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Abstract: We designed two simplified models of macromolecular systems. Model chains were built of united atoms
(statistical segments): the first one was a bead-spring model while in the second one beads were connected by bonds of
constant length. The only potential introduced was the excluded volume and thus the system was athermal. Monte Carlo
simulations of these models were carried out using Metropolis-like algorithms appropriate for each model: the one-bead
displacement and the backrub algorithm. The scaling analysis of the chain’s static and dynamic properties was carried
out. The universal behavior of the chain’s properties under consideration was found and discussed. The efficiency of both
algorithms was compared and discussed.
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I. INTRODUCTION

Recent decades have witnessed rapid development of sim-
ulation methods applied to the study of polymer and biopoly-
mer systems properties [1]. The complexity of such systems
makes theoretical considerations very difficult and computer
simulations were found useful for these studies. Some inter-
esting results were obtained up to date; however, for most
biopolymer systems, models were rather complicated and
contained an enormous number of parameters and, therefore,
it was sometimes difficult to judge which of them are really
important for obtaining proper results. This was the main
reason for designing and studying coarse-grained models of
chain molecules in biological systems.

The model studied in this work was designed for studies
of mucus. Mucus is a very important element of the innate
defense system as it immobilizes and excretes external hostile
substances and organisms; beside protection it can serve as
a lubricant [2-4]. Soluble mucus is composed mostly of wa-
ter (more than 90%) and its key gel-forming agents mucins.
Mucins are large extracellular, highly glycosylated proteins
that play a role in the human immune system by forming

a selective molecular barrier – the aforementioned mucus and
are a target of cancer treatment research. Theoretical studies
of mucus properties are therefore necessary to enhance the
ongoing effort for mucin-based medical applications. Mucins
consist of different but repetitive domains and are capable
of polymerizing further by forming disulfide bridges. To bet-
ter understand the dynamics of mucus net forming and its
structural properties it is essential to study a multi-chain
system with interactions between different domains evalu-
ated accordingly [5]. Coarse-grained off-lattice models were
designed to study multi chain systems. The first one was
a Rouse-like model where beads were connected by harmonic
springs while the second one features fixed bond-length [6].
Two different Monte Carlo sampling algorithms based on the
Metropolis scheme were applied to these models: with sin-
gle bead displacements for the first model and with backrub
moves for the second model. The comparison of the efficiency
of both algorithms and the check of their applicability to stud-
ies of chain dynamics were the main goals of this study. The
usage of these tools for studies of macromolecular films was
evaluated.
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The organization of this paper is as follows. In the next
section entitled Models and Simulation Methods we describe
the assumptions of the model chain used. Both simulation
algorithms are also presented in detail. In the next part of the
paper Results and Discussion we present and discuss the sim-
ulation results concerning the chain structure and dynamics.
In the last section entitled Conclusions the most important
and concluding remarks are presented.

II. MODELS AND SIMULATION METHODS

We employed two sampling schemes that differ in the
potentials that were utilized as well as the way that conforma-
tional space was sampled, i.e. chain’s segments are moved. In
both cases the polymer chains are represented as a sequence
of N connected spherical beads each of identical size and
mass (homopolymer chains). All segments of the chain in-
teract according to a repulsive excluded volume potential
defined as:

Uij =

{
E for rij ≤ dk
0 for rij > dk

(1)

where E is an arbitrary energy barrier, rij is the distance
between ith and jth polymer bead and dk is the bead’s diam-
eter [1].

The initial conformations of chains were obtained either
as a result of previous simulations or as a self-avoiding off-
lattice random walk that enforced excluded volume through-
out the walk. Nevertheless, the starting conformation should
not affect final results given the sampling algorithm is er-
godic. Both methods defined a single Monte Carlo time step
as a single move attempt for each bead on average.

Fig. 1. In the Rouse model a single bead is displaced at random,
which might cause the springs (bonds) to compress or stretch

The first of the implemented algorithms is a direct real-
ization of the Rouse theory with the exception of the fact that
excluded volume had been introduced to the system. Bonds
between adjacent neighbors along the chain were enforced
via harmonic energy defined as follows:

USij = k(lij − l0)2 (2)

where l0 is the average bond length. The Monte Carlo move
mimicking the Rouse model dynamics random nature was
employed as a single bead displacement in a random direction
as shown in Fig. 1. In this algorithm a single bead at position
ri was chosen at random and three random numbers nx, ny,
nz ∈ [0, nmax] were generated such that the new position is

denoted as ri + [nx, ny, nz] and
√
n2x + n2y + n2z = 1 (arbi-

trary unit) with l0 = 3.8 to put the number into perspective.

Fig. 2. In the backrub model two beads are chosen and the entire
chain fragment between them is swung around a rotation axis created

between said beads

The second algorithm – a generalized backrub move ex-
plicitly enforces a constant bond length so the bonding poten-
tial was omitted here [7-11]. The move consists of choosing
a pair of flanking segments and rotating the chain’s fragment
between them about an axis defined by said segments (Fig. 2).
Originally this motion was designed for atomistic protein sim-
ulations where one residue along the backbone was moved
with the rotation axis defined between Cα atoms. The general
approach considers moving any number of residues but was
tailored in such a way that only six of protein’s internal de-
grees of freedom were changed no matter how big the moved
chunk was, namely the φ and ψ angles at both pivot points
and the N–Cα–C bond angle, α, at both pivots. It is indeed a
different sampling philosophy of creating big conformational
changes despite disturbing only few integral degrees of free-
dom rather than moving each segment independent of others
as it was in the Rouse model. In our implementation we used
a mixed algorithm which utilized both local moves restricted
to up to three residues displaced, and a bigger move where
up to ten segment’s positions were changed at once. There
was no restriction on the rotation’s angle τ imposed hence
the angle was drawn from a uniform distribution such that
τ ∈ [−π,+π].

To ensure the algorithm ergodicity and enable the end-
of-chain segments to move we introduced a tail-bead move
which was realized as follows. We generated a random vector
on a sphere from uniform distribution and then normalized
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it to match the bond’s length. Then we recreated the tail seg-
ment adding a new vector to the tail’s neighbors coordinates
thus giving it complete freedom of movement independent of
the chain’s interior conformation.

Even in such a simple case, both algorithms performance
and even behavior is obviously dependent on the choice of
parameters. In the case of the backrub motion the number
of segments moved as well as the maximum rotation angle
presents a well-known trade-off between the extension of con-
formational change and moves acceptance rate which is also
the case for the Rouse model and the maximum displacement
per move allowed. While one could argue that because of this
the results are skewed, it is still reasonable to compare the
methods qualitatively within reasonable parameter’s choice.

III. RESULTS AND DISCUSSION

In order to assert our models correctness and compare
the results between both models we performed a series of
simulation tests. The Rouse model which has been thoroughly
investigated both theoretically and by Molecular Dynamics
simulations provides us with well defined characteristics that
simple polymer systems follow [1, 12]. Several scaling laws
are considered valid and thus can serve as means for our tests
of both static and dynamic properties of our models.

III. 1. Static properties

Static properties of chains in infinite diluted solutions (at
good solvent conditions, i.e. well above the θ temperature)
are considered to obey self-avoiding random (SAW) walk
statistics. Parameters often used to characterize the size of
macromolecules are the mean-squared end-to-end distance
and the mean-squared radius of gyration. For a bead-spring
model consisting of N beads of equal mass (and with mass
m = 1) the mean-squared end-to-end distance (R2) and the
mean-squared radius of gyration (R2

g) are defined as follows:

〈
R2
〉
=
〈
(rN − r1)2

〉
(3a)

〈
R2
g

〉
=

〈
N∑
i=1

(ri − rCM )
2

〉
(3b)

where rCM is the chain’s center of mass. For SAW’s both of
these parameters obey scaling lawsR2

g ,R2 ∼ N2ν , where the
parameter n for three dimensions should be ν ≈ 0.5888 [12-
14]. Checking if a model can reproduce the scaling behav-
ior can be considered a validation test. It has been proven,
however, that even in the case of bead-spring models the pa-
rameters used to characterize it, namely the bond equilibrium
length (l0) and the effective bead diameter (d0) can influence
the chain’s behavior [15, 16]. Based on that knowledge we
tested different ratios of l0/d0 by changing the bead’s size

while maintaining the same bond’s length to achieve proper
size scaling as shown in Fig. 3. We chose the ratio to re-
flect the scaling law but, most importantly, to achieve the
same exponent for both models as the goal was to test their
dynamic properties and compare them. While both models
behave somewhat differently it is possible to find the right
scaling value within a reasonable l0/d0 ratio range. Given
the difference in bead size it is not surprising that the Rouse
model exhibits slightly higher R2

g and R2 values while both
models follow the scaling law which can be seen in Fig. 4. We
achieved R2

g and R2 ∼ N1.20 which is in very good agree-
ment with theory and simulations of other models [12, 17-19]
but, as shown in Fig. 3, this is a matter of choice rather than a
built-in property of the models, and the important conclusion
is that results for both algorithms fit the linear scaling very
well in a range of chain lengths.

Fig. 3. The scaling exponent 2n obtained for the bead-spring model
as a function of the l0/d0 ratio

III. 2. Dynamic properties

Within the framework of the Rouse model diffusion can
be described as a Brownian motion process where except for
the bonded interactions particles move independently of each
other through collision with the solvent particles where the
thermal force driving the process is implied. The process is
random in nature and thus can be modeled as a random walk.
The speed at which a single particle diffuses is described in
general by the mean square displacement (MSD) function
defined as:

MSD =
〈
(r (t)− r (0))2

〉
, (4)

where r(t) denotes the particle’s position vector in given time
t [12, 17]. The behavior of this function is well defined within
the Rouse model of macromolecules and two particular cases
are of interest: the center of mass and middle segment dis-
placements [20, 21]. It is known that for a polymer chain the
displacement is increasing with time linearly MSD ∼ t and
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(a) (b)

Fig. 4. The mean-squared end-to-end distance < R2 > (a) and the mean-squared radius of gyration < R2
g > (b) as a function of the chain’s

length N in a log-log scale

it is also how the chain’s center of mass behaves [12, 17].
This is not the case, however, for the middle segment which
follows two time regimes. Defining the middle segment dis-
placement function as g1(t) and the longest relaxation time
as τR:

g1 (t) ∼ t1/2 for t < τR, (5a)

g1 (t) ∼ t1 for t ≥ τR. (5b)

MSD behavior of a single chain for both models is shown
in Fig. 5. One can see the expected linear time dependency
gCM (t) ∼ t1.00 for the center of mass diffusion and two time
regimes for the middle segment displacements with g1(t) ∼
t0.60 initially which gradually shifts to g1(t) ∼ t1.00 [12].
The preliminary value is slightly higher than the theoretical

prediction but the crossover can be observed and is commonly
interpreted as a transition between the initial chain internal
rearrangements and a free diffusion along the chain’s contour
which takes place after the longest relaxation time (τR) is
achieved. It is worth noting that in our implementation of the
Rouse model disabling the excluded volume potential leads
to achieving middle segment displacement data that fits the
theory better.

The other relevant parameter is the diffusion coefficient
D which describes the speed at which the diffusion happens.
One can calculate the coefficient using the equation:

D =

〈
(r (t)− r (0))2

〉
6t

(6)

(a) (b)

Fig. 5. Log-log plot of the autocorrelation functions of the center-of-mass and g1(t) for Backrub (a) and Rouse (b) algorithms
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(a) (b)

Fig. 6. Log-log plot of diffusion coefficient D as a function of the chain’s length N for both Backrub (a) and Rouse (b) algorithms

The Rouse model is solvable and given that the dynamic
viscosity η is proportional to the number of beads N gives
the exact result for D depending on temperature and friction
coefficient ζ [22]:

D =
kBT

Nζ
(7)

The above equation makes it clear that the diffusion coeffi-
cient also scales with the number of beads and within the
Rouse model framework the dependency is given by another
power law D ∼ N−1 [12]. Both our models were able to
replicate this result, as shown in Fig. 6, with data points fit-
ting the linear curve rather well for the chosen range of chain
lengths which indicates that the pseudo-time scale has been
properly chosen for both models.

We have also examined a third dynamic property of poly-
mer chains which is the longest relaxation time and its scaling
with the chain’s length. One can define an autocorrelation
function gR(t) based on the mean-squared end-to-end dis-
tance:

gR(t) =
〈R (0)〉 ◦ 〈R (t)〉

〈R2〉
(8)

The longest relaxation time τR itself is then calculated using
the autocorrelation function:

gR (t) exp

(
−t
τR

)
(9)

Scaling of the longest relaxation time is again a well-known
parameter with τR ∼ N2.2 for systems considered in this

(a) (b)

Fig. 7. Log-log plot of the mean-squared end-to-end distance relaxation time as a function of chain length for Backrub (a)
and Rouse (b) algorithms
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work [12]. Our results for both models can be seen in Fig. 7
with scaling slightly differing from the theoretical exponent.
Interestingly, the divergence is different in both cases with
the backrub model having a slightly weaker than expected
time-relaxation dependence and the Rouse model a stronger
one, both within a reasonable margin from the commonly
accepted values, however. Therefore, the backrub algorithm
seems to be a tool than is able to reproduce the dynamic
behavior of polymer chains.

Comparing computational efficiency of two algorithms
in a complex environment such as a Monte Carlo polymer
simulation is a task in itself and we feel that it goes beyond
the scope of this paper. Not mentioning the fact that there is
no simple unit of performance measure one has to consider
questions such as: how well will the algorithm do in different
polymer concentrations? How much performance can one
gain by implementing common tools such as a linked list for
neighbor detection? Considering these and other concerns
one has to choose an algorithm that fares better in the prob-
lem they are trying to solve. In the case of a single chain one
can easily see that the naive Rouse model implementation is
more efficient with the exact numbers depending on the algo-
rithms parameter choice considering reasonable parameters
discussed in the previous section.

IV. CONCLUSIONS

We performed Monte Carlo simulations of two different
off-lattice models of a polymer chain using two different
simulation algorithms which seemed to be appropriate for
a given model. Therefore, the bead-spring model was sim-
ulated by a classical sampling algorithm (one-bead random
displacements) while the model with constant bond length
was simulated using the backrub algorithm (rotation of a rigid
chain’s fragment). The main goal of these simulations was
the evaluation of the backrub model usefulness and efficiency.
The possibility of studying the dynamic properties of macro-
molecules by means of this algorithm was also checked.

We have evaluated both static and dynamic properties of
the models and compared them with previous simulations
and theoretical predictions. In case of static properties the ob-
tained size to chain length scaling for both sampling schemes
was correct with quantities such as the mean-squared radius
of gyration and the mean-squared end-to-end distance studied.
Dynamic properties of our models were tested by evaluating
mean square displacements and self-diffusion coefficients.
While the short time MSD values diverged slightly from the
theoretical predictions, we achieved proper qualitative behav-
ior as well as correct diffusion coefficients with both models
exhibiting very similar characteristics.

We may, therefore, conclude that both presented models
are well fit for Monte Carlo simulations of dilute homopoly-
mer systems but further investigation is necessary to deter-
mine their usefulness in more complex environments and

potential underlying issues with short time diffusion beha-
vior.
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