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A Nosé-Hoover Thermostat Adapted to a Slab Geometry
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Abstract: A Nosé-Hoover (NH) type thermostat is considered for Molecular Dynamics (MD) simulations of confined
systems. This is based on a generalised velocity of the same generic form as the NH thermostat of Allen and Schmid, [Mol.
Sim. 33, 21 (2007)]. An unthermostatted confined region is sandwiched between two walls which are thermostatted. No
external shearing is imposed. Non-equilibrium Molecular Dynamics (NEMD) simulations were carried out of the time
evolution of the wall and confined region temperature after a jump in temperature of the walls. Relaxation of the confined
region temperature to the target value was found to be typically slower than that of the wall. An analysis of the system
parameter dependence of the lag time, τ , and departures from what would be expected from Fourier’s law suggest that
a boundary transmission heat flux bottleneck is a significant factor in the time delay. This delayed thermal equilibration
would therefore become an important factor when a time-dependent (e.g., oscillatory) temperature or shearing of the walls is
implemented using NEMD. Adjustments between the response time of the wall thermostat should be made compatible with
that of the rest of the system, to minimise its effects on the observed behaviour.
Key words: confined liquids, thermostatting

I. INTRODUCTION

Temperature control or ‘thermostatting’ is a key technical
tool in Molecular Dynamics (MD) simulations, and signifi-
cant effort has been devoted to this field over recent decades.
This is especially the case in Non-equilibrium Molecular
Dynamics (NEMD), where the application of an externally
imposed perturbation results in the system heating up. A ther-
mostat must be applied to achieve a steady state. The Nosé-
Hoover (NH) thermostat [1-3] gives the canonical distribution
of particle positions and momenta from continuously variable
deterministic and time-reversible trajectories. It has proved
to be one of the most popular constant temperature methods

employed in equilibrium MD and NEMD simulations. The
desired system temperature is achieved by a feedback mecha-
nism which incorporates an additional dynamical or friction
coefficient type variable. The fluctuations of this variable
are driven by the difference between the instantaneous ki-
netic temperature (defined through the instantaneous kinetic
energy) and the target temperature.

There are many modifications and generalisations of the
Nosé-Hoover scheme in the literature [4-9]. In particular
since the seminal paper by Rugh [10], different measures
of temperature have been considered as the basis of alterna-
tive thermostatting schemes. In fact, there are many phase
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functions whose average at equilibrium leads to the system
temperature [11, 12],

kBT =
〈∇H ·B(Γ)〉
〈∇ ·B(Γ)〉

, (1)

where B is a general vector field and Γ = (q1, ...,qN ,
p1, ...,pN ). Alternative measures of temperature can be ob-
tained by different choices of the vector field, B(Γ). For
example, B = (0, ..., 0,p1, ...,pN ) gives the conventional
kinetic temperature used in the original NH thermostat,
and B = (F1, ...,FN ) gives an example of the so-called
‘configurational’ temperature, 1/kBTconF = 〈−

∑
i∇i

·Fi〉/〈
∑
i F

2
i 〉, where Fi = −∇riU is the force acting on

particle i, and U is the potential energy of the system. A
variant of the NH thermostat based on the configurational
temperature has been developed [13].

Another type of Nosé-Hoover thermostat is the Galilean-
invariant thermostat, which acts on pairs of particles rather
than single particles [14, 15]. A deterministic, Galilean-
invariant thermostat based on relative velocities was derived
by Allen and Schmid [14], which we refer to as ‘NHASv’.
This can be expressed by the following equations of motion,

dri
dt

=
pi
mi

, (2)

dpi
dt

= Fi − ζVi, (3)

dζ

dt
=

1

Qζ

N∑
i

[
pi
mi
· Vi − kBT∇pi

· Vi

]
, (4)

where ζ is a dynamical variable or friction-like coefficient.
The constant, Qζ as in the original Nosé-Hoover method is
a thermostat ‘mass’ parameter whose magnitude determines
the extent of coupling of the thermostat to the system. In
the above extension of the NH approach, the quantity, Vi is
a function of (r,p) which can be considered to be a gener-
alised particle velocity. In the special case, Vi(r,p) ≡ pi the
formulas in Eqs. (2-4) reduce to the NH scheme. Averaging
of the last or the thermostatting equation, Eq. (4) yields the
expression for the controlled temperature, TKV ,

kBTKV =

〈∑N
i

pi

mi
· Vi

〉
〈∑N

i ∇pi
· Vi

〉 , (5)

which follows from the general definition of temperature in
Eq. (1) if B(Γ) is set to (0, 0, ..., 0,V1,V2, ...,VN ). In the
NHASv approach the generalised velocity is expressed in
the pairwise additive form, Vi =

∑
j 6=iVij . Also, Vij =

−Vji, where, Vij = (vij ·Wij)Wij = W 2
ij(vij · r̂ij)r̂ij ,

vij = vi − vj , and vi = pi/mi is a particle velocity. Wij is
a function of the distance between particles i and j. We note
that the NHASv thermostat can be considered to be a special

case of the generalised Nosé-Hoover equations discussed by
Kusnezov et al. [16]. More details on the NHASv thermostat
and its configurational temperature counterpart are given in
our publication [15].

In the case of confined systems, for example a system
with a slit geometry, the direct application of the above known
‘bulk’ thermostats may not be straightforward due to the sys-
tem’s geometrical constraints, and density and other system
property inhomogeneities. Further modifications to the ther-
mostatting methodology and implementation may be required.
Also, in the slit geometry case it is now widely recognised that
the thermostat should not be applied to the entire system but
only to its wall parts. Based on current knowledge, it is clear
that thermostatting schemes designed specifically for a con-
fined MD system that are physically realistic is a topic worthy
of further investigation. In this study the issue of temperature
control of a system with a slab geometry is considered, and
a suitable NHASv-like scheme is developed. The scheme is
presented in Sec. II and its performance is tested in Sec. III.
The focus of attention here is on the thermal relaxation time
between the wall temperature and that of the confined part of
the system.

II. NH TEMPERATURE CONTROL
OF A CONFINED SYSTEM

A schematic diagram of the confined system of slit geo-
metry which we employed is shown in Fig. 1. A slit pore of
infinite lateral extent could be created by applying periodic
boundary conditions in only the x- and y-directions, although
here we take it to be periodic in the z-direction as well (see
below).

x
y

z

A

B

C

Fig. 1. Schematic representation of the confined system used in the
simulations. Regions A and C are solid walls which confine the

liquid in region B. The system is periodic in the z-direction

Regions A and C represent the solid walls, and region
B is the confined part of the system, which can be a liquid,
a solid or a nonequilibrium steady state if a shear is imposed.
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The total energy of the entire system can be expressed
as H(r,p) = KA + KB + KC + UAA + UAB + UAC +
UBB+UBC+UCC , where the symbolsK and U denote the
kinetic and potential energy, respectively, within or between
regions indicated by the superscripts.
The slit geometry is a reasonable approximation for many
experimental conditions in diverse fields, such as tribology
(particularly elastohydrodynamic contacts) and high through-
put chemical devices and MEMS devices [17-20]. Also there
is increasing interest in liquids confined in nanosized geome-
tries, either at equilibrium or in flow, where the gap between
the walls need only be several molecules across. Thus, the sys-
tem configuration represented in Fig. 1 can be considered to
be relevant to a wide range of applications. In many respects,
there can be considerable differences between the behaviour
of systems in the bulk and in confinement. The boundary
walls influence the confined part of the system by reducing its
symmetry and causing physical property inhomogeneity in
the direction perpendicular to the walls. To study a confined
system most realistically the solid walls are best modelled
using an atomistic description.

The way in which the wall is constructed can affect the
material and dynamical properties of the modelled system.
In particular, it as has been shown by Bernardi et. al. [21],
that rigid walls with frozen wall atoms should be avoided.
Often simulations are carried out using a tethering potential
which acts as a series of ‘springs’ to constrain the wall atoms
to vibrate about their lattice sites [18, 22-24]. Such an ap-
proach introduces extra parameters such as the stiffness of
the tethering spring to the wall atoms. Also, the tethering acts
as an external force on the whole system and leads to the
nonconservation of the total momentum. Alternatively, the
wall can be built by introducing a stronger binding energy be-
tween the wall atoms than between the confined particles [25].
This obviates the need to have a tethering potential. All those
approaches have advantages and disadvantages but the last
construction procedure may be considered to be the most
realistic and amenable to statistical mechanical analysis, and
is therefore adopted in this study.

The issue of temperature control or equivalently the ‘ther-
mostatting’ of a confined system in molecular dynamics sim-
ulation has been the subject of many publications because
of its importance. This has been mainly in the context of
confined liquid flow, caused either by an internal pressure
gradient (Poiseuille flow) or by the relative sliding of the
confining walls (Couette flow). Heat is generated during such
a process which must be ‘extracted’ from the system to allow
it to reach a steady state. There are a number of options. In
the confined system (assuming here for it to be a fluid) the
thermostat could be applied to, (a) the wall particles only, (b)
the fluid particles only or (c) both the wall and fluid particles.
Recent studies have shown that the first option i.e., thermostat-
ting only the wall particles is the most physically realistic
procedure [21, 25, 26]. Also, in the case of the NH thermo-
stat the conservation of total linear momentum and a zero

initial value is required, which should be introduced in the
confined geometry treatment (this aspect has attracted little
attention in the literature). Different thermostatting strategies
have been proposed and implemented in studies of confined
systems [26]. New methods have been developed recently
[27]. The subject is still worth further investigation, and we
make a contribution to this field in this report.

In this work we show that the NHASv generalised veloc-
ity innovation can also be used to control the temperature of
confined systems in a slit geometry but using a different form
for the generalised velocity. We consider a sudden temper-
ature jump in the target temperature of the walls to test the
thermal equilibration behaviour throughout the whole system.
This is without imposed shear or pressure induced flow in
the central region (B). The following NHASv-like equations
control the temperature and enforce momentum conservation
of the system of slab geometry.

For region A, and i = 1, ..., NA,

drAi
dt

= pAi /m
A
i ,

dpAi
dt

= −∂(UAA + UAB + UAC)

∂rAi
− ζAVA

i ,

dζA
dt

=
1

QA

[
NA∑
i=1

pAi · V
A
i

mi
− gAkBT

]
,

(6)

for region B, and k = 1, ..., NB ,

drBk
dt

= pBk /m
B
k ,

pBk
dt

= −∂(UBB + UBA + UBC)

∂rBk
,

(7)

for region C, where l = 1, ..., NC ,

drCl
dt

= pCl /m
C
l ,

dpCl
dt

= −∂(UCC + UBC + UAC)

∂rCl
− ζCVC

l ,

dζC
dt

=
1

QC

[
NC∑
l=1

pCl · V
C
l

ml
− gCkBT

]
,

(8)

where VA
i = pAi − 1

NA

∑NA

j=1 pAj and VC
i = pCi −

1
NC

∑NC

j=1 pCj has the form of momentum relative to that
of the wall. Note that now the generalised particle velocity
VA
i (and VC

i ) depends of the momenta of all the particles
in the slab, (p1,p2, ...,pNA

), and its form is not the sum
of pairwise additive terms as in the AS scheme. The other
quantities are, gA =

∑NA

i=1∇pi
· VA

i = 3(NA − 1) and
gC =

∑NC

i=1∇pi · V
C
i = 3(NC − 1). The thermostat ‘mass’

for the two regions are QA and QC . A straightforward deriva-
tion shows that the total linear momentum of the entire system
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is a conserved quantity without any additional conditions, i.e.,
Ṗ = ṖA+ṖB+ṖC = 0, where PX denotes the momentum
in the region, X . As in the case of the original NH scheme,
a supplementary equation can be added to the equations of
motion which defines the following ‘energy’-like quantity,

H =H(r,p) +
1

2
QAζ

2
A + gAkBT ln(sA)

+
1

2
QCζ

2
C + gCkBT ln(sC),

(9)

which is a constant of motion. The subsidiary equations
for the Eqs. (6) to (8) have the simple form ṡA = sAζA ,
ṡC = sCζC .

Importantly, the proposed equations of motion gen-
erate the canonical distribution for particle momenta
and positions, which can be shown by demonstrating
that the density distribution ρ = ρ(r,p, ζA, ζC) =
exp(−βH(r,p)) exp(−βQAζ2A/2) exp(−βQCζ2C/2)
(where β = 1/kBT ) is a stationary solution of Liouville’s
equation.
In what follows we refer to the equations of motion presented
in Eqs. (6) to (8) as the ‘NHASs’ thermostatting method.

III. BENCHMARKING THE BEHAVIOUR
OF THE NHASS THERMOSTAT

In order to assess the performance of the NHASs ther-
mostat simulations on a simple test example of the confined
system geometry represented in Fig. 1 have been performed.
The studied system was periodic in the x (streamwise) and
y (spanwise) directions and the contents of the middle of
the cell were bounded by the walls in the z-direction. Each
wall was composed of four layers of atoms, and the entire
simulation cell was periodic in z-direction as well. This addi-
tional periodicity aspect ensured that the average density
of the system remained constant with time. The pair in-
teractions between the atoms in the confined region were
formed from a generalised Lennard-Jones (LJ) potential,
u(r) = a ε

[
(σ/r)

12 − c (σ/r)
6
]
. The chosen parameters,

a = 4, c = 1, ε/kB = 120 K and σ = 0.340 nm corre-
spond to the literature values for argon. The potential and
force were truncated at a pair separation of 2.5 σ without any
spline tapering up to that distance. The same interaction was
used between the confined and wall atoms. The quantity, c, is
often referred to as the ‘wetting’ parameter, and this controls
the affinity of the confined atoms for the walls. Stable FCC
solid walls (i.e., regions A and C) were introduced by using
a stronger binding energy between the wall atoms than the
confined system atoms. The LJ potential between the walls
atoms took the value, a = 8, while the other interactions in
the system employed a = 4. The results are given, unless
stated, in reduced units of σ for length, and (mσ2/kBT )1/2

for time, where kB is Boltzmann’s constant. Energy is in units

of ε and the atomic mass, m, is the unit of mass. The equa-
tions of motion were integrated with the Verlet leapfrog algo-
rithm [28] using a time step of 0.005. The system consisted of
N = NA+NB+NC atoms in total, whereNA = NC = 576
are for the walls, and NB = 1440 for the confined region B
(see the slab geometry annotation given on Fig. 1). A range
of L was considered to explore the effects of aspect ratio of
the simulation cell on the thermal relaxation. The cell side-
length in the x- and y-directions was kept constant and the
number of layers was increased in the z-direction. The values
of N increased through 1728, 1872, 2016, 2160, 2304, 2448
and 2592, in order to maintain a constant average density in
the central region.

In practice, for the NH-type thermostats, appropriate va-
lues of the thermostat mass can be established by perform-
ing preliminary simulations and finding a range where the
distribution function of the dynamical variable is gaussian
to a good approximation [29, 30]. The known dependence
of Qζ ∼ T and Qζ ∼ N in the case of the NH thermo-
stat [31, 32] was also exploited. In the calculations, QA and
QC in the range 400–800 were used.

An effective thermostatting scheme must direct the sys-
tem to a prespecified temperature and respond as quickly as
possible to a change in this temperature. The calculated tem-
perature should follow closely the target temperature and any
changes in it without any spurious trends or long-lived oscil-
lations. These apply to the wall atoms in the first instance,
but in addition, in the present confined system geometry, the
ability of the thermostating scheme to produce and maintain
the targetted temperature in the confined B-region is also
important. This feature of wall-implemented thermostats has
been little studied as far as we are aware. In order to explore
how well the thermostats perform in these respects, Fig. 2
shows the response of the system as a function of time to
a sudden temperature increase from T1 = 1 to T2 = 1.5. The
temperature of each region is shown in the figure.
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Fig. 2. The time evolution of temperature in regions A (red), B
(green) and C (blue). The target temperature was changed from
T1 = 1 to T2 = 1.5 at t = 50. The relaxation time, τ , pointed at
by the solid arrow is the elapsed time required to achieve the target
temperature in the central region. The smaller arrows, t1, t2, t3 and

t4 are the times at which temperature profiles
plotted in Fig. 3 are derived



A Nosé-Hoover Thermostat Adapted to a Slab Geometry 215

Fig. 2 shows that the calculated temperature of the walls
responds relatively quickly to the new target value. There are
small oscillations in the instantaneous temperature trace just
after the temperature step, which is a well known feature of
the NH thermostat [15]. Significantly, the temperature of
the confined part of the system eventually achieves the target
temperature. As may be seen in the figure, thermalisation of
the liquid molecules takes a longer time than that of the wall
atoms. A period of time, τ , is needed for the central region
molecules to converge to the new wall target temperature.
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Fig. 3. Temperature profiles at times t1 (squares), t2 (triangles), t3
(circles) and t4 (dots), which are indicated by small arrows on Fig. 2

Fig. 3 shows the temperature distribution across the con-
fined part (B-region) at several times. As may be seen, the
region B average temperature evolves in a gradual manner
towards the equilibrium flat profile. For t < τ , the temper-
ature of the walls is greater than in the central region. For
a considerable time, τ , after the imposition of the wall tem-
perature jump, the temperature profile of the confined fluid is
thermally inhomogeneous. This transient time is significant
and depends on various system paremeters, such as the mag-
nitude of the step in temperature, i.e., ∆T = T2 − T1, the
width of the confined region L, and the value of the wetting
parameter, c. These trends are illustrated in Fig. 4, where the
dependence of τ on ∆T, L and c is shown in frames (a), (b)
and (c), respectively. It may be seen that τ increases with
∆T , the film thickness L, and increases dramatically with
decreasing affinity of the confined atoms for the walls i.e., for
smaller c parameter values. In regard to the c−dependence
of τ , in the c → 0 limit there is no attraction between the
wall and central region atoms and it can be seen in Fig. 4
that the rate of thermalisation slows down significantly in this
limit. From the test data it is possible to conclude, that for the
range of ∆T , we have explored, τ ∼ P (L)∆T/cα, where α
is close to 1/3 and P (L) is a second order polynomial in L.

The fact that the walls are thermostatted in a way which
produces a rapid response means that they have a very high
effective thermal conductivity compared to that of the central
region. This would probably still be the case even if there
were a solid in the confined region, which would have the ad-
ditional lattice or phonon heat transfer mechanism to produce

a uniform temperature throughout the system. This would
reduce τ but it probably would still take noticeably longer
than the time needed to achieve the targetted temperature in
the walls (to which the thermostat is applied).
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Fig. 4. The figure shows as solid dots the relaxation time, τ , needed
to obtain the target temperature in the system’s central zone (region
B) after an imposed increase in wall temperature. The quantities,
∆T , ρ, L, and c denote the temperature change, density of the
system, vertical dimension of the system and the Lennard-Jones
wetting parameter, respectively. All quantities are given using the
usual Lennard-Jones reduced units convention. Panel (a) shows τ vs
∆T for ρ = 0.8, L = 30.8 and c = 1. The solid line indicates the
range where approximately linear dependence is evident. Panel (b)
shows the influence of the vertical size of the system in the central
zone, L for ρ = 0.8, ∆T = 0.5 and c = 1. The solid line represents
a second order polynomial fit, τ = −0.115L2 + 7.7L− 104. The
bottom panel, (c) shows the influence of the wetting parameter, c,
for L = 30.8, ∆T = 0.5 and ρ = 0.8. The dependence can be

fitted by τ(c) = 24 · c−1/3, which is given on the figure as
a solid line
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Fig. 4(a) shows that the thermal relaxation time, τ , de-
pends strongly and linearly on the initial temperature dif-
ference, ∆T . If Newton’s law of cooling and Fourier’s law
(‘classical laws’) applied to the confined region were the
only factors, then one might expect that τ would be relatively
weakly dependent on ∆T , all other parameters remaining
the same. The trends in Fig. 4(a) therefore suggests that the
thermal transmission (‘Kapitza thermal resistance’) across
the liquid-wall interface acts as a heat flow ‘bottleneck’ and
is a significant factor in determining the mechanism and time
scale of temperature equilibration throughout the system. This
dependence is also manifest in Fig. 4 (c) which shows that
the wetting factor, c, has a dramatic effect on τ . Fig. 4(b)
reveals that τ increases with the confined region thickness.
This aspect of behaviour would be expected from the classical
laws of heat conduction and cooling as the mean temperature
gradient (and hence heat flux) in the central region decreases
with increasing gap width.

From this study it can be concluded that thermal equili-
bration in a molecularly thin unsheared system can exhibit
significant differences from that predicted by the classical
macroscopic expressions, and will be sensitive to the molecu-
lar structure of the wall and nature of the interactions between
the atoms in the different regions. Experimental investigation
of such small dimension effects are difficult to achieve with
current technology, and NEMD is an ideal tool to explore
these issues.

IV. CONCLUSIONS

The new type of Nosé-Hoover (NH) thermostat, NHASs,
presented in this work extends the methodology of bulk sys-
tem deterministic equations of motion for generating a canoni-
cal distribution to a confined or slab geometry system. We
have established here that the scheme in Eqs. (A6-A8) in
Ref. [25] has the form of the Allen-Schmid version of the NH
thermostat with another formula for the generalised velocity.
It is not pairwise additive, but for each wall atom still relies
on the velocities of all the other atoms in the wall.

A little studied aspect of the thermalisation of a con-
fined system via bounding walls is revealed here. A transient
time period, τ , is required to develop the targetted temper-
ature in a confined liquid, which can be quite substantial
on a molecular timescale. The dependence of τ on several
system parameters has been established, as shown in Fig. 4.
No shearing was applied to the system, so it was in a non-
equilibrium state by virtue of the fact that the temperature
takes time to become uniform across the wall and confined
regions. This time delay follows from the atomic nature of
the system, and is compounded by the usual bulk-type MD
thermostats used on the walls as they have a characteristic
relatively short response time. The results suggest preliminary
simulations may be required in non-equilibrium molecular
dynamics simulations to ascertain the natural time scale to

achieve a uniform temperature distribution throughout the
system for a particular set of system parameters. The response
time of the wall thermostat could then be adjusted to match
the natural time scale of temperature equilibration between
wall and confined region. The main role of the wall ther-
mostat is to represent the thermal transmission properties of
the ‘missing’ wall atoms outside the slab, and should not
simply be imposed without consideration of the natural ther-
mal response time of the system as a whole. The NHASs
thermostat may be applied to a confined system under shear
and under external load conditions using NEMD as already
anticipated in Ref. [25]. These results could be relevant to
specify the parameter values and thermostatting methodology
where confined film NEMD simulations are carried out to
mimic a time-dependent external force, such as oscillatory
shear or a time-dependent imposed temperature. The spatial
and time-dependent temperature equilibration behaviour will
affect significantly the properties and dynamical behaviour
of the confined region.
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