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Abstract: In this paper we consider a system with two nonlinear oscillators which are coupled via a nonlinear interaction.
In order to excite the system, we use two external coherent fields. Two oscillators have different frequencies. It follows
from numerical simulation that evolution of the system is similar to that of a combination of n-photon states. Therefore, the
considered system behaves as so-called nonlinear quantum scissor. Nevertheless, evolution of the system generates Bell-like
states in several times with very high probability. Because of the nonlinear properties of oscillators and their interaction, the
system creates a truncation of optical states, which leads to obtain two-qubit states. It will also be shown that these states
appear several times in the qutrit-qutrit system.
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I. INTRODUCTION

Quantum information and quantum computation belong
to the field that concentrates studies of physicists for several
decades. There are numerous published papers in this area
and some of them are in the form of monographs [1, 2]. One
of the central problems in this field is finding mechanisms to
generate entanglement states in proper physical systems. The
first task is find how to make a system which can create a set
of n-photon states. For this purpose several interesting nonlin-
ear optical phenomena are used, in particular the Kerr effect
that is created by proper physical systems, named usually as
nonlinear Kerr-like systems. These systems are well-known
in literature. They consist of two nonlinear components that
interact with each other in a nonlinear way. Using laser to
impact optical systems is a popular method to seek special
phenomena in nonlinear optics. Thus one can obtain the sys-
tems which are able to create a finite number of states from

the states in the infinite-dimension Hilbert space. Such sys-
tems are known as quantum scissors. The idea of quantum
scissors has been initiated by Jensen and Maier, and later
developed by other authors to construct the linear quantum
scissors [3,4] or nonlinear quantum scissors [5-7], depending
on the used optical elements and the type of their interaction.
Recently, some special systems are considered, in which the
interaction between two nonlinear oscillators can be modeled
with use of Dirac - delta function [8,9] or Werner-like states
[10]. The most important result of these considerations is the
generation of Bell-like states – the maximally entangled states.
In these papers some interesting phenomena such as sudden
death and birth of entanglement [11] or an exciting field phase
effect [12] have been discovered. In this paper we propose
a system which can also achieve the Bell-like states, but it
has several special characteristics that are different from oth-
ers. Our system is a nonlinear coupler pumped in two modes
with nonlinear interaction between oscillators involved in
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the system. We show that under appropriate conditions the
time evolution of the system is restricted to a superposition
of vacuum, single-photon and two-photons states, so the pro-
posed system acts as a nonlinear quantum scissor. Next, we
compare our results with that obtained for systems in which
interaction between oscillators is linear pumped in two modes
[5,6], and also interaction between oscillators is nonlinear
pumped in one modes [7]. We show that our system creates
the state that has better entanglement than that obtained in [7]
with the same values of parameters involved in the problem.
Moreover, we realize that the result obtained by our system
does not depend on phase deviation between two external
fields that are pumped to modes. This result is more valuable
in comparison with the case considered in [5].

II. THE MODEL

Our model is based on two oscillators which are charac-
terized by Kerr nonlinearities χa and χb with the field modes
a and b, respectively. The oscillators are located in a high-Q
cavity and they interact with themselves in a nonlinear way.
Moreover, in the model, two field modes corresponding to
two Kerr - like oscillators a and b are pumped by two external
classical fields, so the model is different from that in [8]. In
the interaction picture, the effective Hamiltonian describing
the system has the following form

Ĥ = ĤNL + Ĥinter + Ĥextra, (1)

where

ĤNL = ĤNL(a)+ĤNL(b) =
χa

2
(â†)2â2+

χb

2
(b̂†)2b̂2, (2)

Ĥinter = ε(â†)2b̂2 + ε∗(b̂†)2â2, (3)

Ĥextra = αâ† + α∗â+ βb̂† + β∗b̂. (4)

In expression (1), the component ĤNL describes non-
linear oscillators in two modes a and b, Ĥinter is a term of
Hamiltonian that describes interaction between the modes,
whereas the component Ĥextra corresponds to interaction of
the modes with external classical fields. â† and b̂† are boson
creation operators corresponding to two mode a and b while
â and b̂ are boson annihilation operators, respectively. The
parameter ε is a constant which represents the strength of
internal interaction between two oscillators in the model. In
order to describe strength of coupling between the modes
a and b with external classical fields, we use complex pa-
rameters α and β, respectively. It is worth noting that the

component Ĥinter does not have the terms containing â†âb̂†b̂
elements and their combination.

In this section, we restrict ourselves to the case with-
out damping. Then evolution of the system is described by
time-dependent wave function which is determined by the
Schrödinger equation in interaction picture

i
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 , (5)

where, wave function |ψ(t)〉 describing evolution of the sys-
tem can be expanded in the n-photon Fock states with com-
plex probability amplitudes cmn(t) in the following form

|ψ(t)〉 =

∞∑
m,n=0

cmn(t) |m〉a |n〉b . (6)

Substituting (6) into (5) we get set of equations of motion
for cmn(t) (use units h̄ = 1)

i
d

dt
cmn(t) =

[
1

2
χam(m− 1) +

1

2
χbn(n− 1)

]
cmn(t)

+ ε
√

(n+ 2)(n+ 1)m(m− 1)cm−2,n+2(t)

+ ε∗
√

(m+ 2)(m+ 1)n(n− 1)cm+2,n−2(t)

+ α∗
√
m+ 1cm+1,n(t) + α

√
mcm−1,n(t)

+ β∗
√
n+ 1cm,n+1(t) + β

√
ncm,n−1(t).

(7)
Because our system consists of two oscillators which are

pumped by external classical coherent fields, there is not
conservation of the total energy of the system. Thus, the
number of photon can increase in the modes. As a result,
the system dynamics will include Fock states of an infinite
number of photons. Nevertheless, if we suppose that the ex-
ternal coherent fields that pump into modes are weak and
have a constant strength, we can use the approach given in
the formalism of nonlinear quantum scissors. This approach
is discussed widely in [6-8]. Accordingly to this, the wave
function (6) can be truncated to the wave function that is
described by only by some Fock states. It follows from the
form of the nonlinear component of Hamiltonian ĤNL that
the wave function of system can be expanded only to four
states: |0〉a |2〉b, |2〉a |0〉b, |1〉a |2〉b and |2〉a |1〉b. Therefore,
the wave function can be written in the form

|ψ(t)〉cut = c02(t) |0〉a |2〉b + c12(t) |1〉a |2〉b
+ c21(t) |2〉a |1〉b + c20(t) |2〉a |0〉b .

(8)
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Fig. 1. The time-evolution of fidelity F. The coupling strengths α = π
25

rad/s, ε = π
25

rad/s and the nonlinearities χa = χb = 25 rad/s.
Time unit is scalled in 1/χ

Using (7) we can obtain equations for complex probability
amplitudes c02(t), c12(t), c21(t) and c20(t) as follows

i
d

dt
c02(t) = 2ε∗c20(t) + α∗c12(t),

i
d

dt
c12(t) = αc02(t),

i
d

dt
c21(t) = αc20(t),

i
d

dt
c20(t) = 2εc02(t) + αc21.

(9)

The equations (9) can be solved if we know the initial state of
the system. We suppose that the initial state (in t=0) of the sys-
tem has two photons in mode a and no photon in mode b in the
cavity. It means that we have c02(0) = c12(0) = c21(0) = 0
and c20(0) = 1. Moreover, we assume that two external co-
herent fields have the same strength, i.e., the parameters α and
β are real numbers and α = β. Then, solution of equations
(9) is obtained exactly in the following analytical form:

c20(t) =
1

2λ

[(
λ+ ε2

)
cos (µ1t) +

(
λ− ε2

)
cos (µ2t)

]
,

c21(t) =
−i

2αλ
[
(
λ− ε2

)
µ1 sin (µ2t)

+
(
λ+ ε2

)
µ2 sin (µ1t)],

c12(t) =
αε

2λ
[cos (µ1t)− cos (µ2t)] ,

c02(t) =
−iε
2λ

[µ1 sin (µ1t)− µ2 sin (µ2t)] ,

(10)

where

λ = ε
√
α2 + ε2,

µ1 =
√
α2 + 2ε2 + λ,

µ2 =
√
α2 + 2ε2 − λ.

(11)

To explore these analytical results, we used a numeri-
cal method to calculate the fidelity of output state ρ̂(t) =
|ψ(t)〉 〈ψ(t)|. Here, the wave function |ψ(t)〉 is determined
directly from

|ψ(t)〉 = exp
(
−iĤt

)
|2〉a|0〉b. (12)

Then, we calculate the closeness of two quantum states,
namely between |ψ(t)〉 and truncated |ψ(t)〉cut for showing
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Fig. 2. Time-evolution of entropy of entanglement E of the generated |ψ(t)〉 (dots) and the truncated state |ψ(t)〉cut (solid curve). The
coupling strengths α = π

25
rad/s, ε = π

25
rad/s and the nonlinearities χa = χb = 25 rad/s. Time unit is scalled in 1/χ

that the truncation is ideally made. The quantity measuring
this closeness is so-called fidelity F which has been defined
clearly in [6] and [7]. The result of calculation is shown in
Fig. 1.

In more detail, we can see from Fig. 1, which presents the
time evolution of fidelity, that fidelity of |ψ(t)〉cut has values
approximally to unity. The declination of fidelity from unity
is only smaller than 10−3. It means that description of time
evolution of the considered system by means of analytical
expression (8) is quite good. In the further part hereof we
will use these analytical results to analyze the generation of
Bell-like states.

III. EVOLUTION OF SYSTEM AND EXHIBITION
OF BELL-LIKE STATES

This section will be devoted to characterize the states
which are created by our model. An important feature of
this model is its ability to make maximally entangled states,
the output state |ψ(t)〉cut. To show the entanglement of the

state |ψ(t)〉cut , we describe time-evolution of entanglement
in terms of the von Neumann entropy, that is defined in
[1]. With the state |ψ(t)〉cut in (8), the full density matrix
ρab = |ψ〉cutcut 〈ψ| shows the time-evolution of the system
in time. The partial trace of ρab with respect to the mode b is

ρb = Traρab = |c20|2|0〉bb 〈0|+ c20c
∗
21|0〉bb

〈1|+ c21c
∗
20|1〉bb 〈0|+ |c21|

2|1〉bb 〈1|

+
(
|c02|2 + |c12|2

)
|2〉bb 〈2| .

(13)

Then, the entropy von Neumann (that can be seen as one of
the measures of entanglement of the system) is

E = −Trρa log2 ρa = −Trρb log2 ρb =

− λ1log2λ1 − λ2log2λ2,
(14)

where λ1 and λ2 are eigenvalues of ρb. The entropy of entan-
glement is presented in the Fig. 2.

Fig. 3. Probabilities that the system in the |2〉a|0〉b (bold solid curve), |2〉a|1〉b (thin solid curve), |1〉a|2〉b (dashed curve), |0〉a|2〉b (dot
curve) and their numerical results (cross marks). The parameters are the same in the previous figures
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Fig. 4. The fidelities corresponding to the Bell - like |B1〉 (solid curve), |B2〉 (dot-dashed curve). The parameters are the same in the
previous figures

It is easy to see that the maximal entropy of entanglement
of the state |ψ(t)〉cut is approximately equal to 1[ebit] for
several moments of time. This result demonstrates the fact
that the system behaves as a nonlinear quantum scissor which
can be used to generate maximally entangled states. In detail,
the main maximum values of entanglement separate from
each other with a period T1≈12.5 (1/χ unit). Besides that,
the extra maximum values of entanglement are modulated
by an oscillation with period T2≈250 (1/χ unit). Moreover,
time-evolution of entanglement of |ψ(t)〉cut can be described
in terms of the qutrit-qutrit system. This manifestation allows
us to expect that the Bell-like states may be generated in sev-
eral times. To check our hypothesis, we calculated the prob-
abilities of observation of the system in the states |0〉a |2〉b,
|2〉a |0〉b, |1〉a |2〉b and |2〉a |1〉b. The results are demonstrated
in Fig. 3.

In Fig. 3 we can see in several times that probabilities of
states are approximately 1

2 in pairs, especially for |0〉a |2〉b
and |2〉a |0〉b states. Consequently, we believe that, the system
can generate Bell - like states which have maximal entropy
of entanglement equal to 1[ebit]

|B1〉 =
1√
2

(|2〉a|0〉b + i|0〉a|2〉b) , (15)

|B2〉 =
1√
2

(|2〉a|0〉b − i|0〉a|2〉b) . (16)

To show the fact that the creation of Bell - like states |Bi〉
has been made, we calculate the fidelities |〈ψ(t)| Bi〉| and
plot the results in Fig. 4.

Moreover, Fig. 3 shows that, sometimes the probabilities
of state pairs |0〉a |2〉b and |2〉a |1〉b, |2〉a |0〉b and |1〉a |2〉b
are nearly to 1

2 . Therefore, we can expect that the evolution

of the system will generate the states

|B3〉 =
1√
2

(|0〉a|2〉b + |2〉a|1〉b) , (17)

|B4〉 =
1√
2

(|0〉a|2〉b − |2〉a|1〉b) , (18)

|B5〉 =
1√
2

(|2〉a|0〉b + |1〉a|2〉b) , (19)

|B6〉 =
1√
2

(|2〉a|0〉b − |1〉a|2〉b) . (20)

The fidelities corresponding to states |B3〉, |B4〉, |B5〉
and |B6〉 are plotted in Fig. 5.

It follows from Fig. 4 and Fig. 5 that while the fidelities
corresponding states |B4〉 and |B6〉 are smaller than 0.7, the
fidelities corresponding to states |B1〉,|B2〉, |B3〉 and |B5〉
have maximal values closed to unity. It means that there
exist entangled states in evolution of our system. They are
not really Bell-states, but if we increase the coupling length
between oscillators, almost all of them have fidelities approx-
imately equal to unity. Consequently, oscillations between
states have a bigger frequency and our system behaves as
a two qubits system. Moreover, we observe that the results
are the same for cases β = α, β = −α and β = iα. This
means that the time evolution of our system does not depend
on the phase deviation between two external fields.

IV. DAMPING CASE

It is widely known that damping processes can affect
physical properties of our system and reduce the maximum
values of entanglement. Therefore, in this section we will
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Fig. 5. The fidelities corresponding to the Bell - like |B3〉 (thin solid curve), |B4〉 (dot-dashed curve), |B5〉 (bold solid curve) and |B6〉 (dot
curve) . The parameters are the same in the previous figures

concentrate on the influence of damping processes in the Bell-
like states creation. Let us assume that the losses of photons
in two cavities a and b are characterized by κa and κb , re-
spectively. The loss of photons in the cavities corresponds to
the annihilation of photons. Therefore, we can consider the
collapse operators in the following forms

Ĉa =
√

2κaâ

Ĉb =
√

2κbb̂.
(21)

In this case, the evolution of the system is described by
density matrix ρ̂ which obeys the master equation

dρ̂

dt
= L̂ρ̂, (22)

where L̂ is called Liouvillian superoperator. In the Makov
approximation, we can write the Liouvillian superoperator L̂
in the form

L̂ρ̂ = −i[Ĥ, ρ̂] + L̂lossρ̂, (23)

where L̂loss is the loss term of the Liouvillian superoperator
that describes the losses of photons in cavities

L̂lossρ̂ = Ĉaρ̂Ĉ
†
a −

1

2
(Ĉ†aĈaρ̂− ρ̂Ĉ†aĈa) + Ĉbρ̂Ĉ

†
b

− 1

2
(Ĉ†b Ĉbρ̂− ρ̂Ĉ†b Ĉb).

(24)

In order to find the evolution of the system in this case,
we have to know the form of the Liouvillian and solve the

Fig. 6. Fidelities F corresponding to the Bell-like states |B1〉 (solid lines) and |B2〉 (dashed lines) for the damping constants κa = κb=κ,
κ=χ/75 (a) and κ=χ/500 (b). Other parameters are remained as in the previous figures. Time unit is scaled in 1/χ
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master equation numerically. However, the form of master
equation (22) suggests that the evolution of our system can
be found in a series of potential function

ρ̂(t) = exp(L̂t)ρ̂(0), (25)

where ρ̂(0) is the density matrix that describes the state of
our system at t = 0.

Because the generation of Bell-like states achieves the
best results with the Bell-like states |B1〉 and |B2〉, in the
further part hereof we will neglect examination for the gener-
ation of other Bell-like states and only concentrate on Bell-
like states |B1〉 and |B2〉. As it has been mentioned at the
beginning of this section, because of the effect of damping
processes, we have to describe the evolution of our system
by a density matrix instead of a time-dependent wave func-
tion. Therefore, in order to find the fidelities corresponding
to the Bell-like states, we use the definition of fidelity F in
the matrix calculation

F = Tr[(
√
ρ̂cutρ̂

√
ρ̂cut)

1
2 ]

2
(26)

where ρ̂cut is a density matrix corresponding to the state that
is generated by our system and ρ̂ is a density matrix cor-
responding to the compared state. In order to compare our
results with the result created by a nonlinear coupler pumped
in one mode [10], we will show our results in the same values
of the parameters. The fidelities corresponding to the states
|B1〉 and |B2〉 are shown in Fig. 6.

We can see that if the effect of damping processes is small
enough (Fig. 6b), the generations of Bell-like states |B1〉 and
|B2〉 are very good. Nevertheless, for the more realistic situ-
ation, when the values of damping parameters increase, the
fidelities reduce vary rapidly. In order to compare with the
results in [10], we change the values of damping parame-
ters to κa = κb=κ=χ/75. The results from Fig. 6a show that
when the fidelity corresponding to the state |B1〉 increases,
the fidelity corresponding to the state |B2〉 decreases and vice
versa. Moreover, the maximum values of fidelities decrease
less suddenly than the case considered in [10]. This is a result
of resonance between two fields that pumped to two cavities
in addition to the natural resonance of nonlinear interaction
between two modes. The results in [19] and [20] have shown
a purification scheme that can reduce the effect of damping
processes. If we can do that, our system can be seem to be an
effective source of maximally entangled states.

V. CONCLUSIONS

We have considered a system including nonlinear oscilla-
tors that is coupled by nonlinear interaction pumped in two
modes. It has been shown that when the coupling constant
between modes is much smaller then nonlinearities, the states
with large numbers of photons can be neglected and the

evolution of the system can be expressed in a set of four
states |0〉a |2〉b, |2〉a |0〉b, |1〉a |2〉b and |2〉a |1〉b. Therefore
we can use the nonlinear scissors approach to analyse and
obtain the time evolution of system. We have shown that
our system can be seem to be a good source of maximally
entangled states. The maximally values of entanglement are
approximately equal to unity in a larger number of moments
of time than the results in [7]. Therefore, our system can
generate the Bell-like states with nearly the same results in
numerical simulation and analytical calculation. Besides that,
our calculations indicate the entanglement and evolution of
the system are independent of phase difference between two
coherent classical fields which are pumped to modes. The
result is different from ones created by nonlinear scissors
pumped in two modes with linear interaction between modes
[5]. With these specific characteristics, we can believe that
our system can not only be applied as a source of entangled
states, in particular Bell-like states, but also as an element of
more complex systems used in quantum computation.
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