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Abstract: We confirm that the conduction of heat in a system of quasi-one-dimension hard disks, with mechanically
connected heat reservoirs of different temperatures, is anomalous. We consider systems of different sizes at the same density
with the same externally applied temperature gradient and observe that the anomalous behaviour changes with system size.
For systems with less than 1000 disks we find that the heat flux vector varies with the square root of the number of disks
whereas for systems with more than 1000 disks the heat flux vector varies with the 2/3 power of the number of disks.
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I. INTRODUCTION

The thermal conductivity κ is the ratio of the heat flux
vector to the negative of the temperature gradient. In a one-
dimensional system kappa is well known to be anomalous [1]
as the conductivity increases with system size (L) or number
of particles (N ) at constant density. Likewise the dynamics of
a one-dimensional system of hard rods is also trivial as each
collision results in the interchange of the velocities of the col-
liding pair. In such a system a velocity input at one boundary
exits from the opposite boundary after the full sequence of
collisions i, i+ 1 for i = 1, N in ascending order. There can
be no chaotic dynamics in a one-dimensional system gov-
erned by a differential equation. The behavior of the thermal
conductivity depends on the details of the system but typi-
cally for an anomalous system we observe κ ∝ Nα. In fact, it
has even been suggested that by changing the coupling of the
oscillator chain to the heat reservoirs at the ends, normally
thought to be a benign procedure, one can tune the exponent
α over a range of values [2]. Another example is the diver-
gence of the thermal conductivity co-efficient with the length,
observed in chains of anharmonic oscillators [1, 3, 4] and
hard-point gases [5, 6]. The same type of anomaly has been
detected for a quasi-1D model consisting of spheres confined

in a narrow channel [7], a variant of Sinai’s pencase model [9].
The pencase model without heat reservoirs has been proved
to be ergodic in four dimensions and hyperbolic in three [10].
The heat reservoirs at the ends were implemented as follows:
whenever an extremal particle collided with the reservoir
adjoining it, its velocity was randomly drawn from the Boltz-
mann distribution P (vx, vy) ∝ vx exp[m(v2x+v2y)/(2kBT )]
where T is the reservoir temperature. Using a narrow chan-
nel and a random collision model the conductivity scales
as a power law in N over two decades from N = 10 to
N = 1000, with an exponent very close to the analytical
prediction of 1/3, although there is some sensitivity to the
mass ratio m1/m2. In a following paper [8] the authors find
that the scaling depends crucially on the choice of boundary
conditions: for periodic boundary conditions as opposed to
open boundary conditions with heat baths, the exponent is
1/2.

Posen and Campbell [11] have shown that chaos in the
sense of positivity of Lyapunov exponents is neither nec-
essary nor sufficient to guarantee normal transport in 1D
lattices. The absence of momentum conservation, even er-
godicity of an isolated system is not necessary for normal
transport and they demonstrate clearly the validity of the
Fourier law in a pseudo-integrable particle chain. Recent ap-
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plications of mode coupling theory [12] predict generically
that the thermal conductivity diverges as N1/3 as the size
increases for systems terminated with heat baths at the ends.
The N2/5 dependence is observed in molecular dynamics,
which is attributed to a crossover effect. Other mode cou-
pling approaches [13, 15] show that the cubic nonlinearity
predicts a t−2/3 decay of the heat current autocorrelation,
and thus α = 1/3. It is claimed that this approach with
the renormalization group calculation [14] support the idea
that the mechanisms yielding anomalous transport in 1D are
largely universal. Anomalous transport in one-dimensional
translation invariant Hamiltonian systems with short range
interactions has been shown [16] to belong in general to the
Kardar-Parisi-Zhang (KPZ) universality class [17, 18]. Mode
coupling theories developed previously are found to be ade-
quate for weakly nonlinear chains but in need of corrections
for strongly anharmonic inter-particle potentials.

In two-dimensions the situation with the thermal conduc-
tivity is much less clear however, the dynamics of a two-
dimensional system of hard disks is chaotic with the resul-
tant loss of information about the initial conditions and an
expected decay in correlations. Preliminary results for the
system studied here [23] show that the thermal conductivity
is anomalous and α = 1/2 but more extensive calculations
reported here show that this is not the final story.

II. THE MODEL

The model we study here consists of hard sphere particles
confined to a long narrow rectangle with periodic bound-
ary conditions in the transverse (y) direction, and heat baths
attached at the two ends. For the system to be quasi-one-
dimensional the width of the rectangle must be less than
twice the diameter of the particles, and here both the particle
diameter and its mass are equal to one and we use Ly = 1.15,
so that a reasonable range of incidence angles at collision is
obtained. Here we use a density of 0.8 but this should have
no effect on the qualitative results. The transport of energy
along the rectangle remains quasi-one-dimensional, with the
transverse degree of freedom serving as an additional velocity
randomizing effect.
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Fig. 1. The quasi-one-dimensional (QOD) hard-disk system. The
width of the system Ly = 1.15 < 2 so that the disks remain in the
same order. The system is periodic in the y direction so has images

above and below

In 2007 a deterministic thermal reservoir was introduced
that coupled the QOD system (see fig.(1)) of hard disks to

temperature reservoirs dynamically by changing the collision
rule at the reservoir boundary [19]. For a collision with a
reservoir boundary the tangential y-component of momen-
tum is unchanged but the normal x-component after collision
becomes

mv′x = εmvres − (1− ε)mvx, (1)

where mvres is a reservoir momentum related to the reservoir
temperature by mvres =

√
2Tres and ε is a reservoir cou-

pling parameter which we typically take to be equal to 0.5.
The reservoir momentum is always directed into the system
so TL is positive and TR is negative. As ε → 0 the system
decouples from the reservoir and the boundary becomes a
hard wall, and as ε→ 1 the incoming momentum is replaced
by the reservoir momentum. For systems with energy input
into the x-direction only, the energy in x and y-directions can
interchange locally through the collisional dynamics achiev-
ing some measure of local thermodynamic equilibrium at
each particle. The quasi-one-dimensional (QOD) system that
we use here can be considered to be intermediate between 1
and 2 dimensions as the width Ly < 2 maintaining the fixed
particle ordering of a 1-dimensional system. As the size of
the second dimension of the container holding the hard disks
increases from one hard disk diameter to two hard disk diame-
ters we go from one-dimensional hard rods with fixed particle
ordering to a full two-dimensional system at more than two
diameters where particle ordering disappears. As such we
can imagine the QOD system as a transition between one
and two-dimensional behaviour which we can in principle
explore by increasing the value of Ly .

A recent study of this system in contact with two reser-
voirs of the same temperature [22, 24, 27] has shown that
the active mechanical coupling leads to entropy production
near each reservoir which then flows into the reservoir. These
effects are local and involve a limited number of boundary
layer particles regardless of the system size.

Treating this as a dynamical system the Lyapunov spec-
trum and Lyapunov vectors, both Gram-Schmidt and covari-
ant, have been studied extensively [26] and field theory deriva-
tions of the structure of the Lyapunov modes has been ob-
tained [25].

It is a very clean and essentially exact calculation for a
computer. The interaction with the heat reservoirs is mechan-
ical and has no random elements. There is no thermostatting
apart from that implied by the interaction of boundary par-
ticles with the reservoirs. The statistical properties of the
system can be obtained by calculating the velocity distribu-
tions of each particle and various particle-particle correlation
functions. In this way the densities and fluxes of energy and
entropy can be calculated with almost no approximations.

II. 1. Microscopic Heat flux vector
For a system of spherical particles the microscopic repre-

sentation for the instantaneous heat flux vector at position r
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and at time t is given by [20, 21]

JQ(r, t) =

N∑
i=1

Uiviδ(r− ri)

−1

2

N∑
i,j

rijFij · (vi + u(ri)− u(r))

×
∫ 1

0

dλδ(r− ri − λrij)

(2)

where Ui = 1
2m(vi − u(r))2 is the internal energy of par-

ticle i, u(r) is the local streaming velocity at position r and
u(ri) is the local streaming velocity at the position of par-
ticle i. For this QOD system the local streaming velocity is
zero everywhere. We define the vectors rij = rj − ri and
mvij = mvj −mvi. For hard core particles the interaction
force is an impulse Fij = (r̂ij · vij)r̂ijδ(t− tij), where tij
is the time at which a collision occurs between particles i and
j, and r̂ij is the unit vector in the direction of rij .

In the integral in Eq. (II. 1.), the delta function moves
along the line joining the centre of particle i, ri with the cen-
tre of particle j, rj , as λ goes from 0 to 1, so to approximate
this integral we use a single strip, thus half the contribution
at ri and half at rj . This is analogous to assigning half the
potential energy of interaction to each particle for particles
interacting with a continuous potential. The one strip approx-
imation to the integral is 1

2 (δ(r− ri) + δ(r− rj)) so Eq. (II.
1.) becomes

JQ(r, t) =

N∑
i=1

Uiviδ(r− ri)

−1

4

N∑
i,j

r̂ij(r̂ij · vij)r̂ij · (vi + vj)

×δ(t− tij)(δ(r− ri) + δ(r− rj))

(3)

In this form it is clear how the individual contributions are
assigned to each particle. The kinetic contribution is at ri
while there are two potential contributions, one at ri and the
other at rj . Notice that if vi + vj = 0 there is no collisional
energy transfer so the transfer of energy requires particles i
and j to have velocities of different magnitude.

We will be interested in both the total heat flux JQ(t) and
the heat flux vector at the position of each particle JQ(ri, t).
The heat flux at the position of each particle will determine
whether energy continuity is satisfied everywhere in the sys-
tem as, on average, the same amount of energy must passes
through any vertical line regardless of its position. For the
QOD system the local heat flux JQ(ri, t) has potential contri-
butions from two sources, either from a collision of particles
i and i+ 1 or from a collision of particles i− 1 and i.

Returning to the heat current density in Eq. (II. 1.), we
can define the heat current at some arbitrary x value. Instanta-
neously, there is only a kinetic contribution if a particle has its

coordinate xi = x, and there is only a potential contribution
if two particles collide where for one xi < x and for the
other xj > x so that the line of delta functions in Eq. (II. 1.)
has one at position x. The time average of this instantaneous
quantity must satisfy the continuity equation.
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Fig. 2. Heat flux continuity across the QOD hard-disk system. The
red points are the kinetic contribution, the blue points are the poten-
tial contribution and the green points are the total heat flux vector at
the position of each particle. These results are for a system of 960

disks but similar results are observed at other system sizes

To produce a nonequilibrium steady state it is sufficient
to have reservoirs of different temperature on each side of the
QOD system. The energy entering the system from a bound-
ary with reservoir momentum mvres during a collision with
a particle of incoming momentum mvx is given by

∆eres =
m

2
(v′

2
x − v2x) =

=
mε

2
[εv2res + 2(ε− 1)vresvx + (ε− 2)v2x].

(4)

The time average of this quantity gives the flux of energy
through the system, so for a steady state the energy flux from
the left-hand side reservoir into the system ∆eL must be
equal in magnitude but opposite in sign to the heat flux from
the system into the right-hand reservoir ∆eR. Therefore in a
nonequilibrium steady state the following time averages must
be equal

〈∆eL〉 = 〈JQx〉Ly = −〈∆eR〉. (5)

where JQx = JQ(x, t). The energy flux at the boundaries is
controlled by both vres (or the reservoir temperature) and the
value of ε, going to zero as ε→ 0 and the reservoirs become
disconnected from the system.

III. THE RESULTS AND CONCLUSIONS

We fix the right-hand side reservoir temperature to be
TR = 2 and the externally applied temperature gradient
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Tab. 1. The simulation state points considered. For all systems the density ρ = 0.8 and TR = 2. As TR = 2 is fixed and N varies, the
left-hand side temperature TL varies so that the temperature gradient∇T = −0.01150 remains fixed. B is the number of blocks of 109

collisions used at each particular state point

N TL Lx ∆eL JQ × Ly ∆eR B

80 2 86.957 0.2868± 0.0002 0.2835± 0.0002 0.2868± 0.0002 8

160 4 173.91 0.3959± 0.0005 0.3959± 0.0005 0.3936± 0.0005 8

320 6 347.83 0.557± 0.0010 0.557± 0.0010 0.555± 0.0010 7

640 10 695.65 0.8098± 0.0013 0.8086± 0.0013 0.8098± 0.0012 18

960 14 1043.5 1.0304± 0.0032 1.0303± 0.0028 1.0303± 0.0027 20

1280 18 1391.3 1.2325± 0.0044 1.2318± 0.0043 1.2330± 0.0043 16

1920 26 2087.0 1.6001± 0.0068 1.6004± 0.0067 1.607± 0.011 16

2560 34 2782.6 1.936± 0.012 1.936± 0.008 1.936± 0.007 18

3840 50 4173.9 2.543± 0.050 2.563± 0.033 2.578± 0.036 14

5120 66 5565.2 3.127± 0.056 3.13± 0.03 3.130± 0.016 24

10240 130 11130 5.13± 0.36 5.03± 0.23 4.952± 0.032 24

∇T = (TR − TL)/Lx to be −0.01150, so that the value
of Lx (or the system size) determines left-hand side reservoir
temperature TL. We consider the heat flux vector at the posi-
tion of each particle and its two contributions, the kinetic and
potential components in Fig.( 2). The kinetic heat flux vector
varies with particle position, as does the potential heat flux
vector, but the two contributions combine to give a constant
value, except in a region near the hot reservoir. This anomaly
appears to come from the kinetic contribution to the heat
flux and suggests that boundary effects near the hot reservoir
extend further into the system than at the cold reservoir.
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Fig. 3. The x component of the heat flux vector times Ly , JQLy

(blue plus signs), the energy flux into the system from the left-hand
reservoir ∆eL (red crosses) and the energy flux out of the system
into the right-hand reservoir −∆eR (green circles). For all systems
the three different methods give the same results. Very close to
N = 1000 there is a change in the anomalous behaviour of the

energy flux from N1/2 to N2/3

An overview of simulation state points is given in Table.
(1). The accuracy of the results is estimated by calculating
the standard deviation from N blocks and extrapolating to
N = 1. Thus if σ(N) is the standard deviation calculated
from N block averages then the standard deviation of the full
data set is estimated as σ(1) = limN→∞ σ(N)/

√
N .

The results in Fig. (3) here show that a QOD system of
hard disks with deterministic thermostat interaction has a
different anomalous behaviour to a similar system [7] with
random collisions and reservoir momenta chosen randomly
from a canonical distribution at constant temperature. Fur-
ther this QOD model, with exact collision dynamics within
the system, shows different anomalous behaviour depend-
ing upon system size. At N = 1000 there appears to be the
transition point between N1/2 and N2/3 behaviours. Mode
coupling theories seem to agree with the results observed
in simulations when the correct couplings are input. Here it
seems that the coupling terms change with system size so
perhaps the representation as fluid elements rather than as
individual atoms occurs at 1000 particles.
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