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Ergodicity of non-Hamiltonian Equilibrium Systems
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Abstract: It is well known that ergodic theory can be used to formally prove a form of relaxation to microcanonical
equilibrium for finite, mixing Hamiltonian systems. In this manuscript we substantially modify this proof using an approach
similar to that used in umbrella sampling, and use this approach to consider relaxation in both Hamiltonian and non-
Hamiltonian systems. In doing so, we demonstrate the need for a form of ergodic consistency of the initial and final
distribution. The approach only applies to relaxation of averages of physical properties and low order probability distribution
functions. It does not provide any information about whether the full 6N -dimensional phase space distribution relaxes
towards the equilibrium distribution or how long the relaxation of physical averages takes.
Key words: equilibrium, ergodic theory, relaxation to equilibrium, distribution function, statistical mechanics

I. INTRODUCTION

We have recently presented a proof of relaxation to mi-
crocanonical equilibrium for a Hamiltonian system utilizing
the ergodic theorem and an approach based on umbrella sam-
pling [1]. This approach can be extended to apply to other
ensembles, as we discussed in reference [2]. In this paper we
reproduce these arguments, and address the paradox that al-
though the properties of a system relax to their equilibrium

values under appropriate conditions, the distribution func-
tion never evolves to the 6N -dimensional equilibrium distri-
bution function. This is resolved by considering lower-order
distributions.

It is known from ergodic theory that a finite, au-
tonomous, Hamiltonian system that preserves a mixing mi-
crocanonical equilibrium distribution, will, from almost any
initial distribution of states described by a phase space distri-
bution, eventually relax towards a situation where averages

1 In systems without boundaries the initial distribution is f(Γ; 0)δ(H(Γ)−E)δ(P), where P is the total linear momentum,H(Γ) is the Hamiltonian and
E the energy of the system.
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of physical phase functions approach their microcanonical
equilibrium values [3].1 These statements refer to an equi-
librium microcanonical distribution that has been defined in
[4,5], and is discussed further in Appendix A.

A system is said to be mixing if for integrable, phase
functions, time correlation functions computed with respect
to a stationary distribution factorize into products of aver-
ages computed with respect to the same distribution [3]:

lim
t→∞

〈
A(Γ)B(StΓ)

〉
∞ − 〈A(Γ)〉∞ 〈B(Γ)〉∞ = 0. (1)

Here the brackets, 〈...〉∞, denote an ensemble average with
respect to an invariant (i.e. time-stationary) probability mea-
sure µ∞ and StΓ is the position of the evolved phase vector
Γ after time t. In the case that µ∞ has a density , one may
write:

〈A〉∞ =

∫
dµ∞(Γ)A(Γ) =

∫
dΓ f(Γ;∞)A(Γ), (2)

where f(Γ;∞) = ∂µ∞/∂Γ is a normalized distribution and
f(Γ;∞)dΓ is dimensionless.2

Implicit in this definition is the fact that the invariant
measure must be preserved by the dynamics, in which case
at all times 〈B(StΓ)〉∞ = 〈B(Γ)〉∞ for all phase variables,
B(Γ). So the notion of mixing systems requires an invariant
measure, i.e. a measure that is preserved by the dynamics
and additionally they must satisfy (1) with respect to this in-
variant distribution or measure.3 This invariant measure im-
plies that the averages of physical quantities are invariant.

The mixing property is a property of the stationary state
of interest, in which observables take the average values de-
noted by 〈...〉∞. It represents the fact that, in the macro-
scopically stationary state, correlations among microscopi-
cally evolving physical properties (physically relevant phase
functions) decay in time. Therefore, in general the mixing
condition does not guarantee relaxation to an invariant state
starting from a macroscopic non-invariant state. Mixing al-
ready assumes stationarity of the macrostate and its preser-
vation by the system’s dynamics, regardless of whether it is
reached asymptotically in time, as implied by our notation,
or it is initially prepared in that state by some means (e.g. a
Monte Carlo process).

II. ERGODIC THEORY PROOF OF RELAXATION
FOR AUTONOMOUS HAMILTONIAN SYSTEMS

For completeness we repeat here our version [1] of the
standard ergodic theory proof of relaxation for autonomous
Hamiltonian systems. We begin by noting that the micro-
canonical distribution, fµc(Γ) for the infinitesimally thin en-
ergy shell, D(N,V,E, δE) : E < H(Γ) < E + δE which
we refer to as D, is given by:

fµc(Γ) ≡


1∫

D
dΓ

, Γ ∈ D

0, Γ /∈ D

(3)

The microcanonical distribution function, fµc(Γ), is
a time-stationary distribution, preserved by the autonomous
Hamiltonian dynamics [5]. One can see from the phase con-
tinuity equation (often referred to as the Liouville equation)
that both dfµc(Γ)/dt = 0 and ∂fµc(Γ)/∂t = 0.4 For a dis-
cussion on the need to consider a thin shell rather than a con-
stant energy hypersurface, see Appendix B.

We will now give the standard proof that if our ensem-
ble is initially not distributed according to this distribution,
the ensemble will in fact relax towards this distribution – at
least as can be ascertained by computing time averages of
low order physical phase functions.5

The time dependent average of a physical phase func-
tion A(Γ) for some smooth distribution function, f(Γ; t)
that evolves in time according to the Hamiltonian dynamics
and which is defined in the domain, D, is given by:

〈A〉t =

∫
D

dΓA(Γ)f(Γ; t)

=

∫
D

dΓA(StΓ)f(Γ; 0),

(4)

where the second equality is due to the equivalence of the
Heisenberg and Schrödinger representations of phase space
averages [6] and the notation 〈A〉t refers to an ensemble av-
erage with respect to the time evolved distribution . In (4)
the stationarity of the distribution f(Γ; t) is not assumed (so
f(Γ; t) is not necessarily equal to f(Γ; 0)). However, since
the dynamics is driven by an autonomous Hamiltonian, the
energy is fixed. Formally, calculation of averages in (4) re-
quires either a knowledge of the full, time dependent, phase

2 If on the other hand, if µ∞ is singular with respect to the Lebesgue measure there is no density and one can only write the first equality, 〈A〉∞ =∫
dµ∞(Γ)A(Γ), where dµ∞(Γ) is dimensionless and normalized.

3 We note that if the system has nonzero angular momentum, no stationary state is possible (unless we transform to a non-inertial, co-rotating coordinate
frame where Hamiltonian dynamics breaks down). So if angular momentum is conserved in our system we must set it to zero as can be done for the total
linear momentum.

4 We note that if the dynamics has constant (zero) total momentum one of the particles may be removed from the phase space since its position and momen-
tum is known from the 3(N − 1) coordinates and momenta in the system. This also removes a source of non-independence in the phase space variables
that would otherwise make the evaluation of (∂/∂Γ) • Γ̇(Γ) = 0 difficult.

5 Note: low order physical phase functions can be evaluated using functionals of low order (singlet, pair and triplet, for example) distribution functions –
see Appendix D for details. The fullN -particle phase space distribution is a function of ~6(N − 1) variables whereN may be of the order of Avogadro’s
Number, if the system is macroscopic.



Ergodicity of non-Hamiltonian Equilibrium Systems 177

space distribution, f(Γ; t) or the initial phase space distribu-
tion.

Multiplying and dividing the last expression in (4) by
the (necessarily finite!) ostensible volume of the phase space
casts the first line in a form to which the mixing property can
(formally) be applied:

〈A〉t =
1∫

D
dΓ
•
∫
D

dΓ A(StΓ)f(Γ; 0)

∫
D

dΓ

= 〈A(StΓ)f(Γ; 0)〉µc
∫
D

dΓ.

(5)

We emphasise that in order to derive (5), the value of∫
D
dΓ needs to be finite and non-zero. We exclude the case

where the initial distribution is a nonequilibrium steady state
distribution. This is because the measures of these distribu-
tions are not smooth.6

Knowing that the microcanonical distribution is pre-
served by the autonomous Hamiltonian dynamics, we now
take the long time limit and use the mixing assumption,
(1), to allow us to factorize the naturally invariant (micro-
canonical) time correlation function 〈A(StΓ)f(Γ; 0)〉µc into
a sum of products of two invariant (microcanonical) aver-
ages.7 Then:

lim
t→∞

〈A〉t = lim
t→∞

〈
A(StΓ)f(Γ; 0)

〉
µc

∫
D

dΓ

= 〈A(Γ)〉µc〈f(Γ; 0)〉µc
∫
D

dΓ

= 〈A(Γ)〉µc
[∫

D
dΓf(Γ; 0)∫
D
dΓ

] ∫
D

dΓ

= 〈A(Γ)〉µc

(6)

We note that equation (1) only applies to a stationary state,
however we know that a stationary state exists since, as noted
above, the microcanonical distribution is preserved by au-
tonomous Hamiltonian dynamics, so this is not an assump-
tion. We only have to assume that this invariant distribution
is mixing.

The analysis above proves that for mixing systems 〈A〉t
tends towards a microcanonical average, whatever physical
phase function A(Γ), or initial probability density f(Γ; 0)
one considers – as long as it lies in the phase space domain
D. This amounts to a formal proof of relaxation towards
the microcanonical equilibrium state denoted by 〈. . .〉µc.
The proof only shows the relaxation of averages of physi-
cal quantities towards their equilibrium values.

The proof given in (4,5,6) shows (formally) that aver-
ages of thermodynamic quantities approach microcanonical
averages in the long time limit if the initial distribution is
not microcanonical. If the system starts at t = 0 in the mi-
crocanonical distribution, it becomes a trivial statement since
the averages will be the microcanoncial averages at all times.

Because distribution functions are normalized we see
that for any distribution and time,

〈f(Γ; t)〉µc = lim
δE→0

∫
D(δE)

dΓ f(Γ; t)/

∫
D(δE)

dΓ

= lim
δE→0

1/

∫
D(δE)

dΓ = exp [−Sµc(E,N, V )/kB ]

(7)

where we use the Gibbs definition of entropy
Sµc ≡ −kB

∫
D
dΓ fµc(Γ) ln[fµc(Γ)] and fµc(Γ) =

lim
δE→0

1/
∫
Γ∈D(δE)

dΓ. Hence, the microcanonical average

of a normalized distribution function tells us nothing about
that distribution. The average only tells us the Gibbs en-
tropy of the microcanonical distribution used to calculate
the average.

We know that unlike the averages of phase variables,
the phase space density does not relax. For example, if
f(Γ0; 0) = c 6= 0, then using the streaming version of the
phase space continuity equation f(StΓ0; t) = c, ∀t > 0,
which would be inconsistent with the eventual relaxation
to the microcanonical distribution function at all points in
phase space. Equation (6), which says that phase averages
relax, might seem counter-intuitive because the distribution
function never relaxes to the microcanonical distribution. In
Section 4 we will treat cases where the initial or final distri-
bution are not fully known, showing how this relates to the
relaxation of the distribution function and reconciliation of
how phase averages can relax.

III. GENERALIZATION OF THE ERGODIC
THEORY PROOF OF RELAXATION TO

AUTONOMOUS NON-HAMILTONIAN SYSTEMS

We now generalize this derivation so that it applies to
any dynamics that preserves a mixing, equilibrium distribu-
tion feq(Γ) for a finite system, as first presented in [2] (see
Appendix A for definition of an equilibrium distribution).
The phase space vector could be augmented by additional
variables such as the Nosé-Hoover thermostat multiplier or
the system volume to cover a variety of different systems
(e.g. Nosé-Hoover thermostatted dynamics or Nosé-Hoover
isothermal isobaric dynamics). However, we do not show
this explicitly in our notation.

Using our definition of an equilibrium system we write
the equilibrium distribution as,

feq,h(Γ) =
exp[−h(Γ)]∫

D
dΓ exp[−h(Γ)]

, (8)

where h(Γ) is some real, integrable function of the (pos-
sibly augmented) phase space vector, Γ defined over some
phase space domain, D. We note that choice of this form of

6 To extend to nonequilibrium steady states (NESS), we would need to carry out the calculation in terms of singular measures and ensure that the initial and
final measures are absolutely continuous with respect to each other, as considered by Sinai [3].

7 Note that f(Γ; 0) can be treated as a phase function because it has no explicit time-dependence, in contrast to f(StΓ; t) or f(Γ; t).
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the potential is quite general and ensures that feq,h(Γ) > 0
at any point in D. All positive smooth equilibrium distribu-
tions must be expressible in a form given by (8) (e.g. the
canonical distribution or the isothermal isobaric distribution.
In these two cases the appropriate dynamics which preserve
these distributions are well known [6].). Equilibrium distri-
butions must be autonomous because by definition the dissi-
pation must be zero (Appendix A) and therefore they must
be time independent.

We compute the average of some physical phase space
function A(Γ) at some time t with an initial distribution
f0(Γ) 6= feq,h(Γ) and undergoing dynamics that would pre-
serve (8):

〈A(t)〉0 =

∫
D

dΓ A(StΓ)f0(Γ)

=

∫
D
dΓA(StΓ)f0(Γ) exp[h(Γ)] exp[−h(Γ)]∫

D
dΓ exp[−h(Γ)]

×
∫
D

dΓ exp[−h(Γ)]

= 〈A(StΓ)f0(Γ) exp[h(Γ)〉eq,h
∫
D

exp[−h(Γ)]

−−−→
t→∞

〈A(Γ)〉eq,h〈f0(Γ) exp[h(Γ)]〉eq,h

×
∫
D

dΓ exp[−h(Γ)]

= 〈A(Γ)〉eq,h
∫
D
dΓf0(Γ) exp[h(Γ)] exp[−h(Γ)]∫

D
dΓ exp[−h(Γ)]

×
∫
D

dΓ exp[−h(Γ)]

= 〈A(Γ)〉eq,h
∫
D

dΓf0(Γ) = 〈A(Γ)〉eq,h,
(9)

where 〈...〉eq,h denotes an average with respect to the mixing
equilibrium distribution given by (8). We note that the parti-
tion function associated with f0(Γ) and

∫
D
dΓ exp[−h(Γ)]

must be finite and non-zero otherwise the derivation cannot
be completed. We also require a form of ergodic consistency
for all Γ such that if f0(Γ) 6= 0, feq,h(Γ) 6= 0 which is
guaranteed in (8).

These latter points mean that the derivation cannot be di-
rectly extended to nonequilibrium steady states because the
relevant density functions do not exist. In this respect, we
observe that Sinai’s proof [3] can be extended to singular
mixing distributions, but unlike the cases we usually con-
sider in physics, the starting state must also be represented
by a singular distribution. In our notation this system could
be treated if D was considered to be the domain of the mix-
ing state for which the density in the ostensible phase space

was singular, and the argument was reformulated in terms
of measures instead of densities. However, for a dissipative
steady state this domain would be a very complicated object
of zero volume in the ostensible phase space.

Examples where application of (9) is used to show that
phase averages relax to their equilibrium values, for non-
Hamiltonian dynamics are given in Appendix C.

IV. EXPRESSION OF PHASE AVERAGES IN
TERMS OF LOWER DIMENSIONAL

DISTRIBUTION FUNCTIONS

Formally, the calculation of averages in (4) requires ei-
ther knowledge of the full, time dependent, phase space
distribution, f(Γ; t) or the initial phase space distribution.
However, phase averages of properties that are phase func-
tions of only, say, single particle or pairs of particles can
be expressed exactly as functionals of the single-particle
distribution function, f (1)(r1,p1; t), and the two-particle
distribution, f (2)(r1, r2,p1,p2; t), which may be obtained
by integrating the full phase space distribution over N -
1 or N -2 particle coordinates and momenta, respectively
[7]. Of course in real systems there may be higher or-
der interactions including 3 or even 4-body interactions,
and these will also need a knowledge of the corresponding
higher order distributions (f (3)(r1, r2, r3,p1,p2,p3; t) and
f (4)(r1, r2, r3, r4,p1,p2,p3,p4; t), respectively). How-
ever, in a phase space with O(6NA) dimensions, where NA
is Avogadro’s Number (O(1023)), these few-body interac-
tions involve vastly lower dimensionality than is present in
the full phase space. An example of a case where knowledge
of just the single particle and pair distributions is informative
is in a system where the potential energy of the entire sys-
tem, Φ(Γ) can be written as a sum of pairwise interactions
Φ(Γ) =

∑N
i>j φ(rij) where φ(rij) is the potential energy of

particles i and j which are separated by a distance rij . In this
case the average energy or pressure or stress in the system at
time t, can be determined exactly from the singlet and pair
distribution functions (the singlet for the kinetic terms and
the pair distribution for the potential energy terms).

There is a further important observation to make
about (4). Although we only need low order time de-
pendent distributions to compute the time dependent av-
erages of low order physical properties, in order to com-
pute the time dependent single-particle and pair distri-
butions, f (1)(r1,p1; t), f (2)(r1, r2,p1,p2; t) does re-
quire the use of the full 6N -dimensional phase conti-
nuity equation. Exact closed, equations of motion for
f (1)(r1,p1; t), f (2)(r1, r2,p1,p2; t) do not exist. Instead
one has the BBKGY hierarchy [8] where the equation of mo-
tion for a distribution of a given order is coupled to the next
higher order distribution function.
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Phase functions of single particles and pairs of particles,
with a distribution function , can in general be written as,

〈A〉t =
1∫

D
dΓ
•
∫
D

dΓ A(StΓ)f(Γ; 0)

∫
D

dΓ

=
〈
A(StΓ)f(Γ; 0)

〉
µc

∫
D

dΓ

=
〈
A(1)[St(r1,p1)]f(Γ; 0)

+ A(2)[St(r1, r2,p1,p2)]f(Γ; 0)
〉
µc

∫
D

dΓ

=
〈
A(1)[St(r1,p1)]f (1)(r1,p1; 0)

+ A(2)[St(r1, r2,p1,p2)]f (2)(r1, r2,p1,p2; 0)
〉
µc

∫
D

dΓ

(10)

where A(1) and A(2) refer to the single particle and pair
particle contributions to A. In the last line for the single-
particle term we can integrate over N -1 particle coordi-
nates and momenta and write an equivalent expression
involving a smooth single particle distribution function
f (1)(r1,p1; 0) ≡

∫
dr2...drNdp2...dpNf(r1, ...,pN ; 0)

and we can obviously do an analogous set of integrations
for the two-body term but it is easier not to perform these
integrations.

A few more words need to be said about
〈A(StΓ)f(Γ; 0)〉µc. This function is an equilibrium mi-
crocanonical, cross-time correlation function. It results from
the fact that for Hamiltonian dynamics, any time depen-
dent nonequilibrium ensemble average, say 〈A〉t (i.e. the
ensemble average computed with respect to the evolved dis-
tribution), equals a time dependent nonequilibrium average
〈A(StΓ)〉0 computed with respect to the initial distribution
f(Γ; 0) (see equation (4)). Using the expansion in terms of
low order distributions, for a phase variable that is a function
on single and pair particle distributions,

lim
t→∞

〈A〉t =
{〈

A(1)(r1,p1)
〉
µc
〈f(Γ; 0)〉µc

+ 〈A(2)(r1, r2,p1,p2)〉µc〈f(Γ; 0)〉µc
}∫

D

dΓ

=
{
〈A(1)(r1,p1〉µc + 〈A(2)(r1, r2,p1,p2)〉µc

}
[∫

D
dΓf(Γ; 0)∫
D
dΓ

] ∫
D

dΓ = 〈A(Γ)〉µc.

(11)

Therefore, although we expect that in a relaxing system
that starts from a smooth nonequilibrium distribution, the
full N -particle distribution will relax towards a highly struc-
tured (fractal) phase space distribution, convergence is only
necessary for the distribution functions up to the same order

as the phase functions, in order for them to converge. How-
ever when we integrate over N -1 or N -2 particles etc., the
resulting low order, single-particle or two-body distribution
functions will always be smooth. We will show that these
low order distribution functions, under our stated conditions,
relax towards equilibrium.

It has been proven that low order, steady state distribu-
tion functions can be written as ensemble averages of phase
variables (see Appendix D). Therefore the mixing condition
can be applied to them, just like any other phase function.
An explanation of why ensemble averages of phase func-
tions can converge when the distribution does not, can be
obtained by noting that, by definition, the smoothness or de-
gree of variation of a phase variable in phase space, does not
change in time: trivially, it is just fixed. This is not the case
for the N -particle distribution function, which continues to
evolve and develop more and more structure with time. If, at
some point in the future, the length-scale of the variations in
the distribution function will be much smaller than the small-
est length-scale over which the phase function of interest
changes significantly, then after that point in time the value
of the phase function will no longer change even though
the full distribution function continues to develop even more
fine-scaled structure. The less smooth the phase function is
in phase space, the longer it will take for the phase func-
tion averages to become time independent. The possibility
of nonuniformity in the decay of correlations, which would
lead to differences in relaxation times, is also well estab-
lished [9].

We also note that the degree of structure in the
f (i)(r1, . . . , ri,p1, . . .pi; 0) distribution function will be
less than in f (i+1)(r1, . . . , ri+1,p1, . . .pi+1; 0) due to in-
tegration of one particle’s degrees of freedom, and therefore
it is expected that the low order distribution functions (and
hence the low order phase functions) will converge most
quickly. In contrast, variables that are not phase variables
and which at any time vary on the same (or smaller) length-
scale as the N -particle distribution function (say ln [f(Γ; t)]
– as appears in the expression for the entropy, and which
is explicitly time-dependent; or δ(Γ − Γ0), which is not
a function) will, like f(Γ; t), never converge to an equilib-
rium value.

The analysis presented above shows that if the initial
distribution is not the equilibrium distribution and the sys-
tem is mixing, then phase averages and low order distri-
bution functions relax to their equilibrium values. Another
way of obtaining this result is to use the dissipation theo-
rem [10], which shows that in ΩT-mixing systems all en-
semble averages of phase functions become time indepen-
dent at long times. Since the low order distribution functions
are phase functions (see Appendix D), they must relax to
time independent distributions as a system relaxes, either to-
wards a nonequilibrium steady state or towards an equilib-
rium state. This does not imply that the full phase space den-
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sity relaxes to the equilibrium density. The proof based on
the mixing property also carries no information about funda-
mental physical properties such as relaxation times that are
fundamental, e.g. for the existence of transport coefficients.

The proof of relaxation to equilibrium using the mix-
ing property of the steady state complements our previ-
ous proofs of relaxation to equilibrium in thermostatted or
indeed barostatted systems that are ΩT-mixing. The proof
based on mixing is very concise. However it must be sup-
plemented with our recent definition of an equilibrium sys-
tem. It also gives no information about relaxation timescales
(which are important in the computation of the spectra of
frequency dependent transport coefficients) and it gives no
information in itself about the relaxation of distribution func-
tions.

We know from the ΩT-mixing equilibrium relaxation
theorems that the necessary and sufficient condition for the
relaxation of averages, is that the system must be ΩT-mixing
and that an equilibrium state exists. [Of course in contradis-
tinction, the T-mixing condition is a sufficient but not neces-
sary condition.] The mere existence of a mixing equilibrium
state generated by the dynamics implies that the transient
states are ΩT-mixing and that all systems possessing mixing
equilibrium states will in fact relax towards these states at
long times – at least as can be inferred from the calculation
of averages of physical phase functions from initial states
characterized by non-singular distributions. This is a some-
what surprising result.

As was the case for Hamiltonian dynamics, (9) proves
the relaxation of averages towards their equilibrium values.
We cannot know from this proof whether the full phase space
distribution relaxes towards its equilibrium form or not. This
is only established for the low order distribution functions
by realising that the averages of physical quantities are ex-
act functionals of only the low order terms in the Green’s
expansion of the full distribution function.
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Appendix A.

A precise definition of equilibrium was given in our papers
[4,5]. For instance if feq(Γ) is a solution of the possibly ther-
mostatted and/or barostatted Newtonian dynamics it is clear
that, ∂feq(Γ)/∂t = 0 but it is well known that in general
dfeq(Γ)/dt 6= 0. If a distribution is even under the time re-
versal mapping, all fluxes vanish everywhere in the system

but this does not mean the system is an equilibrium distribu-
tion. The question of deciding when a system is in equilib-
rium or not, or indeed whether a specific dynamics is capa-
ble of preserving an equilibrium distribution, is in general,
not completely straightforward.

From our equilibrium relaxation theorems we define an
equilibrium system to be a combination of a smooth distribu-
tion function f(Γ; t) and a dynamics Γ̇(Γ(t)) for which the
dissipation function is identically zero (almost) everywhere
in the accessible phase space domain: Ω(Γ) = 0, Γ ∈ D.
The instantaneous dissipation function is defined as [4]:

Ω(StΓ) ≡

≡− ∂

∂Γ
• Γ̇(StΓ̇)− Γ̇(StΓ̇) • ∂ ln(f(StΓ; 0))

∂Γ
.

(A.1)

For a specified initial phase space distribution the instan-
taneous dissipation function is just another (very impor-
tant) phase function. The dissipation theorem confirms that
if a system is sampled from an equilibrium distribution of
states, that distribution must be preserved by the dynamics
for all time [10,11].

It may be non-trivial to establish whether a system is in
equilibrium or not. A clear example of this may be obtained
by considering systems thermostatted by the so-called Gaus-
sian µ-thermostats. Consider a system of interacting parti-
cles where the wall particles, which act as a thermal reser-
voir, are subject to a Gaussian µ-thermostat [12] where the
equation of change for the βth Cartesian component particle
momentum is, ṗβ,i = Fβ,i − αpµβ,isgn(pβ,i), Fβ,i is the βth

Cartesian component of the standard interatomic force felt
by particle i, due to all the other particles in the system and
a is chosen to fix say, the sum of the (µ+ 1)thmoment of the
particle momenta. It turns out that equilibrium is only possi-
ble if µ = 1. This is clearly understood using our definition
of equilibrium. If µ 6= 1 the system is autodissipative and
equilibrium is not possible [12].

In our proof [4] of relaxation to equilibrium using the
ΩT-mixing8 property, we establish that a given density is an
equilibrium density by showing it has no dissipation at any
point in phase space. We show that the phase space continu-
ity equation then implies that density will be preserved by
the specified dynamics and the Dissipation Theorem implies
that if the system is sampled according to this density, the
phase variables will remain unchanged.

The ΩT-mixing condition requires that in the late time
limit, say after time tc, the values of phase averages no
longer change, which means that the system has relaxed. We
can then use the Dissipation Theorem to show that a per-
turbed system evolving according to equilibrium equations
of motion (dynamics is capable of preserving an equilib-
rium distribution) relaxes to equilibrium. To do this, we
assume that the phase averages are given by an ensem-
ble average over a smooth distribution function for t ≥

8 A ΩT-mixing system is one for which, lim
t→∞

∫ t
0

〈
Ω(Γ)B(StΓ)

〉
0

ds = LA ∈ R for all phase variables, B and where LA is a finite real number.
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tc, (say, f ′(Γ) = e−βH(Γ)+g′(Γ)/Z ′) and define a dis-
sipation function associated with this distribution function
and the dynamics of the system, Ω′. Using the dissipation
theorem and the ΩT-mixing condition then, d

dt 〈Ω
′(t)〉 =

d
dt

∫ t
0
〈Ω′(s)Ω′(0)〉 ds = 0 for all t ≥ 0, where the av-

erages are with respect to the proposed distribution func-
tion of the evolved system. Evaluating this at t = 0 gives
〈Ω′(0)Ω′(0)〉 = 0, and therefore the dissipation function
must be zero at all points in phase space at this time if the
system has relaxed to equilibrium. If the equations of motion
are capable of preserving an equilibrium distribution then
there will be a phase variable, g′ that allows this condition to
be satisfied.

Appendix B. Comparison of the infinitely thin shell and
finite shell microcanonical distributions

Although the infinitely thin shell microcanonical distribution
(δE → 0) may be mixing and weak T-mixing9, the finite δE
system is not because every set of ensemble members with
a specified energy never mixes with a set with a different en-
ergy. There are infinitely many subsets of phase space with
distributions that have ∂f(Γ)/∂t = df(Γ)/dt = 0. In the
δE → 0 limit, the density is equivalent to the energy hyper-
surface areal density, σ(Γ) [13]:

σ(Γ) =

∥∥∥Γ̇∥∥∥−1∫
H(Γ)=E

dΓ⊥

∥∥∥Γ̇∥∥∥−1 , ∀ Γ :H(Γ) = E,

(B.1)
(dΓ⊥ denotes an infinitesimal element in the energy hy-
persurface). This expression for the density is obtained by
realising that for the energy shell δE = δΓ‖ ‖∇H‖ =

δΓ‖

∥∥∥−J • Γ̇
∥∥∥=δΓ‖

∥∥∥Γ̇∥∥∥ where J is the usual symplec-

tic matrix
(

0 1
−1 0

)
and δΓ‖ is the limiting shell thick-

ness measured using some phase space distance metric
along the gradient of the Hamiltonian, ∇H(Γ). δΓ‖ is
scalar and a function of Γ, and lim

δE→0

∫
Γ∈D(δE)

dΓ =∫
H(Γ)=E

dΓ⊥δΓ‖(Γ).

Appendix C. Examples of how mixing leads to
relaxation of phase averages to their equilibrium values

As examples of the application of equation (9), we
consider two possibilities here. In the first case we con-
sider an initial distribution of states that is consistent with

a canonical equilibrium system at temperature T0 where
β0 = 1/kBT0 (here kB is Boltzmann’s constant), f0(Γ) =
e−β0H(Γ)/

∫
D
dΓ e−β0H(Γ). At time zero, a Nosé-Hoover

dynamics with a thermostat of temperature T1, and β1 =
1/kBT1 is applied. Nosé-Hoover thermostatted dynamics of
many-particle systems described by realistic interaction po-
tentials is mixing. That is,

lim
t→∞

〈B(t)A(0)〉1 = 〈B(t)〉1 〈A(0)〉1 (C.1)

where 〈. . .〉1 is the ensemble average with respect to the
canonical distribution with a temperature T1, and the dynam-
ics is Nosé-Hoover thermostatted dynamics with a thermo-
stat of temperature T1. This dynamics preserves that canon-
ical distribution, in which case at all times,

〈B(t)〉1 = 〈B(0)〉1 . (C.2)

Let us consider a typical property, say the microscopic
contribution to the pressure p(Γ). Initially the average pres-
sure of the system will be that of the system at temperature
T0, but if the points in phase space are propagated with Nosé-
Hoover dynamics and a thermostat of temperature T1, we
can follow (9) to show that at some time later:

〈p(t)〉0 =

∫
D
dΓ p(StΓ)e−β0H(Γ)∫
D
dΓ e−β0H(Γ)

=

∫
D

Γp(StΓ)e−β0H(Γ)+β1H(Γ)−β1??H(Γ)∫
D
dΓe−β1H(Γ)∫

D

dΓe−β1H(Γ)

= 〈p(t)e−β0H(0)+β1H(0)〉1
∫
D
dΓe−β1H(Γ)∫

D
dΓe−β0H(Γ)

(C.3)

In this case, the domain, D, is all values of the mo-
menta of each particle and the all positions, given pe-
riodic boundary conditions [0, L]. The dynamics used
to evolve the pressure is the Nosé-Hoover dynamics with
a thermostat of temperature T1. Since this dynamics is
mixing, then using (C.1), lim

t→∞

〈
p(t)e−β0H(0)+β1H(0)

〉
1

=

〈p(t)〉1
〈
e−β0H(0)+β1H(0)

〉
1

and using (C.2), 〈p(t)〉1 =
〈p(0)〉1. Therefore, taking the long time limit (C.3) becomes:

9 A weakly T-mixing system is one where lim
t→∞

[〈
A(Γ)B(StΓ)

〉
0
− 〈A(Γ)〉0

〈
B(StΓ)

〉
0

]
= 0. Here A and B are phase variables, and the ensemble

averages are over the initial measure. This condition differs from the mixing condition, which refers to the invariant measure rather than the initial measure.
However in the case that the system starts in the equilibrium distribution that is preserved by the dynamics, they become equivalent. The strong form of T-
mixing ensures that the correlations not only decay, but decay quickly enough so that lim

t→∞

∫ t
0

〈
A(Γ)B(StΓ)

〉
0
−〈A(Γ)〉0

〈
B(StΓ)

〉
0

ds = LA ∈ R.

The weak form of T-mixing is sufficient for the cases discussed in this paper.
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lim
t→∞

〈p(t)〉0 = 〈p(0)〉1
〈
e−β0H(0)+β1H(0)

〉
1∫

D
dΓ e−β1H(Γ)∫

D
dΓ e−β0H(Γ)

= 〈p(0)〉1
∫
D
dΓe−β0H(0)+β1H(0)e−β1H(Γ)∫

D
dΓe−β1H(Γ)∫

D
dΓe−β1H(Γ)∫

D
dΓe−β0H(Γ)

= 〈p(0)〉1
∫
D
dΓe−β0H(0)∫

D
dΓe−β1H(Γ)

∫
D
dΓe−β1H(Γ)∫

D
dΓe−β0H(Γ)

= 〈p(0)〉1

(C.4)

This shows that in the long time limit, the pressure will
become the equilibrium pressure of the canonical distribu-
tion with at temperature T1. The only condition required was
that the dynamics was mixing.

Another example would be if in the initial state, the
distribution was a subset of the canonical ensemble, with
all x-positions of the particles fixed to be within the
range[0, Lx/2]. We can write that distribution as,

f(Γ) =
e−β1H(Γ)S(qx)∫

D
dΓ e−β1H(Γ)S(qx)

(C.5)

where S(qx) =
∏
i=1 (Θ(qxi) + Θ(−qxi + Lx/2) + 1) is

a switch that is 1 when all qxi are in the range [0, Lx/2],
and zero otherwise and Θ is the Heaviside-step function.
Now consider the dynamics be Nosé-Hoover thermostatted
dynamics with a thermostat of temperature T1. Then equa-
tions (C.1) and (C.2) will apply and it can be shown, that for
a property such as the pressure, p(Γ):

lim
t→∞

〈p(t)〉0 = lim
t→∞

∫
D
dΓ p(StΓ)e−β1H(Γ)S(qx)∫
D
dΓ e−β1H(Γ)S(qx)

= lim
t→∞

∫
D
dΓp(StΓ)S(qx)e−β1H(Γ)∫

D
dΓe−β1H(Γ)S(qx)

∫
D
dΓe−β1H(Γ)∫

D

dΓe−β1H(Γ)

= lim
t→∞
〈p(t)S(qx(0))〉1

∫
D
dΓe−β1H(Γ)∫

D
dΓe−β1H(Γ)S(qx)

= 〈p(0)〉1〈S(qx(0))〉1
∫
D
dΓe−β1H(Γ)∫

D
dΓe−β1H(Γ)S(qx)

= 〈p(0)〉1
∫
D
dΓe−β1H(Γ)S(qx)∫
D
dΓe−β1H(Γ)

∫
D
dΓe−β1H(Γ)∫

D
dΓe−β1H(Γ)S(qx)

= 〈p(0)〉1.
(C.6)

In this case, although the initial distribution is a step
function and this distribution is not preserved by any dynam-
ics in D, it is not the properties of the initial distribution that

are important in the results, but the properties of the equilib-
rium distribution that the system is relaxing to.

Appendix D. Computation of low order distribution
functions as averages of phase functions

In a nonequilibrium system with pair interactions only, the
configurational component of the pressure tensor and the in-
ternal energy are functionals of the anisotropic pair distribu-
tion function g(r), only. All higher order distributions have
no effect on these quantities. The pair distribution is defined
as: given one particle is at the origin, what is the probability
per unit volume that a second particle is located at a position
r away from the origin.

If the system is in a time stationary state, the pair dis-
tribution may be expanded as a time independent spherical
harmonic expansion:

g(r) =

〈∑
m,n

Am,n(r)Y em,n(θ, φ) +Bm,n(r)Y om,n(θ, φ)

〉
,

(D.1)
where

Y em,n = cos(mφ)Pmn (cos θ),

Y om,n = sin(mφ)Pmn (cos θ)
(D.2)

are the usual polar and azimuthal angles. Here we follow the
notation of Vol II. of Morse and Feshbach [14].
The expansion coefficients can be obtained from ensemble
averages of appropriate phase functions:

Am,n(r) =
εm(2n+ 1)(n−m)!

4πρ(n+m)!r2
〈
Y em,n(θ, φ)

〉
r,r+dr

Bm,n(r) =
εm(2n+ 1)(n−m)!

4πρ(n+m)!r2
〈
Y om,n(θ, φ)

〉
r,r+dr

(D.3)
where εm = 1 : m = 0; εm = 2 : m 6= 0 and 〈...〉r,r+dr
denotes an ensemble average taken over a thin shell of radius
r. In (D.3) 3N momenta have been integrated out as well as
3(N − 1) coordinates leaving only the relative positions of
pair of particles expressed in polar coordinates. These aver-
ages are computed in the nonequilibrium steady state where
the pair distribution function is time independent.

Averages of physical properties can then be obtained by
integrating the appropriate expansion coefficients over the
pair separation. For instance in a fluid undergoing steady
planar Couette shear flow, γ̇ = ∂ux/∂y, the configurational
component of the xy-element of the ensemble averaged pres-
sure tensor,

〈
Pφxy
〉

is given exactly by〈
Pφxy
〉

=
−2πρ2

5

∫ ∞
0

dr B22(r)r3
du(r)

dr
, (D.4)

where u(r) is the potential energy of two atoms a distance
r apart (pair interactions only are assumed). This shows
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how low order distribution functions like the pair distribu-
tion g(r) can be expressed as ensemble averages of phase
functions, as in (D.3).

We note that even in a system with pair interactions only,
higher order thermodynamic quantities like specific heats
will be functionals of the 1, 2, and 3-body distribution func-
tions. So in systems with a given order for potential en-
ergy interactions the order of the distribution function that
is needed to calculate thermodynamic averages, is property
dependent.

In nonequilibrium steady states the N -particle distribu-
tion function approaches a fractal in the long time limit [15].
In macroscopic systems that obey Navier-Stokes hydrody-
namics and which are non turbulent, the Kaplan-Yorke di-
mension [16] of the steady state attractor is only ~10 less
than the ostensible dimension of phase space (6 times Avo-
gadro’s Number – ~6 × 1023) [15]. All distributions that
are of lower order than the Kaplan-Yorke dimension are ex-
pected to be smooth. This means that distributions in such
systems are smooth up to a very high dimension indeed.
However any dimensional reduction no matter how small of
course makes the entropy ill defined since the entropy, un-
like other thermophysical properties, is a functional of the
full N -particle phase space distribution.
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