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Abstract: Thermal conductivity (λ) of the Lennard-Jones liquid in cylindrical nanochannels has been determined using the
Green-Kubo (GK) approach in equilibrium Molecular Dynamics simulations. Good convergence of λ(τ) has been observed
along the nanochannel’s axis where the periodic boundary conditions are applied. However, it has been found that the
estimation of limiting value of λ(τ) in the transverse direction, where walls confine the liquid, is ambiguous.
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I. INTRODUCTION

Recent developments in nanoscience and nanotechnol-
ogy [1] have caused increasing interest in fundamental knowl-
edge regarding behavior of systems with strong geometrical
confinements. In this context, studies of simple liquids in
nanochannels can lead to better understanding of the influ-
ence of a strong geometrical confinement on physical proper-
ties, e.g., on heat transfer (which is characterized by thermal
conductivity). Unfortunately, theoretical methods allowing to
describe such systems are poorly developed, which seriously
impedes scientific progress.

Rigorous derivation of transport coefficients (including
thermal conductivity) in bulk limit has been performed by
Kubo and Zwanzig in their now famous papers [2, 3]. Petravic
and Harrowell generalized the Green-Kubo (GK) formalism
describing the transport between two arbitrarily located paral-
lel planes within a sample [4-6]. Despite the fact that there is
no theoretical basis for using the original GK method for con-

fined systems, in literature one can find works whose authors
use the GK formalism (due to its simplicity) for determin-
ing thermal conductivity in the case of nanoslits [7, 8] and
nanochannels [9]. It is worth adding that the application of
this method to systems with geometrical confinement can be
interesting at least for two reasons. Firstly, this will allow to
check whether this method can be applied in a wider range
than it was originally derived for. Secondly, this study may
inspire theorists to generalize this method for confined sys-
tems. In this context, in the present paper we consider some
practical aspects of applying the GK method to calculate ther-
mal conductivity of a confined system by using computer
simulations.

The paper is organized as follows. In Sec. II the model
of the studied system, the method used to calculate thermal
conductivity, and details of the simulations are presented.
Applicability of the GK method for calculation of thermal
conductivity of liquid in a circular nanochannel is discussed
in Sec. III. Conclusions are drawn in Sec. IV.
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Fig. 1. Schematic representation of the studied cylindrical channel.
L is the length of the channel. The periodic boundary conditions
have been applied in x-direction. d is the diameter of the channel.

II. PRELIMINARIES

II. 1. Model
In this study we are considering a cylindrical nanochannel

filled with a liquid. Geometry of the studied system is pre-
sented in Fig 1. The particles representing the liquid interact
via Lennard-Jones (LJ) interatomic, pair-wise potential [10]

φ(rij) = 4ε

[( σ
rij

)12
−
( σ
rij

)6]
, (1)

where ε defines the energy scale, σ is the particle diameter
and rij is the distance between atoms i and j. The particle-
wall interaction is set by the steep, repulsive, inverse-power
potential

V wall(r) = ε
(σ
r

)96
, (2)

where r is the distance between the wall and a particle. The
main reason behind using this kind of potential is to avoid
difficulties in determining the volume of the channel, which
is necessary to calculate thermal conductivity. In this case
the channel volume is exactly the same as the one available
for the particles [9]. In addition, a steep, repulsive interaction
allows to minimize wall’s influence on the particles represent-
ing the liquid.

II. 2. Method
Thermal conductivity (λ) is described by the Fourier’s

law

~J = −λ∇T, (3)

where J is the heat current and T is temperature (λ is a tensor,
in general). In the considered system, thermal conductivity
along the channel (x-direction) and across the channel (y, z-
directions) is different due to geometry of the studied system.

Thermal conductivity in γ-direction, where γ represents
the x-direction (along channel) or the transverse direction

(across channel) has been calculated using the Green-Kubo
formula [2, 3, 11]:

λγ =
V

kBT 2

∫ τ

0

dt < jγ(0)jγ(t) >, (4)

where kB is the Boltzmann constant and V is the vol-
ume. The microscopic heat current j [12] is given by equa-
tion [3, 10, 13]
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1
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where vi is the velocity of particle i, F ij is the force on atom
i due to atom j. The microscopic site energy ε is defined by
equation

εi =
1

2
mi|vi|2 +

1

2

∑
i

φ(rij) (6)

where m is the mass of particle. One can find more details
concerning the method in Refs. [13, 14].

II. 3. Computational details
In order to determine thermal conductivity the equilib-

rium molecular dynamics (EMD) simulations have been per-
formed. The Verlet velocity integration algorithm was used to
integrate the equations of motion. To control the temperature
the velocity scaling scheme was applied. Initial configura-
tions of particles in the channel have been created using the
procedure from Ref. [9]. The size of the nanochannel in the
x-direction was x = 11.29σ. Sizes in the transverse direction
were equal to: 8.66σ, 10, 50σ, and 12.24σ. The number of
particles for those systems were N = 312, N = 480, and
N = 672, respectively. The cut-off radius of the LJ potential
was set to the half of the system width, except for the largest
channel where it was set to 5σ. In the case of the particle-wall
interaction potential no cut-off radius was applied. Periodic
boundary conditions were applied in the x-direction. The inte-
gration time step was set to ∆t = 0.001τ (τ =

√
mσ2ε). MD

simulations consisted of 4× 105 time steps with additional
105 time steps to equilibrate the systems. All simulations
were performed for density ρ∗ = N/V = 0.6 at tempera-
ture T ∗ = kBT/ε = 1.4. Thermal conductivity coefficients
(λ∗ = λTστ/kBε) were averaged over 10 independent runs.

III. RESULTS AND DISCISSION

It is well known that the GK method was derived for
a homogeneous system in the bulk limit [2, 3]. On the other
hand, it is known that the liquid close to the walls is not ho-
mogeneous [11]. In Fig. 2, one can find the strong structuring
of liquid near the wall of the channel. However, the density



Limitations of the GK approach for calculating the thermal conductivity of a confined fluid 199

profile in Fig. 2 shows that even in the case of a narrow chan-
nel the structure of the liquid vanishes in the middle of the
channel where the liquid can be considered to be homoge-
neous. Therefore, in practice, one can neglect the structure
effects close to the walls and use the average density. This
assumption is at least reasonable for channels with large cross-
sections if the measurement is performed in the x-direction
(along the channel) where periodical boundary conditions are
applied. Recently, it has been shown that the value of thermal
conductivity along a channel obtained by the GK method is in
good agreement with the results obtained by the NEMD [9].
This can suggest applicability of the GK method for confined
systems in direction where the periodic boundary conditions
are applied, i.e., in the direction without any confinement.
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Fig. 2. The density profiles for channel with diameter
equal to 12.24σ.

In the present study, apart from thermal conductivity
along a channel, we have also calculated the heat current
autocorrelation functions for direction perpendicular to the
channel’s axis. The obtained results, after direct application
of Eq. 4 with limiting time τ , are shown in Fig. 3. As one can
see, along the channel (in the x-direction) where the periodic
boundary conditions are applied the quantity λ(τ) converges
to a limiting value as it was reported previously [9]. However,
in the transverse direction (across the channel) the situation
is quite different. The quantity λ(τ), after initial increase, de-
creases significantly with τ in such a way that the estimation
of limiting value (if exists) is ambiguous and problematic. In
literature [8], one can find attempts to use the GK formalism
in direction of confinement but those results are probably ob-
tained by considering too short time τ for the integral (Eq. 4)
and using a local plateau as a limiting value (as e.g., 2 < τ < 4,
see the full symbols in Fig. 3). From this it can be concluded
that it is not correct to use equation (4) for confined systems
in the transverse direction in which confinement is applied
and hence the periodic boundary conditions cannot be used.
The Green-Kubo formalism is only valid in the limit of zero
surface to volume ratio in the present context.
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Fig. 3. Integral (eq. 4) for calculation of thermal conductivity as a
function of time (τ∗ = τ/

√
mσ2ε) for three nanochannels of diam-

eters: 8.66σ (squares), 10.50σ (circles) and 12.24σ (diamonds).

IV. CONCLUSIONS

Our research suggests that despite the lack of theoretical
background, the Green-Kubo formalism can be applied to
confined systems when certain assumptions are satisfied.

In sum, the Green-Kubo formula can be used for calcu-
lating thermal conductivity if the structure effects close to
the walls can be considered as an inessential perturbation.
This assumption is reasonable along the channel in the x-
direction where the periodic boundary conditions are applied
(i.e., in the direction without any confinement) at least for
large cross-sections of a channel. Whereas in the transverse
direction (across the channel) the above conditions are not
satisfied and as a result λ(τ) does not converge to a limit-
ing value. Therefore, in practice, thermal conductivity across
the channel cannot be calculated using original Green-Kubo
formula.
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