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Abstract: A problem of reflection at a free surface of micropolar orthotropic piezothermoelastic medium is discussed in
the present paper. It is found that there exist five type plane waves in micropolar orthotropic piezothermoelastic medium,
namely quasi longitudinal displacement wave (quasi LD wave), quasi thermal wave (quasi T wave), quasi CD-I, quasi CD-II
wave and electric potential wave (PE wave). The amplitude ratios corresponding to reflected waves are obtained numerically.
The effect of angle of incidence and thermopiezoelectric interactions on the reflected waves are studied for a specific model.
Some particular cases of interest are also discussed.
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I. INTRODUCTION

The micropolar elasticity theory which takes into consid-
eration the granular character of the medium, describes defor-
mation by a microrotation and a microdisplacement. Eringen
first showed that the classical elasticity theory [1] and the
coupled stress theory [2] are two special cases of micropolar
elasticity. The linear theory of micropolar thermoelasticity
was developed by extending the theory of micropolar continua
to include thermal effects by Nowacki [3] and Eringen [4]. A
comprehensive review on the micropolar theromoelasticity is
given by Eringen [5].

In most of the engineering problems, including the re-
sponse of soils, geological materials and composites, some
significant features of the continuum response may not be
taken into account by the assumptions of isotropic behavior.
The formulation and solution of anisotropic problems is far
more difficult and cumbersome than their isotropic counter-
parts. The number of researchers have paid attention to the
elastodynamic response of an anisotropic continuum over

the last few years. In particular, transversely isotropic and
orthotropic materials, which may not be distinguished from
each other in plane strain and plane stress cases, have been
more regularly studied.

The static problems of plane micropolar strain of a ho-
mogeneous and orthotropic elastic solid, torsion problems of
homogeneous and orthotropic cylinders in the linear theory
of micropolar elasticity and bending of orthotropic micropo-
lar elastic beams by terminals couple were studied by Iesan
[6,7,8]. The finite element method for orthotropic micropo-
lar elasticity was developed by Nakamura et al. [9]. Kumar
& Choudhary [10–14] have studied various problems in or-
thotropic micropolar continua.

Piezoelectric ceramics and composites find applications
in many engineering applications e.g. sensors, actuators, intel-
ligent structures, rocket propelled grenades, ultrasonic imag-
ing, when thermal effects are not considered. Piezoelectric
ceramics and piezoelectric polymers are pyroelectric media,
which are used in small structures and intelligent systems.
The thermo-piezoelectric material response entails an interac-
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tion of three major fields, namely, mechanical, thermal and
electric in the macro-physical world.

The thermopiezoelectric material has one important ap-
plication to detect the responses of a structure by measure-
ment of the electric charge, sensing, or to reduce excessive
responses by applying additional electric forces or thermal
forces, actuating. An intelligent structure can be designed by
integrating sensing and actuating. The thermopiezoelectric
materials are also often used as resonators whose frequencies
need to be precisely controlled. It is important to quantify
the effect of heat dissipation on the propagation of wave at
low and high frequencies, due to the coupling between the
thermoelastic and pyroelectric effects.

The theory of thermo-piezoelectricity was first devel-
oped by Mindlin [15]. The physical laws for the thermo-
piezoelectric materials have been explored by Nowacki [16–
18]. Chandrasekharaiah [19–20] has generalized Mindlin’s
theory of thermo-piezoelectricity to account for the finite
speed of propagation of thermal disturbances. Chen [21] de-
rived the general solution for transversely isotropic piezother-
moelastic media. Hou et al. [22] constructed Green’s function
for a point heat source on the surface of a semi-infinite trans-
versely isotropic pyroelectric media.

Abd-Alla et al. [23–24] investigated reflection and refrac-
tion of plane quasi longitudinal waves at an interface of two
piezoelectric media under initial stresses. Pang et al. [25]
discussed the reflection and refraction of plane waves at the
interface between two transversely isotropic piezoelectric and
piezomagnetic media. The problems of reflection in piezo-
electric media has been studied by such notable researchers
as Sharma et al. [26], Kuang and Yuan [27], Abdalla et al.
[28], Alshaikh [29–30].

Meerschaert and McGough[31] studied attenuated frac-
tional wave equations with anisotropy. Sur and Kanoria [32]
investigated fractional heat conduction with finite wave speed
in a thermoviscoelastic spherical shell. Abo-Dahab [33] anal-
ysed the magnetic effect on three plane waves propagation at
an interface between solid-liquid media placed under initial
stress in the context of the GL model. Abd-Alla and Abo-
Dahab [34] studied the effect of initial stress, rotation and
gravity on propagation of surface waves in fibre-reinforced
anisotropic solid elastic media.

Vashishth and Sukhija [35] studied reflection and trans-
mission of plane waves from a fluid-piezothermoelastic solid
interface. Kumar and Kumar [36] studied the elastodynamic
response of thermal laser pulse in a micropolar thermoelastic
diffusion medium. Mahmoud [37] presented an analytical
solution for the effect of initial stress, rotation, magnetic
field and periodic loading in a thermoviscoelastic medium
with a spherical cavity. Ezzat, EI-Karamany and EI-Bary
[38] discussed a problem of generalized thermoelasticity with
memory dependent derivatives involving two temperatures

In the present paper, the reflection of plane waves at a free
surface of orthotropic micropolar piezothermoelastic medium

is studied. A plane quasi wave is incident at a free surface and
the amplitude ratios of various reflected waves are depicted.
Their variations are shown with angle of incidence.

II. BASIC EQUATIONS

Fig. 1. Geometry of the problem

The basic equations of homogeneous orthotropic microp-
olar piezothermoelastic solid in the absence of body forces,
body couples, electric charge density and heat sources are
given by
(a) Constitutive relations

tkl = Cijklεkl +Aijklwkl − gijkEk − βijT, (1)

mji = Dijklwkl +Aijklεkl − eijkEk, (2)

Di = εijEj + gijkεjk − βijT, (3)

qi = −T0bi
.

T +kijej , (4)

The deformation and wryness tensor are defined as following:

εij = ui,j + εijkwk, wij = wi,j , (5)

(b) Balance laws

tkl,k = ρ
..
ul, (6)

mkl,k + εlmntmn = ρJ
..
wl, (7)

Di,i = 0, (8)

qi,i = −T0
.

S, (9)

where tkl, mkl are the stress tensor, couple stress tensor; Di

is the electric displacement vector, Ei is the electric field
vector, qi is the heat flux vector; S is the entropy;T is the
thermodynamic temperature; T0 is the absolute temperature;
c∗ is the specific heat at constant strain; ρ is the bulk mass
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density; J is the microinertia; ul and wk are the components
of displacement vector and microrotation vector, respectively;
εij are the components of micro-strain tensor, εijk is the
permutation tensor,βkl is the thermal elastic coupling ten-
sor; Cijkl, Gijkl, Dijkl are the characteristic constants of
material; gijk is the electro-elastic coupling moduli where
Cijkl, Dijkl, gijk satisfies the symmetric relations

Cijkl = Cklij , Dijkl = Dklij , gijk = gkij . (10)

In a centrosymmetric bodies, all components of Aijkl vanish.

III. FORMULATION OF THE PROBLEM

By using the transformations, following Slaughter [39]
on the set of equations (1) to (9), the equations for micropolar
orthotropic piezothermoelastic medium are derived.

We consider a homogeneous centrosymmetric, or-
thotropic micropolar piezothermoelastic medium initially in
an undeformed state and at uniform temperature T0, namely
medium M1. The origin of the coordinate system is taken on
the plane interface and x3− axis pointing vertically into the
medium M1 is taken which is designated as x3 ≥ 0. Plane
waves are considered such that all the particles on a line par-
allel to x2− axis are equally displaced, so that all the partial
derivatives with respect to the variable x2 are zero.

Let ~u = (u1, 0, u3), ~w = (0, w2, 0), ~E = (E1, 0, E3),
Ei = − ∂φ

∂xi
, φ is the electric potential and ∂

∂x2
= 0, so that

the field equations and constitutive relations reduce to the
following:

C11
∂2u1
∂x21

+ C73
∂2u1
∂x23

+ (C19 + C77)
∂2u3
∂x1∂x3

+(C77 − C73)
∂w2

∂x3
+ g13

∂2φ

∂x1∂x3

+g71
∂2φ

∂x1∂x3
− β1

∂

∂x1
T = ρ

∂2u1
∂t2

,

(11)

C37
∂2u3
∂x21

+ C99
∂2u3
∂x23

+ (C33 + C91)
∂2u1
∂x1∂x3

+(C37 − C33)
∂w2

∂x1
+ g31

∂2φ

∂x21

+g93
∂2φ

∂x23
− β3

∂

∂x3
T = ρ

∂2u3
∂t2

,

(12)

D24
∂2w2

∂x21
+D86

∂2w2

∂x23
+ (C73 − C33)

∂u1
∂x1

+(C77 − C37)
∂u3
∂x1

+ (C73 − C33 − 2C37)w2

+(g31 − g71)
∂φ

∂x1
= ρJ

∂2w2

∂t2
,

(13)

−ε11
∂2φ

∂x21
− ε33

∂2φ

∂x23
+ (g71 + g13)

∂2u1
∂x1∂x3

+g31
∂2u3
∂x21

+ g93
∂2u3
∂x23

= 0,

(14)

k1
∂2T

∂x21
+ k3

∂2T

∂x23
− T0

∂

∂t
(1 + τ0

∂

∂t
)(β1

∂u1
∂x1

+ β3
∂u3
∂x1

)

−T0
∂

∂t
(1 + τ0

∂

∂t
)(λ3

∂φ

∂x3
) = ρc∗

∂T

∂t
,

(15)

t33 = C91
∂u1
∂x1

+ C93
∂u3
∂x3
− g93

∂φ

∂x3
− β3T, (16)

t31 = C73
∂u1
∂x3

+ C77
∂u3
∂x1
− g71

∂φ

∂x1
, (17)

m32 = D86
∂w2

∂x3
, (18)

where β1 = C11α1+C19α3, β3 = C91α1+C99α3,α1, α3

are the coefficients of linear thermal expansion. We have used
the notations 11 → 1, 12 → 2, 13 → 3, 21 → 4, 22 →
5, 23 → 6, 31 → 7, 32 → 8, 33 → 9 for the material
constants.

The following dimensionless quantities are introduced

x
′

1 =
ω∗x1
c1

,

x
′

3 =
ω∗x3
c1

,

u
′

1 =
ω∗

c1
u1,

u
′

3 =
ω∗

c1
u3,

w
′

2 =
C11

C33
w2,

t
′

ij =
1

C11
tij ,

m
′

ij =
c1

ω∗D24
mij ,

T
′

=
T

T0
,

φ
′

=
ω∗ε11
c1g13

φ,

D
′

i =
c1

ω∗g13
Di,

t
′

= ω∗t, τ
′

= ω∗τ,

c21 =
C11

ρ
,

ω∗2 =
C33

ρJ
,

(19)

where ω∗ is the characteristic frequency of the material and
c1 is the longitudinal wave velocity of the medium.
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By using the dimensionless quantities in equations (11)-
(15), we obtain the following equations

∂2u1
∂x21

+ a1
∂2u1
∂x23

+ a2
∂2u3
∂x1∂x3

+ a3
∂w2

∂x3

+a4
∂2φ

∂x1∂x3
− a5

∂

∂x1
T = a6

∂2u1
∂t2

,

(20)

∂2u3
∂x21

+ a7
∂2u3
∂x23

+ a8
∂2u1
∂x1∂x3

+ a9
∂w2

∂x1

+a10
∂2φ

∂x21
+ a11

∂2φ

∂x23
− a12

∂

∂x3
T = a13

∂2u3
∂t2

,

(21)

∂2w2

∂x21
+ a14

∂2w2

∂x23
+ a15

∂u1
∂x1

+ a16
∂u3
∂x1

+ a17w2

+a18
∂φ

∂x1
= a19

∂2w2

∂t2

(22)

∂2φ

∂x21
+ a20

∂2φ

∂x23
− a21

∂2u1
∂x1∂x3

−a22
∂2u3
∂x21

− a23
∂2u3
∂x23

= 0,

(23)

(
∂2T

∂x21
+ a24

∂2T

∂x23

)
− ∂

∂t

(
a25

∂u1
∂x1

+ a26
∂u3
∂x1

)
− ∂

∂t

(
a27

∂φ

∂x3

)
= a28

∂

∂t
T

(24)

where

a1 =
C73

C11
, a2 =

C19 + C77

C11
,

a3 =
(C77 − C73)C33

(C11)2
,

a4 =
(g13 + g71)g13

C11ε11
,

a5 =
β1T0
C11

, a6 =
ρc21
C11

, a7 =
C99

C37
,

a8 =
C33 + C91

C37
,

a9 =
(C37 − C33)C33

C37C11
,

a10 =
g31g13
C37ε11

, a11 =
g93g13
C37ε11

,

a12 =
β3T0
C37

, a13 =
ρc21
C37

, a14 =
D86

D24
,

a15 =
(C73 − C33)C11c

2
1

(C33D24)ω∗2 ,

a16 =
(C77 − C37)C11c

2
1

(C33D24)ω∗2 ,

a17 =
(C77 − C33 − 2C37)c21

D24ω∗2 ,

a18 =
(g31 − g71)C11g13c

2
1

C33D24ε11ω∗2 ,

a19 =
ρJc21
D24

, a20 =
ε33
ε11

,

a21 =
g71 + g13
g13

,

a22 =
g31
g13

, a23 =
g93
g13

,

a24 =
k3
k1
, a25 =

c21β1
ω∗k1

,

a26 =
c21β3
ω∗k1

, a27 =
λ3c

2
1g13

ω∗k1ε11
, a28 =

ρc∗c21
ω∗k1

(25)

IV. PLANE WAVE PROPAGATION

Let us assume the plane wave solution of the form

(u1, u3, w2, φ, T ) = (u1, u3, w2, φ, T )eι(ωt−kx1), (26)

where u1, u3, w2, φ, T are functions of x3 only, k is the
wave number andω is the angular frequency.

Using equation (26) in equations (20)-(24), a system of
five homogeneous equations is obtained in terms of ω and
k in five unknowns u1, u3, w2, φ, T , which for non-trivial
solution , using Cramer’s rule yield
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(
A1

d10

dx103
+A2

d8

dx83
+A3

d6

dx63
+A4

d4

dx43

+A5
d2

dx23
+A6

)
(u1, u3, w2, φ,T ) = 0,

(27)

where

A1 = a1a7a14a20a24

A2 = a24(h1a1a7 + h2a14a20 + h4a20 − h6a23)

+h19a14a11 + a1a7a14a20δ17 + h∗18a14,

A3 = δ17(h1a1a7 + h2a14a20 + h4a20 − a23h6)

+a24(−δ10k2a1a7 + δ1δ6a14a20 + h1h2 + a20h3 − h4k2

+h6δ13 − a23h7 + h9) + a20h14 − a23h11 + a14h17

+δ10(a11h19 + a7h22) + a14h19δ8 + a11a14h20

+a7a14h23 + δ10h
∗
18,

A4 = δ17(−δ10k2a1a7 + δ1δ6a14a20 + h1h2 + a20h3

−k2h4 + δ13h6 − a23h7 + h9) + a24(h10 − a23h8 − h3k2

+h7δ13 + a20h5 − h2δ10k2 + h1δ1δ6) + h11δ13 + h25

−h14k2 + a20h15 − a23h12 + δ10(a7h23 + δ6h22 + h17

+a11h20 + h19δ8)δ6a14h23

+a14(h18 + a11h21 + δ6h23 + δ8h20),

A5 = δ17(−δ10k2h2 + δ1δ6h1 + a20h5

−k2h3 + δ13h7 − a23h8 + h10)

+a24(−h5k2 + h8δ13 − δ1δ6δ10k2) + h12δ13 + h26

−h15k2 + a20h16 − a23h13 + δ10(a11h21 + δ8h20 + h18)

+a14δ8h21 + δ6δ10h23 + h24(δ6a14 + δ10a7),

A6 = δ17(−h5k2 + h8δ13 − δ1δ6δ10k2)

+h13δ13 − h16k2 + δ10(δ8h21 + δ6h24)

h1 = δ10a20 − k2a14,
h2 = a1δ6 + a7δ1 − δ2δ5,
h3 = (a1δ7 − a3δ5)a16ιk + (δ2δ7 − a3δ6)a15,

h4 = −a3a7a15,
h5 = δ1δ7a16ιk,

h6 = δ3δ15a14 + a3a11a15 + a1a11,

h7 = δ7δ11(a1 + δ1) + δ3(δ5δ10 − δ7a15 − δ11a3)

+ a3a15δ8 + a11δ1 + a1δ8,

h8 = δ1δ7δ11 + δ1δ8,

h9 = (δ11a7 + a11a16ιk)δ12a3,

h10 = δ11δ12(−δ2δ7 + a3δ6) + a16δ12(a3ιkδ8 − ιδ3δ7k),

h11 = −a3a15δ9δ16,

h12 = δ9δ11δ14a3 + δ4δ7δ16a15,

h13 = −δ11δ14δ4δ7,

h14 = a3a15δ9δ15,

h15 = a3a16δ9δ14ιk − δ4δ7δ15a15,

h16 = −δ4δ7δ14a16ιk,

h17 = −δ1δ9(a23δ16 + δ15a20)− δ2δ9(δ14a20 − δ12δ16)

+ δ3δ9(δ12δ15 + δ14a23) + δ4δ5(a20δ15 + δ16a23),

h18 = δ9(δ1δ13δ16 + δ1δ15k
2 − δ3δ13δ14 + δ2δ14k

2)

− δ4δ5(δ15k
2 + δ13δ16),

h19 = δ2δ12a24,

h20 = δ2δ12δ17 − δ4(δ12δ15 + δ14a23),

h21 = δ4δ13δ14,

h22 = −δ3δ12a24,

h23 = −δ3δ12δ17 + δ4(δ12δ16 − δ14a26),

h24 = δ4δ14k
2,

h∗18 = −δ9a1(a23δ16 + a20δ15),

δ1 = a6ω
2 − k2, δ2 = −a2ιk, δ3 = −a4ιk,

δ4 = a5ιk(1 + ινω), δ5 = −a8ιk,

δ6 = a13ω
2 − k2, δ7 = −a9ιk,

δ8 = −a8k2, δ9 = −a12, δ10 = a19ω
2 + a17 − k2,

δ11 = a18ιk, δ12 = a21ιk, δ1 = a6ω
2 − k2,

δ2 = −a2ιk, δ3 = −a4ιk, δ4 = a5ιk(1 + ινω),

δ5 = −a8ιk, δ6 = a13ω
2 − k2, δ7 = −a9ιk,

δ8 = −a8k2, δ9 = −a12, δ10 = a19ω
2 + a17 − k2,

δ11 = a18ιk, δ12 = a21ιk, δ13 = a22k
2,

δ14 = −a25kω, δ15 = −a26ιω, δ16 = −a27ιω,

δ17 = −a28(ιω − ω2τ)− k2.

Equation (27) is now in terms of ω and k . The roots
of the equation (27) gives the velocities of five plane waves
in the decreasing order of the velocities, i.e quasi longitudi-
nal displacement wave (quasi LD wave), quasi thermal wave
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(quasi T wave), quasi CD-I, quasi CD-II wave and electric
potential wave (PE wave).

V. REFLECTION AND TRANSMISSION

A homogeneous orthotropic micropolar piezothermoelas-
tic half-space is considered. A plane wave making an angle
θ0 with x3− axis becomes incident at the free surface. This
wave results in five reflected wave modes in medium M1.
In medium M1 reflected wave modes are represented by the
quasi LD wave, quasi thermal wave, quasi CD-I (transverse)
wave, quasi CD-II (micropolar) wave and one other mode
corresponding to electric potential wave mode i.e. PE wave
mode.

The formal solution for the mechanical displacements,
microrotation, electric potential and temperature distribution
in medium M1 are

u1(x3) = (B01e
−λ1x3 +B1e

λ1x3 +B02e
−λ2x3 +B2e

λ2x3

+B03e
−λ3x3 +B3e

λ3x3 +B04e
−λ4x3 +B4e

λ4x3

+B05e
−λ5x3 +B5e

λ5x3)ei(ωt−kx1),
(28)

u3(x3) = (m1B01e
−λ1x3 +m1B1e

λ1x3 +m2B02e
−λ2x3

+m2B2e
λ2x3 +m3B03e

−λ3x3 +m3B3e
λ3x3

+m4B04e
−λ4x3 +m4B4e

λ4x3 +m5B05e
−λ5x3

+m5B5e
λ5x3)ei(ωt−kx1),

(29)

w2(x3) = (n1B01e
−λ1x3 + n1B1e

λ1x3 + n2B02e
−λ2x3

+n2B2e
λ2x3 + n3B03e

−λ3x3 + n3B3e
λ3x3 + n4B04e

−λ4x3

+n4B4e
λ4x3 + n5B05e

−λ5x3 + n5B5e
λ5x3)ei(ωt−kx1),

(30)

φ(x3) = (g1B01e
−λ1x3 + g1B1e

λ1x3 + g2B02e
−λ2x3

+g2B2e
λ2x3 + g3B03e

−λ3x3 + g3B3e
λ3x3 + g4B04e

−λ4x3

+g4B4e
λ4x3 + g5B05e

−λ5x3 + g5B5e
λ5x3)ei(ωt−kx1),

(31)

T (x3) = (l1B01e
−λ1x3 + l1B1e

λ1x3 + l2B02e
−λ2x3

+l2B2e
λ2x3 + l3B03e

−λ3x3 + l3B3e
λ3x3 + l4B04e

−λ4x3

+l4B4e
λ4x3 + l5B05e

−λ5x3 + l5B5e
λ5x3)ei(ωt−kx1),

(32)
where λ1, λ2, λ3, λ4, λ5 are the velocities of reflected
quasi LD wave, quasi T wave, quasi CD-I wave quasi CD-II
wave and PE wave mode respectively in medium M1 and

mi =
∆1

∆
, ni =

∆2

∆
,

gi =
∆3

∆
, li =

∆4

∆
,

i = 1, 2, 3, 4, 5

(33)

∆ =

∣∣∣∣∣∣∣∣
a7λ

2
i + δ6 δ7 a11λ

2
i + δ8 δ9λi

−a16ιk a14λ
2
i + δ10 δ11 0

−a23λ2i + δ13 0 a20λ
2
i − k2 0

δ15λi 0 δ16λi a24λ
2
i + δ17

∣∣∣∣∣∣∣∣
∆1 =

∣∣∣∣∣∣∣∣
δ5λi δ7 a11λ

2
i + δ8 δ9λi

a15λi a14λ
2
i + δ10 δ11 0

δ12λi 0 a20λ
2
i − k2 0

δ14 0 δ16λi a24λ
2
i + δ17

∣∣∣∣∣∣∣∣
∆2 =

∣∣∣∣∣∣∣∣
δ5λi a7λ

2
i + δ6 a11λ

2
i + δ8 δ9λi

a15λi −a16ιk δ11 0
δ12λi −a23λ2i + δ13 a20λ

2
i − k2 0

δ14 δ15λi δ16λi a24λ
2
i + δ17

∣∣∣∣∣∣∣∣
∆3 =

∣∣∣∣∣∣∣∣
δ5λi a7λ

2
i + δ6 δ7 δ9λi

a15λi −a16ιk a14λ
2
i + δ10 0

δ12λi −a23λ2i + δ13 0 0
δ14 δ15λi 0 a24λ

2
i + δ17

∣∣∣∣∣∣∣∣
∆4 =

∣∣∣∣∣∣∣∣
δ5λi a7λ

2
i + δ6 δ7 a11λ

2
i + δ8

a15λi −a16ιk a14λ
2
i + δ10 δ11

δ12λi −a23λ2i + δ13 0 a20λ
2
i − k2

δ14 δ15λi 0 δ16λi

∣∣∣∣∣∣∣∣
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Fig. 2. Variations of amplitude ratio Z1 with angle of incidence
(QL- wave)

Fig. 3. Variations of amplitude ratio Z2 with angle of incidence
(QL- wave)

Fig. 4. Variations of amplitude ratio Z3 with angle of incidence
(QL -wave)

Fig. 5. Variations of amplitude ratio Z4 with angle of incidence
(QL -wave)
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Fig. 6. Variations of amplitude ratio Z5 with angle of incidence
(QL- wave)

Fig. 7. Variations of amplitude ratio Z1 with angle of incidence
(QT-wave)

Fig. 8. Variations of amplitude ratio Z2 with angle of incidence
(QT-wave)

Fig. 9. Variations of amplitude ratio Z3 with angle of incidence
(QT- wave)
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Fig. 10. Variations of amplitude ratio Z4 with angle of
incidence(QT- wave)

Fig. 11. Variations of amplitude ratio Z5 with angle of
incidence(QT- wave)test

VI. BOUNDARY CONDITIONS

The appropriate boundary conditions at an interface
x3 = 0 are given by

t33 = 0, t31 = 0, m32 = 0,
∂T

∂x3
= 0, D3 = 0. (34)

Using the equations (28)-(32), we find that the boundary
conditions are satisfied if and only if:

sin θ0
v

=
k

ω
, (35)

where v is the velocity of the incident wave at an interface.
Making use of equations (28) to (32) in equation (34) and

using equation (35), we obtain a system of five homogeneous
equations as:

10∑
j=1

aijBj = 0 ; (i = 1, 2, 3, 4, 5) , (36)

where

a1i = −d1ιk − d2λimi + d3λigi − d4li,

a1j = −d1ιk + d2λimi − d3λigi − d4li,

a2i = −a1λi + (d6gi − d5mi)ιk, a2j =

=a1λi + (d6gi − d5mi)ιk,

a3i = −d7λini, a3j = d7λini, a4i = −λili, a4j = λili,

a5j = d9λigi − ιkd10 + d11λim1. (37)

(a) When quasi LD wave is incident:

B2 = B3 = B4 = B5 = 0.

Dividing the set of equations throughout by B1, we obtain a
system of ten non-homogeneous equations in ten unknowns
which can be solved by Crammer’s rule and we have

Zi =
Bi
B1

=
Γ1
i

Γ
; i = 1, 2, 3, 4, 5.

(b) When quasi T wave is incident: B1 = B3 = B4 =
B5 = 0 and

Zi =
Bi
B2

=
Γ2
i

Γ
, ; i = 1, 2, 3, 4, 5,

where

Γ = |aii+5|5×5 ,

and Γpi (i = 1, 2, 3, 4, 5) (p = 1, 2, 3, 4, 5) can be ob-
tained by replacing, respectively the 1st, 2nd,. . . , 5th columns
of Γ by [−a1p, −a2p, a3p, a4p, a5p]T .



122 R. Kumar, N. Sharma, P. Lata, M.Marin

VII. PARTICULAR CASES

(a) If we neglect the piezoelectric effect in mediumM1, we
obtain amplitude ratios at the free surface of orthotropic
piezothermoelastic solid with changed values of aij as

a1i = −d1ιk − d2λimi + d3λigi − d4li,

a1j = −d1ιk + d2λimi − d3λigi − d4li,

a2i = −a1λi + (d6gi − d5mi)ιk,

a2j = a1λi + (d6gi − d5mi)ιk,

a3i = −d7λini, a3j = d7λini,

a4i = −λili, a4j = λili,

VIII. NUMERICAL RESULTS AND DISCUSSION

The physical data for medium M1 is given by

C11 = 7.46× 1010 Nm−2,
C19 = 3.9× 1010 Nm−2,
C33 = 1.37× 109 Nm−2,
C99 = 8.39× 109 Nm−2,
C91 = 0.399× 109 Nm−2,
C77 = 0.0138× 109 Nm−2,
C37 = 0.134× 109 Nm−2,
C73 = 1.32× 109 Nm−2,
g13 = −0.142× 10−3 cm−2,
g71 = −0.165× 10−3 cm−2,
g93 = 0.351× 10−3 cm−2,
g31 = −0.139× 10−3 cm−2,
ε11 = 8.29× 10−11 Nm−2/K,
ε33 = 9.07× 10−11 Nm−2/K,
λ3 = 7.6× 10−6 cm−2/K,
τ = 0.8 s,
k1 = 9.5 Wm−1K−1,
k2 = 9.7 Wm−1K−1,
β1 = 0.670× 105C2N−1m−2,
β3 = 0.581 × 105C2N−1m−2,
ν = 0.268,
T0 = 298 K,
ρ = 5504 kg m−3,
c∗ = 2.64× 102 N m kg−1s K−1,
J = 0.02× 10−11 m−2,
D24 = 0.134 N,
D86 = 0.243 N.

Fig. 2–11 shows the variations of amplitude ratios with
the angle of incidence for incidence of plane waves at an
interface. In Figs. 2–11 MPT corresponds to amplitude ratios
in the orthotropic micropolar piezothermoelastic solid, WPE
corresponds to amplitude ratios in the orthotropic micropolar
thermoelastic solid.

VIII. 1. Incidence of quasi ld wave (ql-wave)

Figs. 2–6 represent the variations of amplitude ratios ; Zi ≤
i ≤ 5 with the angle of incidenceθ0 for incidence of QL-wave.
Fig. 2 shows that the values of amplitude ratio |Z1| for MPT
and WPE decrease with increase in the angle of incidence
and the values of amplitude ratio for WPE are more than
the values for MPT in the whole range. Fig. 3 shows that
the values of amplitude ratio |Z2| for MPT increase in the
whole range, except in the initial range where it decreases and
remains more than the values for WPE in the whole range.
From Fig. 4 it is seen that the values of amplitude ratio |Z3|
for MPT decrease in the range 00 ≤ θ0 < 460 and then in-
crease with the angle of incidence, while the values for WPE
decrease in the whole range. The values of the amplitude
ratio for MPT are more than the values for WPE in the whole
range. Fig. 5 shows that the values of amplitude ratio |Z4| for
WPE are greater than the values for MPT in the whole range.
Fig. 7 shows that the values of amplitude ratio |Z5| for MPT
increase as θ0 increases.

VIII. 2. Incidence of quasi t wave (qt-wave)

Figs. 7–11 represent the variations of amplitude ratios
|Zi| ; 1 ≤ i ≤ 5 with the angle of incidence θ0 for incidence
of QT-wave. Fig.7 depicts that the values of amplitude ratio
|Z1| for MPT decrease with the angle of incidence, while the
values for WPE increase from normal incidence to grazing
incidence. The values for MPT remain more than the value
for WPE in the whole range. Fig.8 shows the variation of
amplitude ratio |Z2| with the angle of incidence. The values
of amplitude ratio for MPT and WPE increase with the angle
of incidence. The values of the amplitude ratio for MPT are
more than the values for WPE. Fig.9 shows that the values
of amplitude ratio |Z3| for MPT decrease in the initial range
and then increase and the values for WPE get increased with
the angle of incidence. The amplitude ratio increases in the
absence of the piezoelectric effect. It is seen from Fig. 10
that the amplitude ratio|Z4| for MPT decrease and WPE get
increased in the whole range. The values of amplitude ratio in
the absence of the piezoelectric effect are greater than the val-
ues in the presence of the piezoelectric effect. Fig. 11 shows
that the values of amplitude ratio |Z5| for MPT increase in
the whole range.

IX. CONCLUSION

The reflection coefficients of various plane quasi waves
on incidence of quasi LD wave and quasi T wave at a free
surface of orthotropic micropolar piezothermoelastic medium
for L-S theory are obtained. It is noticed that when quasi LD
wave is incident, the values of amplitude ratios of reflected
quasi T, quasi CD-I (Transverse) in the absence of the piezo-
electric effect are smaller that reveals the piezoelectric effect.



Reflection of Plane Waves at Micropolar Piezothermoelastic Half-space 123

It is seen that when the quasi T wave is incident, the piezo-
electric effect decreases the magnitude of amplitude ratio of
the reflected quasi CD-I (transverse) wave and quasi CD-II
(micropolar) wave modes.
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