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Abstract: The paper deals with an influence of the excitation frequency and the dimensions of a free supported thermoelastic
plate on the effective Poisson’s ratio and the effective Young’s modulus. Both of these parameters are not, in such a situation,
the elastic material constants. The considered thermoelastic problem has been modelled within the extended thermodynamical
model. Therefore, the above effective elastic coefficients are also dependent on the thermal relaxation time. The numerical
analysis of those coefficients vs. excitation frequency both for normal and auxetic plates have been presented.
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I. INTRODUCTION

Thermoelastic problems have been considered for years
by numerous authors (cf. [1-4]).

Most of them refer to a situation when the elastic parame-
ters as constants have been used. However, during dynamical
thermoelastic interactions, particularly in bodies of finite ex-
tent, the elastic parameters, i.e. Young’s modulus and Pois-
son’s ratio, depend on frequency, thermal relaxation time and
dimensions of the body [5-7]. In such dynamical situations
also a peculiar phenomenon called the thermoelastic damping
occurs.

In the case of a plate, for instance, there occurs an ad-
ditional energy dissipation coming from an additional heat
flux normal to the middle surface during its vibrations. The
origin of that flux is the alternate compression and extension
of upper and lower fibers of that body. This way, in the case
of the plate the problem is 2D (plate) – 3D (additional dimen-
sion resulting from its thickness). [8] was the first to point out
that the thermoelastic damping comes from heterogeneities
giving rise to fluctuations of temperature. That idea was devel-
oped by [7,9] and then by [10]. Since the investigated elastic
parameters also depend on the thermal relaxation time, to
be more close to reality [11] have proposed a description of

thermoelastic damping within the extended thermodynami-
cal model (cf. [12-14]) which is crucial in nanoscience and
engineering. That model deals with the description proving
that the thermal signals propagate with finite velocity. Si-
multaneously, taking into account the dynamical character of
thermoelastic interactions with the thermoelastic damping in
a body of finite extent within the extended thermodynamical
model a detailed discussion of the properties of the elastic
parameters becomes possible.

Since in contemporary technologies one applies a very
broad range of materials of sometimes very peculiar prop-
erties, the above discussion is carried out in the paper both
for normal and auxetic materials (materials of negative Pois-
son’s ratio) [15-21] proved that Poisson’s ratio is admissible
from the thermodynamical point of view satisfying inequality
−1 < ν < 0.5.

Negative Poisson’s ratio materials and structures expand
transversely when stretched axially, and also undergo trans-
verse contraction under axial compression. This is shown in
Fig. 1, along with the classic example of a re-entrant honey-
comb structure deforming by hinging of the cell walls leading
to negative Poisson’s ratio behavior. There is increasing inter-
est in the development of these novel materials due to their
counter-intuitive behavior and also in applications where the
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auxetic property itself, or enhancements in other materials
properties due to the negative Poisson’s ratio, may be ex-
ploited [22].

Fig. 1. a) undeformed auxetic; b) deformed auxetic

In the paper the detailed investigations concern an anal-
ysis of Young’s modulus-like and Poisson’s ratio-like pa-
rameters as functions of the excitation frequencies occurring
during forced vibrations of a rectangular plate [5], within the
continuous macroscopic approximation (see Fig. 2).

Following [6] an influence of the thermal relaxation time
and the dimensions of the plate on E (Young’s effective mod-
ulus) and ν (Poisson’s effective ratio) in the sense presented
by [1, 2, 7] has also been investigated.

Note that the scope of the research literature dealing with
the auxetics and the thermoelastic damping phenomenon
within the classical and extended irreversible thermodynam-
ical models is much more extensive than that quoted in the

paper. The authors have chosen only fundamental positions
which were, in their opinion, sufficient to the suitable descrip-
tion of the problem considered in the paper.

II. BASIC THEORY

Since we are interested in determination and analysis of
Young’s modulus-like and Poisson’s ratio-like effective pa-
rameters, one of the methods to do that is an investigation of
the forced vibrations of a thermoelastic body with the forcing
frequency ω.

Therefore, let us consider a simply supported thermoelas-
tic rectangular plate 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b,−h

2 ≤ x3 ≤
h
2 .

Following [5,6] the effective parameters E and ν read for
1. very low frequency ω approximation [7]

E = ET = const, ν = νT = const, (1)

(they have constant values which are the same if they
result from the classical and the extended thermodynamical
models),

2. very high frequency ω approximation

E = Ês = const, ν = ν̂s = const (2)

(Es 6= Ês,νs 6= ν̂s; Es, νs result from the classical and
Ês, ν̂s result from the extended thermodynamical models),

3. for arbitrary frequency ω approximation

E = ET
1− ν2

1− ν2T
− (Es − ET )

× 1− 2ν

1− 2νs
(1 + νT )

1− ν2

1− ν2T

ω2
[
1− τ2T

(
ω2 − ω2

x

)]
τ2T (ω2

x − ω2)
2
+ ω2

,

(3)

Fig. 2. Continuous macroscopic model of an auxetic
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(1− νT ) (1− 2νs) = (1− ν) (1− 2νs)− (νs − νT )

× (1− 2ν) (1− ν)
ω2

[
1− τ2T

(
ω2 − ω2

x

)]
τ2T (ω2

x − ω2)
2
+ ω2

.
(4)

Index “T ” denotes the isothermal coefficient and “s” the
adiabatic one [1, 7]. The relations (3) and (4) have been de-
rived for the isothermal values [7] of the below coefficients,
so

ω2
x =

HkT
τT ρT cvT

, H =
π2

a2
+
π2

b2
, (5)

where kT denotes the heat conduction coefficient, ρT is the
mass density, cvT is the heat capacity in constant volume and
τT is the thermal relaxation time resulting from the extended
thermodynamical model (hyperbolic-type heat conduction
equation [5,6]). ωx 6= 0 if the dimensions of the plate a, b are
finite. Otherwise, if a→∞ and b→∞the problem becomes
2D (two dimensional) and relations in such a case do not hold
true because in that situation the definition of Poisson’s ratio
is different from that concerning 3D situation [16].

III. NUMERICAL RESULTS

The introductory analysis of (3) and (4) shows that the
effective Young’s modulus E and the effective Poisson’s ra-
tio ν depend on the forcing frequencies, i.e. E = E(ω) and
ν = ν(ω). That dependence increases if the frequency ω
increases. Moreover, those relations indicate that the problem
is independent of the plate thickness h. From (5) it results that
for high values of the thermal relaxation time τT the influence
of the plate dimensions a, b on the investigated processes dis-
appears. The problem becomes 2D. So, although the relations
of the effective parameters E and ν ((3), (4)) are built on the
dimensions of the plate a, b, the detailed analysis of that fact
shows that their influence on the investigated parameters is
negligible.

Most interesting is the dependence of the effective param-
eters E and ν on the excitation frequency ω and the thermal
relaxation time τT .

Let us consider a rectangular normal and auxetic plate of
the following geometric and material properties:

a = 1m, b = 1m, cvT = 460 J (kgK)
−1
,

ET = 2× 1011Pa, Es = 2.1× 1011Pa,

ρT = 7860 kgm−3, kT = 58 J (mK s)
−1
,

for the normal plate νT = 0.3, νs = 0.31,
for the auxetic plate νT = −0.3, νs = −0.29.
Young’s modulus-like parameters as functions of ω for nor-
mal and auxetic materials are presented in Figs. 3 and 4.

The quantity unit of E is Pa and the quantity unit of ω (also
in Figs. 5 and 6) is s−1.

Fig. 3. Effective Young’s moduli for normal materials as functions
of ω for different relaxation times τT : black line - τT = 10−10s, red
line - τT = 10−9s, blue line - τT = 10−8s, green line - τT = 10−7s

Fig. 4. Effective Young’s moduli for auxetic materials as functions
of ω for different relaxation times τT : black line - τT = 10−10s, red
line - τT = 10−9s, blue line - τT = 10−8s, green line - τT = 10−7s

From Figs. 3 and 4 it results that the effective Young’s mod-
ulus has a dispersive character. That fact confirms the as-
sumption (2) because for very high frequency ω both for the
normal and auxetic material Ês = const having different
values to each other. Fig. 4 shows in comparison to Fig. 3
that the values of the thermal relaxation time τT influence
the dispersion of the effective Young’s modulus much more
strongly in the auxetic material than in the classical one. Also
the character of that dispersion is different in those materials.
Note that during the adiabatic process (for high frequency
ω) the normal material is more rigid than the auxetic one,
because

Êsn > Êsa, Êsn = const, Êsa = const. (6)

The influence of τT on the ν(ω) function for the normal and
auxetic materials is presented in Figs. 5 and 6.
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Fig. 5. Effective Poisson’s ratio for normal materials as functions of
ω for different relaxation times τT : black line - τT = 10−10s, red
line - τT = 10−9s, blue line - τT = 10−8s, green line -τT = 10−7s

Fig. 6. Effective Poisson’s ratio for auxetic materials as functions of
ω for different relaxation times τT : black line - τT = 10−10s, red
line - τT = 10−9s, blue line - τT = 10−8s, green line -τT = 10−7s

Also from Figs. 5 and 6 it results that the effective Poisson’s
ratio has a dispersive character, too. The characters of those
dispersions are similar but the influence of the thermal relax-
ation time τT on that phenomenon is the same. So, contrary to
the effective Young’s modulus for normal vs. auxetic material
(Figs. 3 and 4), the effective Poisson’s ratio both for normal
and auxetic materials behaves vs. ω and τT in the same way.

IV. CONCLUSIONS

Discussion presented in the paper proves that the coef-
ficients characterizing a particular material are not always
in the form of constants. The considered Young’s modulus
and Poisson’s ratio effective parameters only for elastostatic
or thermoelastostatic problems can be taken as constants. In
case of dynamical thermoelastic ones those parameters are
functions of frequency. Moreover, the significant influence
on those coefficients has the thermal relaxation time τT .

We have also considered materials both of normal and
auxetic properties. For the low excitation frequency Young’s

effective modulus for the normal and auxetic material is the
same (see (1), (2) confirmed by (3), (4)). For the high frequen-
cies ω the normal material is more rigid than the auxetic one.
For the low frequencies materials of the definite thermoelastic
properties can exist both in the normal and auxetics states.
Then for the high frequencies they exist also in both states
having, however, different material properties. The effective
Young’s moduli reached the finite Êsn and Êsa values in the
asymptotic way, as well as the effective Poisson’s ratio ν̂sn
and ν̂sa.

Acknowledgements

This paper was financially supported by the grant
02/21/DSPB/3477.

References

[1] W. Nowacki, Thermoelasticity, Pergamon, Oxford 1962.
[2] W. Nowacki, Dynamic problems of thermoelasticity, Noord-

hoff, Leyden 1975.
[3] B.A. Boley, J.H. Weiner, Theory of thermal stresses, Wiley,

New York – London 1960.
[4] N. Noda, R.B. Hetnarski, Y. Tanigawa, Thermal stresses,

Taylor & Francis, New York – London 2003.
[5] B.T. Maruszewski, A. Drzewiecki, R. Starosta, Thermoelas-

tic damping and thermal relaxation time in auxetics, Applied
Mechanics and Materials, 432, 215-220 (2013).

[6] B.T. Maruszewski, A. Drzewiecki, R. Starosta, L. Restuccia,
Thermoelastic damping in an auxetic rectangular plate with
thermal relaxation: forced vibrations, Journal of Mechanics
of Materials and Structures., 8,(8-10), 403-413 (2013).

[7] J.B. Alblas, A note on the theory of thermoelastic damping,
Journal of Thermal Stresses, 4, (3-4), 333-355 (1981).

[8] C. Zener, Internal friction in solids, Physical Review, 52, (3),
230-235 (1937).

[9] J.B. Alblas, On the general theory of thermoelastic friction,
Applied Scientific Research A,10, (1), 349-362 (1961).

[10] B. Maruszewski, Nonlinear thermoelastic damping in circular
plate, Zeitschrift für Angewandte Mathematik und Mechanik,
72, (4), T75-T78 (1992).

[11] J. Ignaczak, M. Ostoja-Starzewski, Thermoelasticity with
finite wave speeds, Oxford University Press, New York 2010.

[12] M. Chester, Second sound in solids, Physical Rev, 131, (5),
2013 (1963).

[13] B. Maruszewski, Evolution equations of thermodiffusion in
paramagnets, International Journal of Engineering Science,
26, (11), 1217-1230 (1988).

[14] D. Jou, J. Casas-Vazquez, G. Lebon, Extended irreversible
thermodynamics, Reports on Progress in Physics, 51, (8),
1105 (1988).

[15] R. Lakes, Foam structures with a negative Poisson’s ratio,
Science, 235(4792), 1038-1040 (1987).

[16] K.W. Wojciechowski, Two-dimensional isotropic system
with negative Poisson’s ratio, Physics Letters A, 137,(1-2),
60-64 (1989).

[17] V.V. Novikov, K.W. Wojciechowski, Negative Poisson co-
efficient of fractal structures, Physics of the Solid State, 41,
1970-1975 (1999).



On Effective Young’s Modulus and Poisson’s Ratio of the Auxetic Thermoelastic Material 237
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