two functional groups. The type and number of
the groups distinguish each stationary phase and its proper-
ties. The most basic polysiloxane is 100% methyl substituted.
When other groups are present, the number is indicated as
the percentage of the total number of groups. For example,
SE-54 contains 5% phenyl groups and 95% methyl groups.

In GC, retention of solute molecules occurs due to
stronger interaction with the stationary phase than the mobile
phase. In GC, the situation is unique in that the chemical
interaction with the mobile phase is very small indeed, there-
fore the interactions between the analyte molecules and the
stationary phase are of great importance. In GC, the interac-
tion between the analyte and stationary phase can be divided
into three broad categories: dispersive interactions, dipole
interactions, and hydrogen bonding.

Dispersive interactions are most difficult to describe and
visualize, as they are caused by charge fluctuations that oc-
cur throughout a molecule that arise from electron/nuclei
vibrations. The fluctuations are random in nature and are
basically a statistical effect. Every molecule has a number
of arrangements of nuclei and electrons having dipole mo-
ments that fluctuate, resulting in an overall molecular charge
of zero. However, at any instant in time the dipoles are capa-
ble of interacting with other instantaneous dipoles of other
molecules. Dispersive forces are ubiquitous and must arise
in all molecular interactions. They can themselves occur in
isolation, but are always present even when other types of
interaction dominate.

Tab. 6. Statistical parameters of QSRR-MLR model

Training set 167

Test set 42
Multiple correlation coeffi-
cient (train set) R = 0.9972, R2 = 0.9945

Fischer’s criterion (train set) F = 4024.77

Standard deviation (train set) SD = 0.0137

Root mean-squared error
(train set) RMSE = 0.0134

Mean absolute error (train
set) MAE = 0.0108

Squared correlation coeffi-
cient of leave-one-out cross-
validation

Q2
LOO = 0.9938

Standard deviation error of
prediction (test set) SDEP = 0.0139

Squared correlation coeffi-
cient (test set) Q2

Ext = 0.9913

Root mean-squared error
(test set) RMSE = 0.0169

Standard deviation (test set) SD = 0.0173

There are two distinctive classes of dipole-dipole in-
teraction, those between two species containing a perma-
nent dipole (dipole- dipole interactions) and those between
a molecule possessing a permanent dipole and polarizable
molecule (dipole-induced dipole interactions). Dipole-dipole
interactions can be very strong and occur between molecules
with permanent dipole. However, the strength of the dipole-
dipole interaction will far exceed any dispersive interactions
that occur.

Dipole-induced dipole interactions occur when
a molecule containing a permanent dipole approaches
a molecule that is polarizable; most commonly these
molecules would contain π-electron systems. The strength
of this interaction lies between dispersive and dipole-dipole
interactions.

This study shows that polar molecules (more Cl atoms)
seem to be better retained onto the stationary phase than non-
polar molecules (less Cl atoms). Retention onto the stationary
phase mainly dependent to Van der Waals forces (dispersive
interactions) and dipole-induced dipole interactions (molecu-
lar structure- stationary phase of SE-54). Thus in the QSRR
here, one sees a general increase in retention times as molec-
ular size and molecular polarity increase, reflected in frag-
ments. Thus in a homologous series such as the PCBs, RRT
increases with increasing of Cl atoms and molecular size.

IV. CONCLUSION

In this work, the MLR modeling method was used to study
the quantitative structure-retention relationship of RRT on
SE-54 stationary phase for a PCBs data set. We can conclude
that: firstly, the prediction results indicate that the multi-linear
regression modeling method can improve the prediction accu-
racy significantly for this large data set; secondly, the models
developed in this work provide an accurate model that can
be used to predict the RRT from the molecular structure only.
Physical adsorption onto the stationary phase mainly involves
Van der Waals forces and polarity interactions. In this paper,
a new QSRR model has been developed for predicting the
RRT of PCBs congener from the molecular structure alone.
The obtained results show that the MLR method could model
the relationship between RRT and their sub-structural frag-
mental. By performing model validation, it can be concluded
that the presented model is a valid model and can be effec-
tively used to predict the RRT of PCBs with an accuracy
approximating the accuracy of experimental RRT determina-
tion. It can be reasonably concluded that the proposed model
would be expected to predict RRT for the test set for which
experimental values are unknown. The main advantages of
fragment descriptors lie in the simplicity of their computation,
easiness of their interpretation as well as efficiency of their
applications in similarity searches and SAR/QSAR/QSPR
modeling.
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[17] L. Jantschi, S. Bolboacă, Molecular Descriptors Family on
Structure Activity Relationships 6. Octanol-Water Partition
Coefficient of Polychlorinated Biphenyls, Leonardo El. J.
Pract. Technol. 8, 71-86 (2006).

[18] S. Puri, J. S. Chickos and W.J. Welsh, Three-dimensional
quantitative structure – Property relationship (3D-QSPR)
models for prediction of thermodynamic properties of poly-
chlorinated biphenyls (PCBs): Enthalpy of vaporization, J.
Chem. Inf. Comp. Sci. 42(2), 299-304 (2002).

[19] J. Padmanabhan, R. Parthasarathi, V. Subramanian, et al.,
Using QSPR models to predict the enthalpy of vaporization
of 209 polychlorinated biphenyl congeners, QSAR Comb.
Sci. 26(2), 227-237 (2007).

[20] S. Puri, J.S. Chickos and W.J. Welsh, Three-dimensional
quantitative structure – Property relationship (3D-QSPR)
models for prediction of thermodynamic properties of poly-
chlorinated biphenyls (PCBs): Enthalpy of sublimation, J.
Chem. Inf. Comp. Sci. 42(1), 109-116 (2002).

[21] J. Devillers and Z. Fresenius, A simple method for the predic-
tion of the GLC retention times of all the 209 PCB congeners.
Anal. Chem. 332 (1), 61-62 (1988).

[22] M.N. Hasan and P.C. Jurs, Computer-assisted prediction
of gas chromatographic retention times of polychlorinated
biphenyls, Anal. Chem., 60(10), 978-982 (1988).

[23] S. Liu, Y. Liu, D. Yin, et al., Prediction of chromatographic
relative retention time of polychlorinated biphenyls from the
molecular electronegativity distance vector, J. Sep. Sci. 29(2),
296-301(2006).

[24] Y. Ren, H. Liu, X. Yao, et al., An accurate QSRR model for
the prediction of the GC×GCTOFMS retention time of poly-
chlorinated biphenyl (PCB) congeners, Anal. Bioanal. Chem.
388 (1), 165-172 (2007).

[25] S. Bowadt, H. Skejoandresen, L. Montanarella, et al., Hrgc
separations of 160 chlorobiphenyls in technical mixtures on
4 polar narrow-bore columns, Int. J. Environ. Anal. Chem.
56(2), 87-107(1994).

[26] V. Gajduskova and R. Uldrich, Analysis of specific poly-
chlorinated biphenyl congeners for the examination of raw-
materials and foodstuffs of animal origin, Vet. Med. 37, 471-
478 (1992).

[27] M. Bolgar, J. Cunningham, R. Cooper, et al.„ Physical, spec-
tral and chromatographic properties of all 209 individual
PCB congeners, Chemosphere 31, 2687-2705 (1995).

[28] G. Castello and G. Testini, Determination of retention in-
dices of polychlorobiphenyls by using other compounds de-
tectable by electron-capture detection or selected polychloro-
biphenyls as the reference series, J. Chromatogr. A 741, 241-
249 (1996).

[29] M. D. Mullin, C.M. Pochini, S. McCrindle, et al., High-
resolution PCB analysis: synthesis and chromatographic
properties of all 209 PCB congeners, Environ. Sci. Tech-
nol., 18,468-476 (1994).

[30] A. Robbat Jr., G. Xyrafas and D. Marshall,Prediction of gas
chromatographic retention characteristic of polychlorinated
biphenyls, Anal. Chem. 60, 982-985 (1988).

[31] H. A. J. Govers and P. de Voogt, Gas chromatographic deriva-
tion of the solubility parameters of polychbrinated biphenyls
with the inclusion of cis-trans and optical isomerism and
orientational disorder, SAR QSAR Environ. Res. 3, 315-324
(1995).



Computational Model For CRRT of PCBs Using SMFs 53

[32] J. Ghasemi and S. Saaidpour, QSPR prediction of aqueous
solubility of drug-like organic compounds, Chem. Pharm.
Bull. 55, 669-674 (2007).

[33] J. Ghasemi, S. Saaidpour and S.D. Brown, QSPR study for
estimation of acidity constants of some aromatic acids deriva-
tives using multiple linear regression (MLR) analysis, J. Mol.
Struct. (Theochem.) 805, 27-32 (2007).

[34] J. Ghasemi and S. Saaidpour, Quantitative structure-property
relationship study of n-octanol- water partition coefficients
of some of diverse drugs using multiple linear regression,
Anal. Chim. Acta 604, 99-106 (2007).

[35] J. Ghasemi and S. Saaidpour, QSRR prediction of the chro-
matographic retention behavior of painkiller drugs, J. Chro-
matogr. Sci. 47, 156-163 (2009).

[36] J. Ghasemi and S. Saaidpour, Artificial neural network-based
quantitative structural property relationship for predicting
boiling points of refrigerants, QSAR Comb. Sci., 28, 1245-
1254 (2009).

[37] S. Saaidpour, Prediction of drug lipophilicity using back prop-
agation artificial neural network modeling, Orient. J. Chem.
30(2), 793-802(2014).

[38] S. Saaidpour, A. Bahmani and A. Rostami, Prediction the
normal boiling points of primary, secondary and tertiary liq-
uid amines from their molecular structure descriptors, CMST
21(4) 201-210 (2015).

[39] S. Khaledian and S. Saaidpour, Quantitative structure-
property relationship modelling of distribution coefficients
(logd7.4) of diverse drug by sub-structural molecular frag-
ments method, Orient. J. Chem. 31(4), 1969-1976(2015).

[40] S. Saaidpour, Quantitative modeling for prediction of criti-
cal temperature of refrigerant compounds, Phys. Chem. Res.
4(1), 61-71(2016).

[41] S. Saaidpour, S. A. Zarei and F. Nasri, QSPR study of molar
diamagnetic susceptibility of diverse organic compounds us-
ing multiple linear regression analysis, Pak. J. Chem. 2(1),1-
12(2012).

[42] P. Gramatica, N. Navas and R. Todeschini, 3D-Modelling and
Prediction by WHIM Descriptors. Part 9. Chromatographic
Relative Retention Time and Physico-Chemical Properties
of Polychlorinated Biphenyls (PCBs), Chemom. Intell. Lab.
Syst. 40, 53-63(1998).

[43] V. P. Solovev, A.Varnek and G. Wipff, Modeling of Ion Com-
plexation and Extraction Using Substructural Molecular
Fragments, J. Chem. Inf. Comput. Sci. 40, 847-858 (2000).

[44] A. Varnek, G. Wipff and V.P. Solovev, Towards an Informa-
tion System on Solvent Extraction, Solvent Extr. Ion Exc.
19,791-837 (2001).

[45] A. Varnek, G. Wipff, V. P. Solovev, et al., Assessment of the
macrocyclic effect for the complexation of crown-ethers with
alkali cations using the substructural molecular fragments
method, J. Chem. Inf. Comput. Sci. 42(4), 812-829 (2002).

[46] V. P. Solovev and A. Varnek, Anti-HIV activity of hept, tibo
and cyclic urea derivatives: structure-property studies, fo-
cused combinatorial library generation and hits selection
using substructural molecular fragments method, J. Chem.
Inf. Comp. Sci. 43(5), 1703-1719(2003).

[47] V. P. Solovev and A. Varnek, Structure-property modeling of
metal binders using molecular fragments, Russ. Chem. Bull.
53,1434-1445(2004).

[48] A. Varnek and V. P. Solovev, “In Silico” design of potential
anti-hiv actives using fragment descriptors, Comb. Chem.
High T. Scr. 8(5), 403-416 (2005).

[49] A.Varnek, D. Fourches, F. Hoonakker, et al., Substructural
fragments: an universal language to encode reactions, molec-
ular and supramolecular structures, J. Comput. Aided Mol.
Des. 19, 693-703 (2005).

[50] A. Dalby, J. G. Nourse, W. D. Hounshell, et al., Description
of several chemical structure file formats used by computer
programs developed at molecular design limited, J. Chem.
Inf. Comput. Sci. 32, 244-255 (1992).

Saadi Saaidpour is an Assistant Professor at the Department of Chemistry, IAU Sanandaj branch, Sanandaj,
Iran. In 2004, he received his MSc degree in Analytical Chemistry and in 2008 he received his PhD degree in
Analytical Chemistry and Chemometric at Razi University, Kermanshah, Iran. His research interests concern
chemometrics methods, computational chemistry and QSAR & QSPR studies.

CMST 22(1) 41-53 (2016) DOI:10.12921/cmst.2016.22.01.004


