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Abstract: The quantitative structure-property relationship (QSPR) method is used to develop the correlation between
structures of crude oil hydrocarbons and their physical properties. In this study, we used VolSurf+ descriptors for QSPR
modeling of the boiling point, Henry law constant and water solubility of eighty crude oil hydrocarbons. A subset of the
calculated descriptors selected using stepwise regression (SR) was used in the QSPR model development. Multivariate
linear regressions (MLR) are utilized to construct the linear models. The prediction results agree well with the experimental
values of these properties. The comparison results indicate the superiority of the presented models and reveal that it can
be effectively used to predict the boiling point, Henry law constant and water solubility values of crude oil hydrocarbons
from the molecular structures alone. The stability and predictivity of the proposed models were validated using internal
validation (leave one out and leave many out) and external validation. Application of the developed models to test a set of 16
compounds demonstrates that the new models are reliable with good predictive accuracy and simple formulation.
Key words: boiling point, water solubility, Henry’s law constant, crude oil hydrocarbons, volsurf+ descriptors

I. INTRODUCTION

The aim of this work is to obtain Quantitative Structure-
Property Relationship (QSPR) models of three physicochem-
ical properties: boiling point, Water solubility and Henry’s
law constant, for a set of 80 Crude oil hydrocarbons, a special
class of chemicals that has been of concern to the scientific
community due to their pollutant potential.

The boiling point (BP) is one of the main physicochemical
properties used to characterize and identify compounds. The
BP is the temperature at which a liquid boils at 1 atmosphere
of pressure and an indication of attractive forces between the
molecules. These intermolecular forces are directly related
to the structure of the compound, and hence the BP may be
correlated to the structure. The BP of a compound is an im-
portant property for the simulation of processes in chemical
and petroleum industries. With the increased need of reliable
data for optimization of industrial processes, it is important to
develop Quantitative Structure-Property Relationship (QSPR)

models for the estimation of normal BP for compounds that
are not yet synthesized or whose BP is unknown.

Numerous QSPR models for calculating the BPs of or-
ganic compounds have been introduced using various numer-
ical descriptors of a chemical structure [1-11].

Henry’s law is one of the gas laws formulated by William
Henry in 1803 and is defined as the amount of a given gas
that dissolves in a given type and volume of liquid is directly
proportional to the partial pressure of that gas in equilibrium
with that liquid. In other words, the Henry’s law constant
(H) is as a ratio partial pressure in the vapor on the con-
centration in the liquid. Several papers are published about
the prediction and modeling of H [12-16]. As the air-water
partition coefficient, H represents a key physical property
of a compound with respect to its distribution and fate in
the environment as well as to the applicability of potential
treatment methods such as air-stripping for treatment of con-
taminated ground water. The estimation methods for H for
environmental purposes can be categorized as (1) property-
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property relationships (PPR) methods; (2) bond and group
contribution methods; (3) continuum-solvation methods; (4)
UNIFAC (universal quasi-chemical functional group activity
coefficient) and structural, quantum chemical or physico-
chemical descriptor- based QSPR methods. The most well-
known PPR is the VP/AS (vapor pressure/ aqueous solubility)
method [17].

The aqueous solubility (Sw) of organic compounds is an
important molecular property, playing a vital role in the behav-
ior of compounds in many areas of interest. The importance
of solubility of water in crude oil will increase in view of
processing, safety, hazard, and environmental considerations
focusing on product quality and equipment sustainability. Any
processing that lowers temperatures to near the freezing point
of water may result in formation of solids (freezing of water
or hydrate formation). Such formation will affect both fluid
flows in piping and operational characteristics of equipment.
For catalytic reactions, any water in the hydrocarbon may
poison the catalyst that promotes the hydrocarbon reaction.
For reactions in general, any water in the reaction species may
result in formation of undesirable by-products issuing from
the hydrocarbon reaction. The solubility of a substance is the
amount of substance that will dissolve in a given amount of
solvent. Solubility is a quantitative term that depends on the
physical and chemical properties of the solute and solvent as
well as on temperature, pressure. The production of gas and
oil is often accompanied by water; this water at the top of
the pipe becomes saturated with acid gases and corrodes the
pipe. Corrosion control in oil and gas production is carried
out using corrosion inhibitors. The first step in formulating
corrosion inhibitors is determining the solubility and other
factors [18-21]. The importance of the water solubility in
crude oil will increase in view of processing, safety, hazard,
and environmental considerations focusing on product qual-
ity and equipment sustainability. Numerous QSPR models
for prediction the Sw of organic compounds have been in-
troduced using various molecular descriptors of chemical
structure [22-26].

In our previous papers we reported on the application of
QSPR techniques in developing a new, simplified approach
to prediction of organic compounds properties using different
models [27-36].

The purpose of this study is to develop QSPR models
for the estimation of boiling points (BP), Henry law con-
stant (H) and water solubility (Sw) of crude oil hydrocarbons
using the VolSurf+ program. In this study we present new
QSPR models for prediction of the BP, logH and logSw of
various crude oil hydrocarbons. A stepwise regression (SR)
and multiple linear regression (MLR) procedure were used to
select relevant descriptors and mathematical modeling. Also,
in this work we applied back propagation neural network
(BPNN) and support vector machine regression (SVMR) on
this data set, but no significant difference between results
with the MLR method, so we preferred to report on results
of the MLR method. The predictive power of the resulting
model is demonstrated by testing them on unseen data that
were not used during model generation. A physicochemical
interpretation of the selected descriptors is also given.

II. DATA AND METHODS

The QSPR models for the estimation of the boiling point,
Henry law constant and water solubility of various crude
oil hydrocarbons are established in the following six steps:
the molecular structure input and generation of the files
containing the chemical structures is stored in a computer-
readable format; quantum mechanics geometry is optimized
with a semi-empirical (AM1) method; molecular descriptors
are computed; molecular descriptors are selected; and the
molecular descriptors-BP, H and logSw models are generated
by the multi-linear regression analysis (MLR), and statistical
approval techniques and prediction analysis.

II. 1. Experimental Data
The total data set of the boiling point (Kelvin), Henry’s

law constant (atm mol−1 frac−1) and water solubility (ppm
(wt)) in crude oil collected from the Handbook of physical
properties for Hydrocarbons and chemicals [37]. For evaluat-
ing the predictive capability of the proposed model, before
model generation both datasets were split into a training set
(∼80% of compounds), used for model development, and
a prediction set (∼20% of compounds), used for external
validation. The training set was used to adjust the parame-
ters of the SR-MLR and the test set was used to evaluate
its prediction ability. Hydrocarbons are partitioned randomly

Tab. 1. Experimental data of boiling point, Henry law constant and water solubility of crude oil hydrocarbons

No Objects Formula Name Case no. BP(K) logH (atm/mol frac) logSw (ppm-wt)
1 Object 1 C5H12 pentane 109-66-0 309.22 1.889302 2.004192
2 Object 2 C5H12 isopentane 78-78-4 300.99 1.911317 1.982181
3 Object 3 C5H12 neopentane 463-82-1 282.65 1.893651 1.999826
4 Object 4 C6H14 hexane 110-54-3 341.88 1.862251 1.954098
...

...
...

...
...

...
...

...
80 Object 80 C18H38 octadecane 593-45-3 589.86 1.644242 1.701827
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into a training set (64 hydrocarbons) and a test set (16 hy-
drocarbons). A complete list of the compound names and
corresponding experimental properties are given as Tab. 1.

II. 2. Molecular Modeling and Descriptor Generation
All numerical calculations have been performed by a com-

puter with Intel CoreTM i7 processor and 6 Gb RAM char-
acteristics. The ChemDraw Ultra version 15.0 (ChemOffice
2015, CambridgeSoft Corporation; Cambridge, MA) soft-
ware was used for drawing the molecular structures[38]. The
optimizations of molecular structures were done by the Hyper-
Chem 8.0 (Hypercube, Inc., Gainesville, 2011) using AM1
method[39], and descriptors were calculated by VolSurf+
(Molecular Discovery Ltd., 2008) Version 1.0.4 software[40].
The models have been developed by multiple linear regres-
sion (MLR) using the ordinary least squares (OLS) method
and the stepwise regression have been applied for variable
selection using the in-house software for QSPR modeling,
Molegro Data Modeller (MDM 2011.2.6.0) [41].

VolSurf+ is an advanced computational procedure aimed
to produce and explore the physicochemical property space
of a molecule (or library of molecules) starting from 3D maps
of interaction energies between the molecule and chemical
probes (GRID based Molecular Interaction Fields, or MIFs).

Interaction fields with a water probe (OH2), a hydropho-
bic probe (DRY) plus an H-bond donor (NH) and an H-bond
acceptor (=O) probes are calculated all around the target
molecules as in the program GRID. The basic concept of
VolSurf+ is to compress the information present in 3D maps
into a few quantitative numerical that is very simple to un-
derstand and to interpret. The molecular descriptors obtained
refer to molecular size and shape or the originality of Vol-
Surf+ resides in the fact that surface, volume and other related
descriptors can be directly obtained from three dimensional
molecular fields with simple computation algorithms [42-44].
In this study, VolSurf+ software was used to generate many
descriptors (128 descriptors) by H2O, DRY and other probe
characterize structural properties.

II. 3. Descriptor Selection
The selection descriptor is important to construct a pre-

dictive model. In the work, the stepwise multiple linear re-
gression was used as the feature selection method to select
the best calculated descriptors. Stepwise regression is the
most known subset descriptor selection methods. Stepwise
combines the forward selection and backward elimination.
Forward selection begins with one variable and continues to
add variable at a time until no further improvement is possi-
ble. Backward elimination begins all variable available and
repeatedly removes variable until no move important is pos-
sible. Stepwise regression methods are basically a forward
selection procedure that a descriptor entered the model in
the earlier stages of selection may be elimination at the later
stages [45-47], but at each stage the possibility of eliminating
a variable, as in backward elimination. In this work, with the

stepwise regression method for each property two descrip-
tors were selected, that has high correlation to the dependent
variable and used to build the models. We selected for each
property (dependent variable) two descriptors and models
were constructed by using them.

II. 4. MLR Modeling
The general purpose of multiple linear regression (MLR)

is to model the relationship between two or more indepen-
dent variables and a dependent variable by fitting a linear
equation to observed data. Every value of the independent
variable X is associated with a value of the dependent variable
Y. Formally, the model for multiple linear regression, given
n observations, is

Y = a0 + a1X1 + a2X2 + · · · + anXn, (1)

where in the presented study, the dependent variable Y is
the BP, logH and logSw property, X1 − Xn represents the
specific descriptor, while a1 − an represents the coefficients
of those descriptors, and a0 is the intercept of the equation.
A detailed description of theories of MLR can be found in
the literature [48, 49].

II. 4. 1. Model Validation
In order to estimate the predictive power of

a QSAR/QSPR model, it can be conveniently estimated
by statistical parameters. Reliability of the proposed method
was explored using the cross-validation methods. In this study
we applied three most well-known validation tools: external
and internal validation, and a randomization test.
II.4.1.1. Internal and external validation

In the constructed model internal validation is usually
done by leave-one-out (LOO) or leave-many-out (LMO)
procedures [50]. The Q2 is quality of prediction, if in the
model squared correlation coefficient of the training set (R2)
increased artificially by adding more descriptors whereas
Q2decreases in such over-fitting conditions. During the leave-
one-out (LOO) procedure by elimination each time one data
from the training set and a new model is constructed without
this data. The building model and leaving out is continued
until predicted all data. The new QSPR models are expected
to have low R2

cal and LOO-cross-validation (Q2
loo) values.

The leave-many-out (LMO-CV) in comparison with LOO-
CV is stronger and LMO-CV is more reliable [51, 52]. In
the LMO-CV by removing each time more one data from
the training set (leave 10 out) and constructed model. It is
suggested for big datasets. The leave-one-out cross-validation
(Q2

LOO) (or Q2
LMO) was calculated by the following equa-

tion:

Q2
LOO or Q2

LMO = 1 −
∑training

i=1 (Yi − Y i)
2∑training

i=1 (Yi − Y )
2 (2)
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Tab. 2. Experimental, descriptors, predicted and residual data for train(64 compounds) and test (16 compounds) sets of BP

No Objects BP(exp) logVP MW BP(pred) Residual
1 Object 1 309.22 2.71012 72.1488 316.09 -6.87
2 Object 3 282.65 3.11394 72.1488 300.561 -17.911
3 Object 4 341.88 2.17609 86.1754 343.107 -1.227
4 Object 5 322.88 2.49136 86.1754 330.983 -8.103
...

...
...

...
...

...
...

64 Object 79 575.3 -2.48945 240.468 593.806 -18.506
1 Object 2 300.99 2.83759 72.1488 311.188 -10.198
...

...
...

...
...

...
...

16 Object 80 589.86 -2.83565 254.494 613.6 -23.74

where Yi, Ŷ i and Ȳ are the experimental, predicted, and aver-
aged (over the entire training dataset) values of the samples
in the training set.

Q2
ext = 1 −

∑test
i=1

(
Yi − Y i

)2∑test
i=1

(
Yi − Y

)2 , (3)

where Yi and Ŷ i are experimental and predicted values of
the test set, respectively. The other useful parameters named
squared correlation coefficient (R2) and root mean-squared
error (RMSE) were also employed to evaluate the perfor-
mance of developing models, which are important indicators
for linear correlation between predicted and experimental
data. They characterize an ability of the model to reproduce
quantitatively the experimental data. R2 is an indicator that
measures the linear correlation degree between one variable
and another. RMSE indicates the dispersion degree of the ran-
dom error, which summarizes the overall error of the model.

R2 =

∑n
i=1 (Yi,pred − Y )

2∑n
i=1 (Yi,exp − Y )

2 . (4)

RMSE =

[
1

n

n∑
i=1

(Yi,exp − Yi,pred)
2

]0.5
, (5)

where Yi,exp is the experimental property in the sample i,
Yi,pred represented the predicted property in the sample i,
Ȳ is the mean of experimental property in the prediction set
and n is the total number of samples in the prediction set.

II.4.1.2. Randomization Test
Randomization test (y-randomization or y-scrambling)

is a technique to protect them against the risk of chance
correlation [53]. This technique ensures stableness of the
QSAR/QSPR model. The randomization test suggests that
whenever a model has been trained on a dataset, the same
procedure should be applied to a data set where the order of
the dependent variable has been randomized. To exclude the
possibility of chance correlation between modeling descrip-
tors and the response, the Y-Scrambling method has been
applied, which verifies the fitting of the model developed on
randomly re-ordered responses (2000 scrambling iterations);
where a low value of the averaged R2 scrambled (R2

ys) is
indicative of a well- founded original model.

Tab. 3. Experimental, descriptors, predicted and residual data for train (64 compounds) and test (16 compounds) sets of logH

No Objects logH(exp) logVP CW2 logH(pred) Residual
1 Object 1 1.8893 2.71012 0.139704 1.88985 -0.00055
2 Object 2 1.91132 2.83759 0.122463 1.90076 0.01056
3 Object 4 1.86225 2.17609 0.194731 1.85248 0.00977
4 Object 6 1.86225 2.35603 0.179248 1.86359 -0.00134
...

...
...

...
...

...
...

64 Object 80 1.64424 -2.83565 0.440419 1.63303 0.01121
1 Object 3 1.89365 3.11394 0.116121 1.90658 -0.01293
...

...
...

...
...

...
...

16 Object 73 1.6695 -1.36051 0.428491 1.66965 -0.00015
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III. RESULTS AND DISSCUSIONS

III. 1. Model Analysis
The MLR analysis has been carried out to derive the best

QSPR model. The MLR technique was performed on the
molecules of the training set. After regression analysis, a few
suitable models were obtained among which the best model
was selected and presented in equations 6, 7, and 8. MLR
analysis provided a useful equation that can be used to pre-
dict the BP, logH and logSw of crude oil hydrocarbons based
VolSurf+ descriptors.

BP = −38.45 (± 8.57) logVP

+0.46 (± 0.25) MW + 386.97 (± 41.55)

n = 64,R2 = 0.9938, s = 6.04,

F = 4896.52, Q2 = 0.9927

(6)

logH = +0.02 (±0.01) logVP

−0.48 (± 0.12) CW2 + 1.90 (± 0.04)

n = 64,R2 = 0.9731, s = 0.011,

F = 1105.27, Q2= 0.9701

(7)

logSw = −0.29 (±0.1019) R

−0.038 (±0.0021) logP + 2.46 (± 0.13)

n = 64, R2 = 0.9804, s = 0.01,

F = 1524.18, Q2 = 0.9762.

(8)

MW is the molecular mass, logVP is the logarithm of va-
por pressure, CW2 (capacity factor) is the hydrophilic volume
per surface unit, R is the ratio of volume/surface, and logP is
the n-octanol/water partition coefficient. The statistical terms
are the number of molecules used to calculate the regression
(n), squared correlation coefficient (R2), standard error (s),
F statistic (F), and the Q2 is the squared correlation coef-
ficient of leave one out cross validation. Positive values of

the regression coefficients indicate that the indicated descrip-
tor contributes positively to the value of variable property,
whereas negative values indicate that the greater the value of
the descriptor the lower the value of variable property.

Fig. 1. Experimental, predicted and residual of boiling points for
train and test sets

The plot of predicted BP, logH and logSw versus experi-
mental BP, logH and logSw and the residuals (experimental-
predicted) versus experimental values, obtained by the SR-
MLR modeling, and the random distribution of residuals
about zero means are shown in Fig. 2 and 3, respectively.

In Tables 2, 3 and 4 the results of the BP, logH and logSw
experimental, predicted and related descriptors of training
and test sets are shown, respectively. In Tab. 5. results of
the statistical data are shown. The statistical parameters of
the model are satisfying and prove that the MLR model is
stable, robust and predictive. In addition, the low value of
R2

Y _scrambling and the high value of RMSDY _scrambling of
randomization test indicating that the obtained models have
no chance correlations.

III. 2. Interpretation of Descriptors
The QSPR model of equation 6 developed indicated that

vapor pressure of compound at 25◦C (logVP) and molecular
mass (MW) significantly influence hydrocarbons normal boil-
ing points. Vapor pressure (logVP) is the pressure of a vapor

Tab. 4. Experimental, descriptors, predicted and residual data for train(64 compounds) and test (16 compounds) sets of logSw

No Objects logSw(exp) Rugosity (R) logP o/w logSw(pred) Residual
1 Object 1 2.00419 1.27768 2.765 1.97649 0.0277
2 Object 2 1.98218 1.31676 2.614 1.97068 0.0115
3 Object 4 1.9541 1.33188 3.256 1.9418 0.0123
4 Object 6 1.9541 1.37371 2.954 1.94092 0.01318
...

...
...

...
...

...
...

64 Object 80 1.70183 1.42749 9 1.69509 0.00674
1 Object 3 1.99983 1.31262 2.479 1.97704 0.02279
...

...
...

...
...

...
...

16 Object 73 1.75504 1.42764 7.524 1.75118 0.00386
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Tab. 5. Statistical parameters obtained by using Molegro Data Modeller software for MLR models

logSw logH BP Statistical parameters

R2 = 0.9804 R2 = 0.9760 R2 = 0.9938 Squared correlation coefficient (training set)

RMSD = 0.0101 RMSD = 0.0111 RMSD = 5.8971 Root Mean Squared Deviation (training set)

Q2
Loo = 0.9762 Q2

Loo = 0.9701 Q2
Loo = 0.9927 Squared Correlation coefficient LOO-CV

RMSD = 0.0111 RMSD = 0.0117 RMSD = 6.4058 Root Mean Squared Deviation (LOO-CV)

Q2
LMO = 0.9757 Q2

LMO = 0.9697 Q2
LMO = 0.9924 Squared Correlation coefficient LMO-CV

RMSD = 0.0112 RMSD = 0.0118 RMSD = 6.5077 Root Mean Squared Deviation (LMO-CV)

RMSD = 0137 RMSD = 0.0131 RMSD = 10.8742 Root Mean Squared Deviation (test set)

Q2
Ext = 0.9735 Q2

Ext = 0.9720 Q2
Ext = 0.9833 Squared correlation coefficient (test set)

R2
y−scr = 0.0108 R2

y−scr = 0.0194 R2
y−scr = 0.0418 Squared correlation coefficient (Y-scrambling)

RMSD = 0.0716 RMSD = 0.0670 RMSD = 73.36 Root Mean Squared Deviation (Y-scrambling)

in thermodynamic equilibrium with its condensed phases in
a closed container. The boiling point of a substance is the
temperature at which the vapor pressure of the liquid equals
the pressure surrounding the liquid. The vapor pressure is the
pressure exerted by vapor molecules on a solid/liquid surface
with which it is in a state of equilibrium, which means that as
long as there is equilibrium, vapor molecules enter the liquid
phase and liquid molecules enter the vapor phase.

Fig. 2. Experimental, predicted and residual of logH for train and
test sets

If the intermolecular forces between the liquid molecules
are strong it will not easily leave the liquid phase and hence
reduce the vapor pressure and consequently its boiling point
will be higher. If the intermolecular forces between the liquid
molecules are weak, they will easily leave the liquid phase
and enter the vapor phase and hence have low boiling points.
The boiling point of hydrocarbons with high molecular weight
can be increased. The boiling points of straight chain alkanes
are related to the number of carbon atoms in their molecules.
Increased intermolecular attractions are related to the greater
molecule-molecule contact possible for larger alkanes. The
boiling point downwards due to branched hydrocarbons is due
to the spherical surface molecule that reduced the surface size
and intermolecular forces become weaker and boil at a low

temperature. The second descriptor is molar mass (MW).
Among the size descriptors, molar mass is the simplest and
most commonly used molecular 0D-descriptor, calculated as
the sum of the atomic masses of all the atoms in a molecule.
It is related to molecular size and is atom-type sensitive. It
is defined as MW =

∑A
i=1 mi where m is the atomic mass

and i runs over the A atoms of the molecule. By increasing
molecular mass of compounds the BP increases.

Fig. 3. Experimental, predicted and residual of logSw for train and
test sets

The larger the molar mass, the greater the polarizability
of the molecule and hence also the van der Waals attrac-
tive forces between near neighbors. Increasing molecular
mass leads to increasing the boiling point of hydrocarbons.
However, it should be noted that substances of high molec-
ular mass evaporate more slowly than similar substances of
low molecular mass. The compounds with the highest vapor
pressures have the lowest normal boiling points. The devel-
oped QSPR of equation 7 showed that the vapor pressure
(logVP) and capacity factor (CW2) descriptors significantly
influence the Henry law constant of hydrocarbons. The rela-
tionship between the vapor pressure and Henry’s law constant
is directly that by increasing the logarithm vapor pressure
increases logarithm Henry’s law constant. The capacity factor
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(CW2) is the hydrophilic volume per surface unit that by
decreasing capacity factor, logH increases. So, with increase
of vapor pressure and decrease of hydrophilic property (de-
crease water solubility) of compounds, Henry law constant
increases. In the equation 8, two parameters of Rugosity (R)
and logPo/ware effective at prediction of logSw. The rugosity
is a measure of molecular wrinkled surface; it represents the
ratio of volume/surface. The smaller the ratio, the larger the
rugosity. With increased rugosity (decreases volume/surface
ratio), water solubility decreases. The n-octanol-water parti-
tion coefficient, respectively, its logarithmic value is called
logPo/w. The logPo/wis defined as the ratio of the concentra-
tion of a chemical in n-octanol and water at equilibrium at
a specified temperature. The typical quantitative descriptor
of lipophilicity is the logPo/w of a given compound between
two immiscible solvents. The logPo/w is frequently used
as a measure of the lipophilic character of the molecules
and molecular hydrophobicity. With increased octanol/water
partition coefficients, water solubility decreases. This brief
discussion indicates that solubility of water in hydrocarbons
contained in crude oil is important in engineering applica-
tions involving processing, safety, hazard, and environmental
considerations.

IV. CONCLUSION

Prediction of the boiling point, Henry’s law constant and
water solubility are important properties of oil and gas in-
dustry. In this study, we use calculation molecular descrip-
tors from 3D molecular fields of interaction energies with
physicochemical properties. VolSurf+ descriptors are easy
to interpret. The MLR method was used for QSPR model-
ing of physical properties of 80 hydrocarbons in crude oil.
MLR analysis provided useful equations that can be used to
predict the BP, logH and logSw of hydrocarbons based upon
logVP, MW, CW2, Rugosity and logPo/w parameters. The
results indicated that a strong correlation exists between the
experimental and predicted properties of compounds. The
obtained molecular descriptors are effective and meaningful.
The results are usable in engineering applications involving
processing, safety, hazard, and environmental considerations.
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