
CMST 22(4) 217-224 (2016) DOI:10.12921/cmst.2016.0000014

Visualisation of Relational Database Structure by Graph Database

Przemysław Idziaszek, Wojciech Mueller, Janina Rudowicz-Nawrocka*,
Michał Gruszczyński, Sebastian Kujawa, Karolina Górna, Kinga Balcerzak

Poznań University of Life Science
ul. Wojska Polskiego 28, 60-637 Poznań

*E-mail: jrudowicznawrocka@gmail.com

Received: 29 March 2016 ; revised: 27 October 2016 ; accepted: 28 October 2016; published online: 02 December 2016

Abstract: Most IT systems rely on dedicated databases, and most of these databases are relational. The advantages of such
databases are well known and widely reported in literature. Unfortunately, attempts to identify the topology of links in
the relational model produced by iterative development or administrative enhancements are often hampered by the large
number of tables that make up the database and the lack of comprehensive technical documentation. Analysis of the model
by someone other than its designer requires substantial effort. The aim of the presented work is therefore to develop an
application for effective presentation of the database structure in the form of a directed graph. The main assumption was that
a graph-oriented database environment would be used. This paper presents the RELATIONS-Graph application developed by
the authors. This application automatically generates a directed graph which presents links between tables and attributes
which constitute a relational database. The RELATIONS-Graph application can also scan the generated graph in order to
discover links between selected tables and columns. This solution has been applied to SQL Server 2014 SP1 DBMS using
the Microsoft .NET technology and the Neo4j graph database, also by .NET API. The RELATIONS-Graph application was
developed in C#, an object-oriented programming language.
Key words: relational database, graph database, Neo4j, visualisation of relations, database relations graph

I. INTRODUCTION AND KEY TECHNOLOGIES

Ongoing development of existing applications generally in-
volves modification of relational databases, and these modifi-
cations are usually based on an understanding of the database
structure [1]. Similar understanding is also required in the
scope of system administration. A visualisation of database
links, for example in the form of a graph, is a prerequisite of
proper database structure analysis [2].

MS SQL Server, a Relational Database Management Sys-
tem, supports the creation of database diagrams but does not
provide any accompanying query mechanism. MS SQL Man-
agement Studio [3] can create entity diagrams, automatically
verify links between tables and present link attributes to the
user, who is then able to recognize, for example, the name of
a given relation and the names of columns used to enforce
that relation. It is also possible to view the properties of all
tables and columns comprising the diagram [4].

The database diagram, when made up of multiple tables
linked by a large number of relations, is often unreadable. In
practical terms, its structure cannot be easily visualized in the
editor window, and no opportunity to query the diagram with
a dedicated query language is provided.

The main aim of our work was to create a solution which
would visualise the links present in a relational database in
the form of a directed graph, and to query this graph in order
to discover links between selected tables and columns. In
particular, the ability to query the graph improves the user’s
understanding of the database structure. The main assump-
tion was that a graph-oriented database environment would
be used. Our model assumes that each relation corresponds to
a table, with columns listed as attributes and links presented
as connections between tables.

Several relatively new technologies which attempt to
solve these issues are currently available. They include
NoSQL databases [5, 6], with graph databases as a subset.

218 P. Idziaszek, W. Mueller, J. Rudowicz-Nawrocka, M. Gruszczyński, S. Kujawa, K. Górna, K. Balcerzak

Fig. 1. RELATIONS-Graph application interface and example of a graph of links between database tables and columns [own source]

Such structures are well poised to store data comprising a
large number of links. An example of a graph database is
Neo4j (http://neo4j.com/), which is distributed under GPL
(General Public License) [7].

The Neo4j database stores objects in the form of graph
nodes, with relations between objects represented as edges
[8]. In addition, both edges and nodes can be equipped with
any number of properties called attributes. Apart from the
widely known capability of graph databases to perform pow-
erful JOIN operations, Neo4j also allows its user to create
indexes [9]. Such indexes can be created on nodes’ or edges’
attributes, improving the efficiency of searches. Currently,
two languages can be used to perform queries: CYPHER and
GREMLIN. The default tool used to manage the graph struc-
ture interactively is a built-in web user interface; in addition, a
dedicated Neoclipse application is also available [10, 11]. The
latter allows users to connect to the graph structure in order to
scan or modify it [12]. There is also a considerable group of
dedicated APIs (Application Programming Interface), includ-
ing APIs for object-oriented programming languages, such as
C# or Java. The REST (Representational State Transfer) API
is an additional asset. It allows programmers to start interac-
tions with the Neo4j database via HTTP (Hypertext Transfer
Protocol).

II. RELATIONS-GRAPH APPLICATION

The application developed by the authors and described in
this article is called RELATIONS-Graph. Its primary task is

to present the structure of a relational database in the form
of a directed graph. The graph consists of nodes representing
database tables and columns, as well as edges which repre-
sent links between tables and columns (Fig. 1). Moreover,
the application can be used to query the graph in order to
discover links between tables and columns. It also presents
the properties of each link.

This application is an attempt to address the inconve-
niences and limitations experienced while viewing the struc-
ture of relations in MS SQL Server SP1 2014 (and earlier
versions) databases using the MS SQL Server Management
Studio [13]. The application uses Windows Forms and takes
advantage of multithreading. The GUI (Graphical User Inter-
face) and the backend logic of the application use separate
CPU (Central Processing Unit) threads [14, 15]. This means
that – despite the complex and time-consuming processing
which takes place when dealing with a large number of tables
– the application is not subject to "freezing" and its interface
remains available to the user. Another advantage of this solu-
tion is the ability to inform the user about the level of progress
in mapping the relational structures to a graph, visualized as
a progress bar. The user can always view the total number
of tables in the selected database and the name of the table
being mapped to a graph node. Separation of system threads
is provided by the BackgroundWorker class, which is part of
the System.ComponentModel namespace. An object of this
class implements three events: DoWork, ProgressChanged
and RunWorkerCompleted, to which the user can assign ap-
propriate actions in the code.

Visualisation of Relational Database Structure by Graph Database 219

Fig. 2. Choice of relational database in RELATIONS-Graph application [own source]

The selection of the relational structure to be presented in
the form of a graph is performed by the user with a graphical
interface (Settings block – see Fig. 2).

Creating the graph of RDBMS databases relations
The first step to create a graph of database links is defining
by user an instance of the MS SQL Server by selecting it
from a list of available instances within the operating sys-
tem (OS). The information contained in the drop-down list
is retrieved directly from the OS registry. This functional-
ity is provided by the RegistryValueDataReader class. Once
a relational database server instance has been selected, the
names of all databases available within the given instance
are automatically loaded into the next drop-down list. This
is done by using a foreach loop to scan the database collec-
tion provided by the Server class, instantiated by supplying
the name of the previously selected instance to its construc-
tor [16]. Both classes (server and database) belong to the
Microsoft.SqlServer.Management.Smo namespace. Next, all
tables from the selected database are loaded into the “Tables”
drop-down list. At the same time, the RELATIONS-Graph
Application look through all the tables for foreign keys. Each
foreign key is added to the “Relationships” drop-down list.
The last step is taking a decision whether the columns defined
within the tables will take part in a process of generating
graph or not.

The address of the Neo4j graph database server to which
the selected relational structure is mapped is typed into the
Neo4j Server Address textbox, if different from the default
value [17]. NeoTechnology bases on the principle that the
server address is nearly invariant. It is important to note, how-
ever, that when using Neo4j Community, the user should also
indicate the folder containing the files of the graph database
[18].

A link to the Neo4j graph database is passed to the Graph-
Client class constructor that comes from Neo4jClient names-
pace. This space becomes available after the application is
extended with a reference to .NET API libraries provided by
NeoTechnology. The main class of the said space is Graph-
Client, which is not only used to implement the link but also
to build queries. To establish the link, the Connect method is
used. This method does not require any input parameters to
connect as the server address had previously been transferred
to the GraphClient class constructor.

The next step is to select the graph generation mode. The
user selects tables and links, and then decides which addi-
tional information will be presented in the graph. By default,
all tables and relations are selected, because we assume that
the required adjustments will be made while querying the
graph database. The current version of the application does
not permit it to be executed from the command line with
appropriate parameters. The application checks whether all
needed options are selected and starts generating the graph
with clearing any existing nodes in the graph database. The
method is shown in Fig. 3.

void cClear_Graph_DB(GraphClient graphClient)

{

graphClient.Cypher

.Match("b")

.OptionalMatch("(b)-[r]-()")

.Delete("r, b")

.ExecuteWithoutResults();

}

Fig. 3. Clearing graph database [own source]

The graph structure is built by using suitably prepared
queries in the CYPHER language [19]. A dedicated API of the
Neo4j graph database supports two ways of creating queries.
The first way, recommended by the supplier, involves running
suitable methods provided by the GraphClient class. These
methods (Match, AndWhere, Create, ExecuteWithoutResults)
are available by inheriting the ICypherFluentQuery interface
by the GraphClient class. The second approach consists of
creating a query as a string (sequence of characters). The first
approach is described in details below, and some comments
about the second approach are later.

public class Node_Table_Class

{

public string Name { get; set; }

public string ID { get; set; }

}

Fig. 4. Class which describes table’s attributes in C# [own source]

After clearing the graph database the nodes with label “Ta-
bles” are generating. These nodes map tables from database,

220 P. Idziaszek, W. Mueller, J. Rudowicz-Nawrocka, M. Gruszczyński, S. Kujawa, K. Górna, K. Balcerzak

each node one table and its attributes. The class describing
table’s attributes at level of C# and the method of creating the
table with Neo4j API are shown in Fig. 4 and 5.

void cAdd_Table_To_Graph(GraphClient graphClient,

Node_Table_Class cTab)

{

graphClient.Cypher

.Create("(a:Table {newTab})")

.WithParam("newTab", cTab)

.ExecuteWithoutResults();

}

Fig. 5. Method of creating the table with Neo4j API [own source]

Next, the links between nodes “Tables” are generated.
These links present the foreign key relations. Each link, also
called relation according to the graph database theory, has
the same name as the foreign key at the level of MS SQL
Server DBMS. In the graph database the relation is directed
from the node representing the main key table to the node
representing the foreign key table. At the level of Neo4j graph
database relations can also have attributes, but in case of the
RELATIONS-Graph Application they have only the name.
The method of creating the relation at the level of Neo4j is
presented in Fig. 6.

void cAdd_Relationship_Foreign_Key(GraphClient

graphClient, string cName_PK_Table, string

cName_FK_Table, string cFK_name)

{

graphClient.Cypher.Match("(a:Table)", "(b:

Table)")

.Where((Node_Table_Class a) =$>$ a.Name ==

cName_PK_Table)

.AndWhere((Node_Table_Class b) =$>$ b.Name

== cName_FK_Table)

.Create("a-[:" + cFK_name + "]-$>$b")

.ExecuteWithoutResults();

var query = new CypherQuery("MATCH (a:Table)

WHERE a.Nazwa=’Przedmioty’ RETURN a", new

Dictionary$<$string, object$>$(),

CypherResultMode.Set);

var result = ((IRawGraphClient)graphClient).

ExecuteGetCypherResults$<

$Node_Table_Class$>$(query).ToList();

}

Fig. 6. Method of creating relation with Neo4j API [own source]

In the last stage our application checks whether the columns
are selected by the user and, if yes, nodes with labels
“Columns” are attached to the nodes “Tables”. The class of
describing a column at level of C# and the method of adding a
column node to the graph with Neo4j API are shown in Fig. 7

and 8. The application assures that each column is added only
once. The method of creating relations between the Table
node and the Column node is shown in Fig. 9.

public class Node_Column_Class

{

public string Name { get; set; }

public string ID { get; set; }

public string Data_type { get; set; }

public bool Identity {get;set;}

public bool Primary_key { get; set; }

public bool Foreign_key { get; set; }

public bool Allow_NULL { get; set; }

}

Fig. 7. Class which describes the column node in C# [own source]

void cAdd_Column_To_Graph(GraphClient graphClient,

Node_Column_Class cCol)

{

graphClient.Cypher

.Create(‘‘(a:Column {newKol})’’)

.WithParam(‘‘newKol’’, cCol)

.ExecuteWithoutResults();

}

Fig. 8. Method of adding column node to the graph with Neo4j API
[own source]

void cAdd_Relationship_Table_To_Column(GraphClient

graphClient, string cRelationship, string

cTab_name, string cCol_name, string

cData_type)

{

graphClient.Cypher.Match("(a:Table)", "(b:

Column)")

.Where((Node_Table_Class a) =$>$ a.Name ==

cTab_name)

.AndWhere((Node_Column_Class b) =$>$ b.Name

== cCol_name)

.AndWhere((Node_Column_Class b) =$>$ b.

Data_type == cData_type)

.Create("a-[:" + cRelationship + "]-$>$b")

.ExecuteWithoutResults();

}

Fig. 9. Method of creating relation between table node and Column
node with Neo4j API [own source]

The abovementioned multistage procedure is used to create
the graph of relations based on the given relational database.
The example of the result as the graph’s node with relations
is shown in Fig. 10.

Visualisation of Relational Database Structure by Graph Database 221

Fig. 10. Example of the graph’s node features, depicting columns from a relational database in the RELATIONS-Graph application
[own source]

Fig. 11. Construction of a Cypher query in text form [own source]

The second approach of creating the graph of relations
consists of creating a query as a string (sequence of charac-
ters), which is then sent to the CypherQuery class constructor
(see Fig. 11). Such an approach is strongly discouraged, and
the documentation compares it to performing SQL queries
with the use of the ADO.NET technology, without parameters
[20]. In this case, an incorrectly constructed query sent to the
graph database server will be treated as a false request for
execution because the compiler is unable to assess its syn-

tactic correctness. Other threats connected with the second
approach are similar to those involved in SQL injection [21].
Despite the potential dangers of poorly constructed queries,
the second approach also has some advantages. Creating
queries in a text form is extremely flexible. Carefully selected
arguments in the CypherQuery class constructor enable users
to perform queries that both return data and modify the graph
structure.

Fig. 12. The effect of searching a graph database for related tables [own source]

222 P. Idziaszek, W. Mueller, J. Rudowicz-Nawrocka, M. Gruszczyński, S. Kujawa, K. Górna, K. Balcerzak

The result of the abovementioned queries is a graph that
can be viewed in the main part of the RELATIONS-Graph
application. To achieve this goal – from the programming per-
spective – a WebBrowser indicator was used, as supplied by
the Visual Studio Professional 2013 Integrated Development
Environment (IDE)AAutorIntegrated Development Environ-
ment, IDE. This operation can be performed because a client
program of the Neo4j graph database is made available via the
HTTP protocol [22]. The only action required from the user
in order to obtain the desired graph is to construct a query
directly in the command line of the Neo4j Community client
program [23]. The construction of this query can be carried
out according to two scenarios, the first of which is more dif-
ficult and requires good knowledge of the CYPHER language,
and the query is generally constructed in the command line
made available by the client program [24]. The alternative in-
volves the use of a menu in the graphical user interface of the
Neo4j Community client program, which supports generation
of simple queries. The result of a sample query concerning
relational structures in the form of graph is shown in Fig. 12.

III. QUERYING THE GRAPH

The RELATIONS-Graph Application allows to generate a
graph of links in a database and also to query this graph
in order to find relations between given tables and columns.
Querying, searching the graph is based on the queries written
in the CYPHER language and is realised as Neo4j server-side.
Examples of queries are shown in Fig. 13.

a) Query: MATCH (n:Table) OPTIONAL MATCH
()-[r]->(n) WHERE n.Name= ’Catalog’
return n
Translation: „Show all incoming relationships of table
’Catalog’ ”
b) Query: MATCH (n:Table) OPTIONAL MATCH
()<-[r]-(n) WHERE n.Name= ’Catalog’
return n
Translation: „Show all outgoing relationships of table
’Catalog’ ”

Fig. 13. Examples of CYPHER queries for searching in generated
graph of relations [own source]

Querying the generated graph is also possible directly
in the internet browser with the web interface of the Neo4j
graph database. The user must only know the names of the
graph nodes.

IV. SUMMARY

As the tools that make up the MS SQL Server 2014 SP1
package (as well as its earlier versions) have a number of lim-
itations in identifying, searching and presenting the complex

structures which make up a relational database, the authors
have proposed a new IT solution [25]. The RELATIONS-
Graph application relies on technologies associated with
graph databases (specifically Neo4j) along with the Visual
Studio environment and available libraries. This application
enables the user to visualize relational structures in the form
of a graph [26]. This, in turn, enables the use of the Neo4j
Community client program and the CYPHER language to
perform an extensive graph database querying of the exist-
ing links between the tables. Preliminary tests demonstrated
the tool’s usefulness for MS SQL Server 2014 SP1. It there-
fore seems desirable to undertake further efforts to make the
presented system more versatile, covering a larger group of
RDBMSAAutorRDBMS.

References

[1] A. Oppel, H. McGraw, Data Modeling, 2009.
[2] Sideris Courseware Corp., Data Modeling: Logical Database

Design, 2011.
[3] A. Kreigel, Discovering SQL, Wrox, 2011.
[4] I. Robinson, J. Webber, E. Eifrem, Graph Databases Second

Edition, O’Reilly Media, 2015.
[5] J. Celko, M. Kaufman, Joe Celko’s Complete Guide to

NoSQL, 2013.
[6] P. J. Sadalage, M. Fowler, NoSQL Distilled: A Brief Guide to

the Emerging World of Polyglot Persistence, Pearson Educa-
tion, 321826626 2013.

[7] S. Raj, Neo4j High Performance, Packt Publishing, 2015.
[8] A. Fowler, NoSQL For Dummies, Wiley, 2015.
[9] S. Gupta, Neo4j Essentials, Packt Publishing, 2015.

[10] E. Redmon, J. R. Wilson, Seven Databases in Seven Weeks,
O’Reilly Media, 2012.

[11] S. Tiwari, Professional NoSQL, Wrox, 2011.
[12] A. Vucotic, N. Watt, T. Abedrabbo, D. Fox, J. Partner, Neo4j

in Action, Manning, 2014.
[13] R. Dewson, Beginning SQL Server for Developers, 4th Edi-

tion, Apress, 2014.
[14] J. Powell, A Librarian’s Guide to Graphs, Data and the Se-

mantic Web, Chandos Publishing, 2015.
[15] M. Schmalz, C# Database Basics, O’Reilly Media, 2012.
[16] G. Ellis, Getting Started with SQL Server 2014 Administra-

tion, Packt Publishing, 2014.
[17] G. Vaish, Getting Started with NoSQL, Packt Publishing,

2013.
[18] G. Jordan, Practical Neo4j, Apress, 2015.
[19] O. Panazarino, Learning Cypher, Packt Publishing, 2014.
[20] E. Johnson, J. Jones, A Developer’s Guide to Data Modeling

for SQL Server, Addison-Wesley, 2008.
[21] B. A. Masood-Al.-Faroog, SQL Server 2014 Development

Essentials, Packt Publishing, 2014.
[22] R. Van Bruggen, Learning Neo4j, Packt Publishing, 2014.
[23] M. Lal, Neo4j Graph Data Modeling, Packt Publishing, 2015.
[24] A. Goel, Neo4j Cookbook, Packt Publishing, 2015.
[25] I. Robinson, J. Webber, E. Eifrem, Graph Databases,

O’Reilly Media, 2013.
[26] Z. Naboulsi, S. Ford, Coding Faster: Getting More Produc-

tive with Microsoft Visual Studio, Microsoft Press, 2011.

Visualisation of Relational Database Structure by Graph Database 223

Przemysław Idziaszek graduated in Computer Sciences and Agri-engineering at the Faculty of Agriculture
and Bio-engineering from the Poznan University of Life Sciences (PULS) in 2014. After graduate studies he
began further education at the doctoral studies, and he is currently at the third year. His Scientific Supervisor
is Prof. dr hab. Wojciech Mueller. PhD thesis is realized at the Department of Applied Informatics, Institute
of Biosystems Engineering at PULS. The aim of this work is to check if graph databases can be applied
in advisory systems supporting agriculture. His scientific work is focused on: application (web, desktop,
web-services) development in Microsoft .NET technologies, database management systems (relational, graph),
geospatial data, agriculture production, distributed systems and cloud computing. Since the last general
meeting, he has been member of the Board of Polish Society for Information Technology in Agriculture
(POLSITA).

Wojciech Mueller professor at the Department of Applied Informatics of the Institute of Biosystems Engi-
neering of the PULS. Research domain: agri-food engineering, specialization: advanced internet applications
supporting analysis, design and management of agri-food systems, in particular: systems analysis and data
modeling, business intelligence, cloud computing and advanced technologies for database management sys-
tems. He was involved in several research projects as a project leader. He is the member of the Board of Polish
Society for Information Technology in Agriculture (POLSITA).

Janina Rudowicz-Nawrocka, senior researcher at the Department of Applied Informatics of the Institute
of Biosystems Engineering of the PULS. Research domain: agri-food engineering, development of ICT
technologies for agri-food systems and sustainable development, in particular GIS, monitoring. She is involved
in several research projects as a researcher (European Projects agrixchange, SmartAgriFood) and also as a
project leader (National Project for pastures and meadows aerial monitoring). She is a board member of the
Polish Society for ICT in Agriculture, Forest and Food Production (POLSITA) and a member of the Polish
Association of Spatial Information (PASI).

Michał Gruszczyński is a PhD student at Institute of Biosystems Engineering. His scientific interests are
focused on Objective Oriented Programming, graph databases and data visualization. The main subject of his
research is analysis of thermodynamic processes and models in a packed stone bed.

224 P. Idziaszek, W. Mueller, J. Rudowicz-Nawrocka, M. Gruszczyński, S. Kujawa, K. Górna, K. Balcerzak

Sebastian Kujawa is employed as Assistant Professor in the Institute of Biosystems Engineering at Poznań
University of Life Sciences. In 2003 he graduated in Applied Informatics in Agriculture Engineering from
the August Cieszkowski Agricultural University of Poznań. In 2009 he received a PhD degree in the field
of agricultural engineering (speciality: applied informatics) from PULS. His scientific activity is focused
on applications of modern ICT technologies in solving scientific problems of broadly defined biosystems
engineering. In particular, it includes the application of digital image processing and analysis, and also neural
modeling, in development of methods for assessment of condition of dynamic biosystems. He is member of
the Board of Polish Society for Information Technology in Agriculture (POLSITA).

Karolina Górna is a third year PhD student at the Poznań University of Life Sciences. Her research field
includes image analysis and processing, artificial intelligence - especially neural networks. Her PhD thesis is
related to use of neural modelling in classification of bovine ovaries USG images.

Kinga Balcerzak is a PhD student at the Faculty of Agriculture and Bioengineering at the Poznań University
of Life sciences. She is currently during the third year of her PhD degree education, along with leading classes
for the students. Her research interests concern 3D modelling and analysis of the agriculture products based
on mathematical methods like finite element mesh generation. She is both programmer and graphic designer.

CMST 22(4) 217-224 (2016) DOI:10.12921/cmst.2016.0000014

