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Abstract: The present work is concerned with thermoelasticity without the energy dissipation theory for a problem of an
infinitely long and isotropic annular cylinder of temperature dependent physical properties. We employ the thermoelasticity
theory of GN-II and derive the basic governing equations with variable material properties. The formulation is then applied
to solve a boundary value problem of an annular cylinder with its inner boundary assuming to be stress free and subjected
to exponential decay in temperature and sinusoidal temperature distribution. The outer boundary is also assumed to be
stress free and is maintained at reference temperature in both cases. We solve the non-linear coupled differential equations
by applying the finite difference approach efficiently. We analyze the numerical results in a detailed way with the help of
different graphs. The effects of temperature dependency of material properties on the thermo-mechanical responses for two
different time dependent temperature distributions applied at the inner boundary are highlighted.
Key words: annular cylinder, temperature dependent materials, thermoelasticity without energy dissipation, finite differ-
ence method

I. INTRODUCTION

Structural elements are frequently subjected to non-
uniform heating along with mechanical loads. A non-
uniform heating of elements gives rise to thermal stresses
that play a significant role in the analysis of complete
strength of materials. Hence, determination of thermal
stresses in combination with mechanical stress and tempera-
ture fields are of practical importance in the analysis of such
type of problems. The coupled theory of thermoelasticity
takes into account of the fact that the changes in temperature
of a deformable body affect the state of strain and stress of
the body. Conversely, any mechanical load and correspond-
ing stress causes a change in temperature in the body. The
thermoelasticity theory deals with the mutual interactions
between temperature and strain fields in an elastic medium.
Therefore, thermoelasticity may be regarded as a fusion of
the two independently developed theories: the “theory of

heat conduction” and the “theory of elasticity”. An extensive
research work carried out in the field of thermoelasticity has
established that it has various applications to the problems
in engineering science and technology. The field of thermoe-
lasticity was first stimulated through a work by Biot [1]. Biot
derived the constitutive relations and equations of coupled
thermoelasticity by using Duhamel-Neumann relations [2-
4] to consider the coupling between strain and temperature
fields based on the firm grounds of irreversible thermody-
namics. However, this theory of thermoelasticity is derived
by employing Fourier law of heat conduction. The heat con-
duction equation derived for this theory is a parabolic type
partial differential equation that describes the fact that this
theory involves the wave type equations of motion and dif-
fusion type equation of heat conduction. This indicates that
if an elastic medium is subjected to a thermal or mechani-
cal disturbances, the effects in both the temperature and dis-
placement fields are felt instantaneously at an infinite dis-
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tance far from the source of disturbances. Therefore, Biot’s
theory removes the drawback of uncoupled theory of ther-
moelasticity, but it suffers from the paradox of infinite speed
for a thermal signal. Moreover, besides this paradox of in-
finite propagation speed, this theory also shows an unsatis-
factory or poor description of a solid’s response to fast tran-
sient loading, like short laser pulses, and at low temperatures
(see Chandrasekharaiah [5], Ignaczak and Ostoja-Starzewski
[6]). Such drawbacks in the classical coupled thermoelas-
ticity theory have drawn the attention of researchers in re-
cent years to step out to modify the concept of this theory.
The major objective of this is to minimize the shortcom-
ings which are inherent in the classical thermoelasticity the-
ory of Biot [1].Accordingly, various generalized theories are
designated to account for the finite speed of propagation of
thermal disturbance. Firstly, we would like to recall the the-
ories developed by Lord and Shulman [7] and Green and
Lindsay [8]. Two thermal relaxation time parameters are in-
troduced in the theory of Green and Lindsay, where as one
relaxation time parameter is introduced in the theory pro-
posed by Lord and Shulman [7]. It is worth being further
mentioned in this context that Hetnarski& Ignaczak [9] in-
troduced another model called a low temperature model. In
this model, the heat flux and free energy depend on tempera-
ture, strain tensor and the heat flux. Subsequently, this model
is explained by the system of non linear field equations.

Later on, Green and Naghdi [10-12] proposed a basic
fundamental theory of thermoelasticity in an alternative way.
Their study reported three categories of models which are
subsequently known as thermoelastic models of type GN-
I, GN-II and GN-III. The first two models are the special
cases of model-III. The specialty in these theories is that the
temperature gradient and thermal displacement gradient are
taken to be among the constitutive variables. The linearized
version of model-I is closely related to the classical ther-
moelastic model. In GN-II model, there is no dissipation of
thermal energy which is caused by no change in internal en-
ergy. This model admits undamped thermoelastic waves in a
thermoelastic material and is known as the theory of ther-
moelasticity without energy dissipation (TEWOED). The
thermoelasticity theories developed by Green and Naghdi
have drawn the attention of several researchers during re-
cent years. Quintanilla and Straughan [13] and Quintanilla
[14] have proved the uniqueness theorem and discussed the
growth of solutions in the contexts of type II and III the-
ories. Further, Quintanilla [15] proved the impossibility of
the localization in time of the solutions of linear thermoe-
lasticity for the theories of Green and Naghdi. Recently, the
variational and reciprocity theorems in the contexts of linear
theory of thermoelasticity of type II and type III were estab-
lished by Chirita and Ciarletta [16] and Mukhopadhyay and
Prasad [17], respectively.

While studying the problems of thermoelasticity, the ma-
terial properties of the medium are in general considered
to be constant. However, the structural elements are often

subjected to thermal loads due to ultra-high temperature,
ultra-high temperature gradient, cyclical changes of ultra-
high temperature, etc. as reported by Noda [18, 19]. The ma-
terial parameters in these circumstances remain no longer
constant and they depend on temperature. Hence, in order to
perform a more accurate analysis of thermoelastic behavior
of the structural elements, temperature dependency of ma-
terial properties needs to be considered. It is to be noted
that Suhara [20] studied a thermoelastic problem of hol-
low cylinder by considering temperature dependent shear-
ing modulus. Subsequently, several investigations have been
reported on the thermal stress analysis in elastic and in-
elastic materials with temperature dependent properties. The
survey/review articles by Noda [18, 19] and the references
therein may be recalled in this context. We also recall some
investigations on thermoelastic deformation of several basic
structures like disk, cylinders, tubes etc. with temperature
dependent properties as reported by Ezzat et al. [21], Oth-
man [22], Ezzat and Othman [23], Othman [24], Eraslan and
Kartal [25], Ezzat et al. [26], Youssef and Abbas [27], Argeso
and Eraslan [28], Mukhopadhyay and Kumar [29], Othman
et al. [30],Othman and Hilal [31], Kalkal and Deswal [32],
Wang et al. [33], Abbas [34] etc. In these studies the tem-
perature dependent properties of the medium have been con-
sidered. Recently, Abbas and Youssef [35], Zenkour and Ab-
bas [36, 37], He and Shi [38] employed the generalized ther-
moelasticity theory by Lord and Shulman [7] to investigate
the effects of temperature dependent material properties on
the numerical solution of thermoelastic problems obtained
by the finite element method. Salam et al. [39] solved a
problem on magneto-thermoelasticity for non-homogeneous
cylinder by the finite difference method and discussed the
effects of non-homogeneity. Subsequently, Mukhopadhyay
and Kumar [29] investigated the effects of temperature de-
pendent material properties on thermoelastic interactions in
the context of Lord-Shulman model by applying the finite
difference method.

The main objective of the present work is to investigate a
problem of an infinitely long annular cylinder, whose mate-
rial properties like modulus of elasticity and thermal conduc-
tivity vary with temperature in the context of the thermoe-
lasticity theory without energy dissipation (TEWOED). By
considering temperature dependency of material properties,
we formulate the governing equations under the TEWOED
theory as introduced by Green and Naghdi [12]. The gov-
erning equations in this case are derived as coupled non-
linear partial differential equations because of varying ma-
terial parameters. The outer boundary of the annulus is as-
sumed to be stress free and is maintained at reference tem-
perature, while the inner surface is subjected to two different
types of variation in temperature together with zero stress.
Using the finite difference method, the governing equations
are transformed into a system of coupled difference equa-
tions and the numerical solution of the problem is obtained.
The values of the field variables inside the annulus for cop-
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per material are simulated directly in the space-time domain.
Results are displayed graphically and compared with the re-
sults obtained for temperature-independent material proper-
ties. A thorough comparison between the results predicted
by present model with corresponding results under thermoe-
lasticity with one thermal relaxation parameter reported by
Mukhopadhyay and Kumar [29] is presented. This study
brings to light several points highlighting the effects of tem-
perature dependency of material properties under thermoe-
lasticity without energy dissipation theory that accounts for
the finite speed for the thermal disturbance.

II. BASIC GOVERNING EQUATIONS

We consider an isotropic, homogeneous, linear and ther-
mally conducting elastic medium with temperature depen-
dent mechanical properties. The governing equations for the
thermoelastic model without dissipation of energy by Green
Naghdi [12] in the absence of external body forces and heat
sources can therefore be written as follows:

Stress-strain temperature relation:

σij = 2µeij + (λe− γT )δij . (1)

Strain-displacement relations:

eij =
1

2
(ui,j + uj,i) . (2)

Equation of motion in the absence of body forces:

σij,j = ρüi. (3)

Heat conduction equation in the absence of heat sources:

(
K∗T̄,i

)
,i

= Kη
∂2T

∂t2
+ γT0

∂2e

∂t2
, (4)

where ui are the components of displacement vector, eij are
the components of elastic strain tensor, σij are the compo-
nent of stress tensor, e = eii is the dilatation, t is the time,
T is the temperature variation above the uniform reference
temperature, T0. λ and µ are the Lamé’s constants, ρ is the
mass density, γ= (3λ+2µ)αt, where αt is the coefficient of
linear thermal expansion, K, K∗ are the thermal conductiv-
ity, conductivity rate respectively. η is the thermal diffusivity,
where η = ρcE

K and cE is the specific heat at constant strain.
Our goal is to investigate the effects of temperature de-

pendent material properties on thermoelastic behavior.

Therefore, we assume that λ = λ0f(T ), µ =
µ0f(T ), K = K0f(T ), K∗ = K0f(T ), γ = γ0f(T ).

where λ0, µ0, K0 and γ0 are considered to be constant
material properties at reference temperature, and f(T ) is a
given function of temperature. It is to be noted that the case
of temperature-independent material property corresponds
to the case when f(T ) = 1 , i.e., λ = λ0, µ = µ0, K = K0,
γ = γ0. In general, different material properties vary in dif-
ferent manner with the increase of temperature. For exam-
ple, Young’s modulus, shearing modulus, density, thermal
conductivity, etc. usually decrease with the rising of tem-
perature, while the coefficient of Poisson ratio, and linear
thermal expansion usually increase with the increase of tem-
perature. However, the dependency of some properties like
Poisson ratio is lower than that of other material properties
(Noda [18]). Hence, for simplicity of the present problem it
is assumed that λ, µ, K and γ vary as per the above law
and the other properties are assumed to be independent of
temperature for our present analysis.

In view of the above assumptions, equations (1), (3) and
(4) yields

σij = [2µ0eij + (λ0e− γ0T0) δij ] f (T ) , (5)

ρüi = [2µ0eij + (λ0e− γ0T0) δij ],j f (T )

+ (f (T )),j [2µ0eij + (λ0e− γ0T0) δij ] ,
(6)

[K∗0f (T )T,i],i = K0ηf (T )
∂2T

∂t2
+ γ0T0f (T )

∂2e

∂t2
. (7)

III. PROBLEM FORMULATION

We consider an infinitely long annular cylinder of
isotropic elastic material. It is assumed that the material
properties, except density and specific heat, of the cylinder
are temperature dependent. (r, φ, z) are taken as cylindrical
polar coordinates with the origin at the center of the system
and z-axis is taken to be along the axis of the cylinder. We
consider axi-symmetric plane strain problem and the physi-
cal quantities are assumed to be the functions of radial co-
ordinate r and time t. Since modulus of rigidity and many
other properties decrease monotonically with the rise of tem-
perature (see Rishin et al. [40]), we assume f(T ) = e−αT .
However, for simplicity and without any loss of generality
we approximate the function f(T ) as f(T ) = 1−αT , where
α is an empirical material parameter of the dimension K−1

(Noda [18]).
Therefore, with the help of (5) we get the non-zero stress

components as

σrr =

[
(λ0 + 2µ0)

∂u

∂r
+ λ0

u

r
− γ0T

]
(1− αT ) (8)
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σφφ =

[
(λ0 + 2µ0)

u

r
+ λ0

∂u

∂r
− γ0T

]
(1− αT ) (9)

We use the equation (3) to get the equation of motion in
the cylindrical co-ordinates as

∂σrr
∂r

+
1

r
(σrr − σφφ) = ρ

∂2u

∂t2
(10)

By using (8)-(10), we obtain

(λ0 + 2µ0)

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
(1− αT )

−
[
α

{
(λ0 + 2µ0)

∂u

∂r
+ λ0

u

r
− γ0T

}
+ γ0 (1− αT )

]∂T
∂r

= ρ
∂2u

∂t2

(11)

Equation (7) then yields

K∗0
K0

(
∂2T

∂r2
+

1

r

∂T

∂r

)
− K∗0
K0

α

(1− αT )

(
∂T

∂r

)2

=η
∂2T

∂t2
+
γ0T0
K0

∂2

∂t2

(
∂u

∂r
+
u

r

) (12)

For our convenience, we now introduce the following
non dimensional variables and notations:

r′ = c0ηr, u′ = c0ηr,

t′ = c20ηt, T ′ =
T − T0
T0

,

σ′ij =
σij

(λ0 + 2µ0)
,

λ1 =
λ0

(λ0 + 2µ0)
,

c20 =
(λ0 + 2µ0)

ρ
,

a0 =
K∗0

K0c20η
,

a1 =
γ0T0

(λ0 + 2µ0)
,

a2 =
γ0
K0η

, β = αT0.

Therefore, the dimensionless forms of equations (8)-(12)
are obtained as follows (after dropping the primes for conve-
nience):

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
{1− β (T + 1)}

−
[
a1 {1− 2β (T + 1)}+ β

(
∂u

∂r
+ λ1

u

r

)]
=
∂2u

∂t2

(13)

a0

(
∂2T

∂r2
+

1

r

∂T

∂r

)
− βa0
{1− β (T + 1)}

(
∂T

∂r

)2

=

=
∂2T

∂t2
+ a2

∂2

∂t2

(
∂u

∂r
+
u

r

)
(14)

σrr = {1− β (T + 1)}
[
∂u

∂r
+ λ1

u

r
− a1T

]
(15)

σφφ = {1− β (T + 1)}
[
λ1
∂u

∂r
+
u

r
− a1T

]
(16)

III. 1. Initial and Boundary Conditions
We assume that initially the annulus has no deformation

and have the reference temperature T0 and also has the zero
rate of change of temperature. Therefore, initial conditions
are expressed to be homogeneous. i.e, we have

u (r, 0) =
∂u(r, 0)

∂t
= 0, T (r, 0) =

∂T (r, 0)

∂t
= 0,

a ≤ r ≤ b,
(17)

where a and b are the dimensionless inner and outer radii of
the cylinder.

It is assumed that both the inner and outer curved sur-
faces of the annulus are stress free and the inner surface is
subjected to a temperature which is varying as f(t) with time
t, whereas the outer surface is maintained at the reference
temperature. The boundary conditions are therefore taken to
be as follows:

σrr = 0, T = f(t) at r = a, t > 0 (18)

σrr = 0, T = 0 at r = b, t > 0 (19)

IV. SOLUTION OF THE PROBLEM (NUMERICAL
SCHEME)

The governing equations obtained in the last section are
non linear partial differential equations. For the solution of
the problem we therefore use the finite difference method.
We assume that the solution domain a ≤ r ≤ b, 0 ≤ t ≤ t0
is replaced by a grid described by the set of node points
(rm, tn) , in which rm = a + mh, m = 0, 1, ..., N and
tn = nk ; n = 0, 1, ..., P. Therefore, h = (b−a)

N is taken as
mess width and k = t0

P is assumed to be the time-step. Here,
we assume that t0 is the final value of time. In the follow-
ing equations we use the notation unm in place of u(rm, tn) ,
m = 0, 1, . . . , N and n = 0, 1, . . . , P. The finite difference
approximations for the partial differential coefficients with
respect to the independent variables r and t are obtained as
follows (see Ref. [29]):
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∂y

∂r
=
ynm+1 − ynm−1

2h
+ o(h2),

∂2y

∂r2
=
ynm+1 − 2ynm + ynm−1

h2
+ o(h2),

∂y

∂t
=
yn+1
m − yn−1m

2k
+ o(k2)

(20)

In view of equation (20), after detailed manipulations,
the equations (13) and (14) are then replaced by the explicit
forms of finite difference equations as follows:

un+1
m = 2unm − un−1m + v {1− β (Tnm + 1)}

[(
unm+1 − 2unm + unm−1

)
+

h

2rm

(
unm+1 − unm−1

)
− h2

r2m
unm

]
− v

4

(
Tnm+1 − Tnm−1

) [
2a1h {1− 2β (Tnm + 1)}+ β

(
unm+1 − unm−1

)
+

2hλ1
rm

unm

]
(21)

Tn+1
m = 2Tnm − Tn−1m + a0v

[(
Tnm+1 − 2Tnm + Tnm−1

)
+

h

2rm

(
Tnm+1 − Tnm−1

)]
− βa0v

4 {1− β (Tnm + 1)}
(
Tnm+1 − Tnm−1

)2
− a2

2h

[(
un+1
m+1 − 2unm+1 + un−1m+1

)
−
(
un+1
m−1 − 2unm−1 + un−1m−1

)
+

2h

rm

(
un+1
m − 2unm + un−1m

)]
, (22)

where we have used the notation υ = k2

h2 .
Further, equations (15) and (16) reduce to

[σrr]
n
m = {1− β (Tnm + 1)}

[
unm+1 − unm−1

2h
+ λ1

unm
rm
− a1Tnm

]
(23)

[σφφ]
n
m = {1− β (Tnm + 1)}

[
λ1
unm+1 − unm−1

2h
+
unm
rm
− a1Tnm

]
(24)

From the initial condition (17) and by using equation (20), we get

∂u0m
∂t

=
u1m − u−1m

2k
= 0,

∂T 0
m

∂t
=
T 1
m − T−1m

2k
= 0 (25)

Now, using equation (25) we can eliminate u−1 um and T−1 from equations (21) and (22) to get the equations satisfied
by unm and Tnm for the first level of t (i.e., n = 0) as

u1m = u0m +
v

2

{
1− β

(
T 0
m + 1

)} [(
u0m+1 − 2u0m + u0m−1

)
+

h

2rm

(
u0m+1 − u0m−1

)
− h2

r2m
u0m

]
− v

8

(
T 0
m+1 − T 0

m−1
) [

2a1h
{

1− 2β
(
T 0
m + 1

)}
+ β

(
u0m+1 − u0m−1

)
+

2hλ1
rm

u0m

]
(26)

T 1
m = T 0

m +
a0v

2

[(
T 0
m+1 − 2T 0

m + T 0
m−1

)
+

h

2rm

(
T 0
m+1 − T 0

m−1
)]

− βa0v

8 {1− β (T 0
m + 1)}

(
T 0
m+1 − T 0

m−1
)2

− a2
2h

[(
u1m+1 − u0m+1

)
−
(
u1m−1 − u0m−1

)
+

2h

rm

(
u1m − u0m

)]
(27)

In view of boundary condition (18) and equation (23) , we get for the line r = a as

un1 − un−1
2h

+ λ1
un0
r0
− a1Tn0 = 0 and Tn0 = f(tn) (28)
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Now, substituting the expression for un−1 from equation (28) into equation (21) , we get the equation satisfied by unm for
r = a (i.e. for the level m = 0) as

un+1
0 = 2un0 − un−10 + 2v {1− β (Tn0 + 1)}

[{
un1 − un0 + h

(
λ1
un0
r0
− a1Tn0

)}
− h2

2r0

(
λ1
un0
r0
− a1Tn0

)
− h2

2r20
un0

]
− hv

2
(−3Tn0 + 4Tn1 − Tn2 )

[
a1 {1− 2β (Tn0 + 1)} − β

(
λ1
un0
r0
− a1Tn0

)
+
λ1
r0
un0

]
(29)

Similarly, by using equation (19), we get for the line r = b as

unN+1 − unN−1
2h

+ λ1
unN
rN
− a1TnN = 0 and TnN = 0 (30)

Therefore, substituting unN+1 from equation (30) into equation (21) we obtain the equation for the level m = N as
follows:

un+1
N = 2unN − un−1N + 2v {1− β (TnN + 1)}

[(
−unN + unN−1 + hλ1

unN
rN

)
− h2λ1

2r2N
unN −

h2

2r2N
unN

]
− hv

2

(
3TnN − 4TnN−1 + TnN−2

) [
a1 {1− 2β (TnN + 1)} − βλ1

unN
rN

+
λ1
rN

unN

]
(31)

The equations (21)-(31) therefore constitute the model of finite difference scheme for the present problem to determine
the values of the physical field variables u, T , σrr and σφφ at different points of the solution domain a ≤ r ≤ b, 0 ≤ t ≤ t0.

IV. 1. Truncation Error
Now, we expand the finite difference equations (21) and (22) by using Taylor series expansion and subtract from the

equations (13) and (14), respectively. Therefore, we find the truncation error associated with finite difference equations (21)
and (22) as follows:

T.E.u = k4
[

1

12

∂4u

∂t4
+

k2

360

∂6u

∂t6
+ ....

]
− k2h2 (1− β − βTnm)

[(
1

12

∂4u

∂r4
+

h2

360

∂6u

∂r6
+ ....

)

+
1

rm

(
1

6

∂3u

∂r3
+

h2

120

∂5u

∂r5
+ ....

)]

− βh4
(

1

6

∂3T

∂r3
+

h2

120

∂5T

∂r5
+ ....

)(
1

6

∂3u

∂r3
+

h2

120

∂5u

∂r5
+ ....

)
(32)

T.E.T = k4
[

1

12

∂4T

∂t4
+

k2

360

∂6T

∂t6
+ ....

]
− k2h2a0

[(
1

12

∂4T

∂r4
+

h2

360

∂6T

∂r6
+ ....

)
+

1

rm

(
1

6

∂3T

∂r3
+

h2

120

∂5T

∂r5
+ ....

)]

+
k2h2a0β

(1− β − βTnm)

[
1

3

∂T

∂r

∂3T

∂r3
+ h2

{
1

36

(
∂3T

∂r3

)2

+
1

60

∂T

∂r

∂5T

∂r5

}
+ ....

]

+
k4a2
rm

[
1

12

∂4u

∂t4
+

k2

360

∂6u

∂t6
+ ....

]
(33)

The truncated errors given by equations (32) and (33) indicate that lim(h,k)→(0,0) T.E.
u = 0 and lim(h,k)→(0,0) T.E.

T =
0. This implies that the difference equations (21) and (22) are consistent. Thus, the finite differences given by(21) and (22)
has the accuracy of orders o(h4, h2k2, k4) and o(h2k2, k4), respectively.
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V. NUMERICAL RESULTS AND DISCUSSION

We consider following two types of problems by taking
two types of variations in the prescribed temperature distri-
bution f(t) at the inner surface of the cylinder:

Case-I: f(t) = e−ωt

This implies that the temperature at the inner surface of the
cylinder decreases exponentially with time and w is the de-
caying exponent.

Case-II:
We assume that the temperature at the inner surface of the
cylinder varies like the sine function. Hence, we assume
f(t) = sin(ωt).

For our numerical work, we consider copper material and
the physical data for which it is taken as follows [41]:

T0 = 819K, λ0 = 7.76 × 1010Nm−2, µ0 = 3.86 ×
1010Nm−2, ρ = 8954 kgm−3, αt = 1.78 × 10−5K−1,
η = 8849.6 m−2s. We assume ω = 0.1. The inner radius
and the outer radius of the cylinder are taken as 1.0 and 5.0,
respectively, and we assume t0 = 1.0 and υ = 0.0156. Now,
by using the equations (21), (22) and (26)-(31), the numeri-
cal (discrete) values of dimensionless displacement u and di-
mensionless temperature T are computed simultaneously for
different values of the specified domain. Then, the values of
stresses are computed from equations (23) and (24). We get
the nature of variations of different field variables like dis-
placement, temperature and stresses inside the medium with
the help of computer programming. In order to see the ef-
fects of temperature dependency of the material parameters,
the computations are done for different values of the param-
eter α. Clearly, α = 0 indicates the case of temperature inde-
pendent material properties. The results are displayed in dif-
ferent Figures to show the variations of different fields with
respect to radial coordinates.

Figs. 1(a,b), 2(a,b), 3(a,b) and 4(a,b) show the variation
of displacement u, temperature T , radial stress σrr and cir-
cumferential stress σφφ, respectively at two different times
t = 0.4 and t = 0.8 when the inner boundary temperature is
varying exponentially (case-I) and Figs. 5(a,b), 6(a,b),7(a,b)
and 8(a,b) shows the variations of u, T , σrr and σφφ , re-
spectively at two different times t = 0.4 and t = 0.8 when
the inner boundary temperature is varying as a function of
sine (case-II). The nature of variations of various fields ob-
served in different Figures indicate that our system of dif-
ference equations (21)-(31) efficiently compute the numeri-
cal solutions of the problem and the solutions obtained are
in complete agreement with the theoretical boundary con-
ditions of the problem. We observe several important facts
evident from the graphical results as mentioned below.

Figs. 1(a,b) and 5(a,b), showing the distributions of dis-
placement, indicate that the nature of variation of displace-
ment inside the annulus is similar in both the cases: whether
the inner boundary surface of the annulus is subjected to
exponentially varying temperature or to sinusoidal varying

temperature. However, there is a significant effect of the tem-
perature dependency on the material parameters. The numer-
ical values of displacement is maximum in the temperature
independence case and the values of u decrease with the in-
crease of parameter α. The differences of displacement pro-
files for the cases of temperature dependent material proper-
ties and the case of temperature independent properties in-
crease with the increase of time and the region of influence
increases with time. Figs. 1(a,b) and 5(a,b) further indicate
that the effect of temperature dependency of material param-
eters on displacement is more significant in case of exponen-
tially varying temperature applied at the inner surface of the
cylinder as compared to the case of sinusoidal temperature
distribution applied at the inner boundary. The displacement
field achieves zero values in all the cases after some distance
from the inner boundary which proves the fact that the the-
ory of thermoelasticity without energy dissipation accounts
for finite speeds of elastic as well as thermal disturbances.

The variation of temperature can be observed from Figs.
2(a,b) and 6(a,b). Figs 2(a, b) show the variation of this field
when exponentially decaying temperature is applied at the
inner surface of the cylinder and Figs. 6(a,b) depicts the case
when the inner boundary is subjected to sinusoidal temper-
ature distribution. The nature of variation of temperature in
these two cases are very much different, especially near the
inner boundary. The variation is oscillatory in nature near
the boundary in the first case as compared to the second
case. Temperature shows a larger value in the case when we
consider that material parameters are independent of tem-
perature. Furthermore, the effect of temperature dependency
of material parameters is very much significant in the first
case, while it is almost negligible in the second case of pre-
scribed boundary temperature. The region of influence in-
creases with the increases of time for this field, too.

Figs. 3(a,b) and 7(a,b) show the variation of radial stress
and we observe a significant difference in the nature of varia-
tion of redial stress in cases of two types of boundary temper-
atures prescribed at the inner boundary of the annulus. In the
second case, the radial stress is fully compressive, while in
the first case, it is tensile for some region after some distance
from the inner surface and thereafter becoming compressive.
Like the temperature field, radial stress also shows the oscil-
latory nature in the first case. However, the effect of α is very
much pronounced in both cases. Numerical values of radial
stress is maximum in the case of temperature independent
physical parameters and the value of radial stress decreases
with the increase of α. Circumferential stress distributions
for two different cases can be observed from Figs. 4(a,b) and
8(a,b). Like the case of radial stress, circumferential stress
also shows a significantly different trend of variation in two
different types of temperature distribution prescribed at the
inner surface of the cylinder. The nature is more oscillatory
near the inner boundary in the case when exponentially de-
caying temperature is prescribed. The effect of α is more
pronounced in the first case as compared to the second case
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(a) (b)

Fig. 1. Variation of displacement, u vs. r at times, t = 0.4 and t = 0.8, respectively for the Case-I

(a) (b)

Fig. 2. Variation of temperature, T vs. r at times, t = 0.4 and t = 0.8, respectively for the Case-I

and the absolute value of this stress is maximum in the case
of temperature independent physical properties. The differ-
ence in the trend of variation increases with the increases of
time as well as with α.

It is interesting to make a comparison between the re-
sults in case-I of GN-II model and the corresponding results
predicted by the LS model as discussed by Mukhopadhyay
and Kumar [29] to demonstrate the effects of temperature
dependent properties. Fig.1(a) and the corresponding figure
for displacement of [29] show that u has a maximum value

nearer to the boundary of annulus cylinder in case of both
the models while this maximum value is slightly smaller in
case of the GN-II model. Furthermore, the displacement de-
creases as the value of α increases, which agrees with the
corresponding figure of the LS model. From Fig.2(a), the
temperature distribution shows an oscillatory behaviour in
the region nearer to the inner boundary of the annulus in case
of GN-II model and there are extreme points. However, the
corresponding Figure of the LS model exhibits that tempera-
ture distribution shows smooth decrements without any local
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(a) (b)

Fig. 3. Variation of radial stress, σrr vs. r at times, t = 0.4 and t = 0.8, respectively for the Case-I

(a) (b)

Fig. 4. Variation of transverse stress, σφφ vs. r at times, t = 0.4 and t = 0.8, respectively for the Case-I

extreme points. The temperature also decreases with the in-
crease of α under both the models. Fig.3(a) shows that in
the context of the GN-II model, the radial stress is tensile
for some region nearer to the inner surface and thereafter be-
coming compressive, but in the case of the LS theory, the
radial stress, σrr was shown to be fully compressive (see
Ref [29]). Furthermore, it is clear that σrr is inversely pro-
portional to α for the GN-II model while it is directly pro-
portional to α in case of the LS model, which was found
to be a notable difference in two different thermoelasticity
theories. In comparison of the Fig.4(a) with the correspond-

ing figure of the LS model, the effect of α is similar for
both the models. Furthermore, both the stresses show oscil-
latory type variation through the radial direction in case of
the GN-II model while the LS model shows smooth vari-
ation in stresses. The region of influence for each phyical
field is observed to be finite under both the theories support-
ing the fact that thermal wave propagate with finite speed in
the context of the LS-model as well as in case of the GN-II
model. However, the influence area for all physical quantities
is much narrower under the GN-II model (see Figs. 1–4(a))
as compared to the LS model (see Ref. [29]).
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(a) (b)

Fig. 5. Variation of displacement, u vs. r at times, t = 0.4 and t = 0.8, respectively for the Case-II

(a) (b)

Fig. 6. Variation of temperature, T vs. r at times, t = 0.4 and t = 0.8, respectively for the Case-II

VI. CONCLUDING REMARKS

The effects of temperature dependency of material prop-
erties on thermo-mechanical responses of an annular cylin-
der whose inner surface is subjected to time dependent tem-
perature fields has been analyzed by employing the thermoe-
lasticity theory of type GN-II. The governing equations are
derived by employing this theory and considering tempera-
ture dependent physical properties. Governing equations are
obtained as non-linear coupled partial differential equations
and we apply the finite difference method for solving the
coupled system for the present problem. We showed that the

present problem can be efficiently solved by the finite differ-
ence method. We obtain the orders of the truncation error for
displacement and temperature variable.

Our results highlight the significant effects of tempera-
ture dependent material properties on thermoelasticity. We
considered two different types of temperature distributions
prescribed at the inner boundary surface of the cylinder
whereas the outer surface is kept at constant reference tem-
perature. The effects of temperature dependent properties are
shown to be of different nature in two cases. However, in
both cases it has been observed that under the present con-
text, the difference in the numerical results with temperature
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(a) (b)

Fig. 7. Variation of radial stress, σrr vs. r at times, t = 0.4 and t = 0.8, respectively for the Case-II

(a) (b)

Fig. 8. Variation of transverse stress, σφφ vs. r at times, t = 0.4 and t = 0.8, respectively for the Case-II

dependent properties and temperature independent proper-
ties are very much pronounced. The region of influence is
observed to be finite for all field variables. We note a signif-
icant difference in the prediction of results for exponential
temperature distribution prescribed at the inner boundary of
the cylinder in the present context with the corresponding
results under the thermoelasticity theory with one relaxation
parameter. The region of influence is much smaller in case
of the GN-II model as compared to the same under the LS
model. For a more accurate analysis of thermoelastic behav-
ior of structural elements, the temperature dependency needs

to be considered. Hence, this study is believed to be useful
in characterizing the thermoelastic responses of the struc-
tural element with temperature dependent properties under
different thermoelastic models.
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