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Abstract: The present investigation deals with the problem of thermoelastic beam in the modified couple stress theory due
to thermal source. The governing equations of motion for the modified couple stress theory and heat conduction equation for
coupled thermoelasticity are investigated to model the vibrations in a homogeneous isotropic thin beam in a closed form
by applying the Euler Bernoulli beam theory. The Laplace transform technique is used to solve the problem. The lateral
deflection, thermal moment, axial stress average due to normal heat flux in the beam are derived and computed numerically.
The resulting quantities are depicted graphically for a specific model. A particular case is also introduced.
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I. INTRODUCTION

Cosserat and Cosserat [1] were the first to develop a math-
ematical model to analyze materials with couple stresses.
In the original Cosserat theory, the kinematical quantities
were the displacement and a material microrotation, which
assumed to being independent of the continuum macroro-
tation. The couple-stress theory is an extended form of the
continuum theory that includes the effects of a couple per unit
area on a material volume, in addition to the classical direct
and shear forces per unit area. Later on, Toupin [2] derived
the associative constitutive equations for finite deformation
of perfectly elastic materials and Mindlin and Tiersten [3]
formulated a literalized theory of couple stress elasticity.

Yang et al. [4] modified the classical couple stress theory
and proposed a modified couple-stress model, in which the
couple stress tensor is symmetrical and only one material
length parameter is needed to capture the size effect which is
caused by micro-structure. The Bernoulli-Euler beam model
based on a modified couple stress theory studied by Park
and Gao [5]. Simsek and Reddy [6] investigated the bend-

ing and vibration of functionally graded microbeams using
a new higher order beam theory and the modified couple
stress theory. Mohammad-Abadi and Daneshmehr [7] studied
the size dependent buckling analysis of microbeams based
on the modified couple stress theory with high order theories
and general boundary conditions. Darijani and Shahdadi [8]
investigated the effect of shear deformation on the static bend-
ing and vibration responses of a simply supported microplate
by using the modified couple stress theory. Beni et al. [9]
studied the size-dependent equations of motion for a func-
tionally graded cylindrical shell on the basis of the modified
couple stress theory. Dehrouyeh-Semnani et al. [10] studied
the problems of microbeams based on the modified couple
stress theory.

Sun et al. [11] used the Laplace transform technique
to study the vibration phenomena due to pulsed laser heat-
ing of a microbeam under different boundary conditions.
Thermoelastic beams with voids were studied by Li and
Cheng [12]. Sharma [13] derived governing equations of
flexural vibrations in a transversely isotropic, thermoelastic
beam in a closed form based on the Euler-Bernoulli theory
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to study thermoelastic damping (TED) and frequency shift
(FS) of vibrations in clamped and simply supported beam
structures.

Zang and Fu [14] developed a new beam model for a vis-
coelastic micro-beam based on the modified couple stress
theory. Ghader et al. [15] discussed the problem of thermoe-
lastic damping in a micro-beam resonator using the modi-
fied couple stress theory. An eigenvalue formulation and the
Galerkin finite element method used to evaluate the problem
of thermoelastic damping in vented microelectromechanical
systems (MEMS) beam resonators were presented by Guo
et al. [16]. Simsek and Reddy [6] investigated the bending
and vibration of functionally graded microbeams using a new
higher order beam theory and the modified couple stress the-
ory.

Abouelregal and Zenkour [17] discussed the problem of
an axially moving microbeam subjected to sinusoidal pulse
heating and an external transverse excitation with one relax-
ation time by using the Laplace transform and also studied the
effects of the pulse- width of thermal vibration, moving speed
and the transverse excitation. Sharma and Kaur [18] studied
transverse vibrations in a thermoelastic-diffusive thin micro
beam based on the Euler-Bernoulli theory under clamped-
clamped boundary conditions. Zenkour and Abouelregal [19]
studied the problem of thermoelastic vibration of an axially
moving microbeam subjected to sinusoidal pulse heating.

In this work, the response of a thermoelastic beam in
the modified couple stress theory due to thermal source is
investigated. A numerical technique based on the Laplace
transformation is used to calculate the lateral deflection, ther-
mal moment and axial stress average. The effect of couple
stress on lateral deflection, thermal moment and axial stress
average for coupled thermoelastic (CT) theory are shown
graphically for a specific model. Particular cases of interest
are also deduced from the present investigation.

II. BASIC EQUATIONS

Following Yang et al. [4] and Nowacki [20], the governing
equations in a modified couple stress thermoelastic medium
in the absence of body forces and heat sources are given by

(i) Constitutive relations

tij = λekkδij + 2µeij −
1

2
ekijmlk,l − βTδij , (1)

mij = 2αχij , (2)

χij =
1

2
(ωi,j + ωj,i) , (3)

ωi =
1

2
eipquq,p, i, j, k = 1, 2, 3. (4)

(ii) Equations of motion

(
λ+ µ+

α

4
∆
)
∇ (∇.u)

+
(
µ− α

4
∆
)
∇2u− β∇T = ρ

..
u,

(5)

(iii) Equation of heat conduction

K∆T − ρce
∂T

∂t
= T0β

∂

∂t
(∇.u) , (6)

where tij are the components of stress tensor, λ and µ are
Lamé’s constants, δij is Kronecker’s delta, eij are the com-
ponents of strain tensor, eijk is alternate tensor, mij are the
components of couple-stress, β = (3λ+ 2µ)αT , αT is the
coefficient of linear thermal expansion, T is the temperature
change, α is the couple stress parameter, χij is symmetric
curvature, ωi is the rotational vector. u = (u1, u2, u3) is
the components of displacement, ρ is the density, ∆ is the
Laplacian operator, ∇ is del operator. K is the coefficient of
the thermal conductivity, ce is the specific heat at constant
strain, T0 is the reference temperature assumed to be such
that T/T0 � 1.

III. FORMULATION OF THE PROBLEM

We consider a homogeneous isotropic, rectangular modi-
fied couple stress thermoelastic beam of length (0 ≤ x ≤ L) ,
width (−d/2 ≤ y ≤ d/2) and thickness (−h/2 ≤ z ≤ h/2),
where x, y and z are Cartesian axes lying along the length,
width and thickness of the beam so that x-axis coincides with
the beam axis and y and z axes coincide with the end (x = 0)
with origin located at the axis of the beam.

Using the Euler-Bernoulli theory for small deflection of
a simple bending problem, the components of displacement
as

u (x, y, z, t) = −z ∂w
∂x

, v (x, y, z, t) = 0,

w (x, y, z, t) = w (x, t) ,
(7)

where w (x, t) denotes the lateral deflection of the beam
and t denotes the time. The constitutive relation (1) in one-
dimension along the axis and with the help of equation (7),
we obtain

tx = − (λ+ 2µ) z
∂2w

∂x2
− βMT , (8)

The bending moment resultant of the beam, M can be evalu-
ated via the following relation:

M = Mσ +Mm = d

(∫ h
2

−h
2

txzdz +

∫ h
2

−h
2

mxydz

)
(9)
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where Mσ and Mm are the components of the bending mo-
ment due to the classic stress and couple stress tensors, re-
spectively.
Applying the Euler-Bernoulli assumption (7) and with the aid
of equation (8) in (9), we obtain

M = − (λ+ 2µ) I
∂2w

∂x2
−MT − αA

∂2w

∂x2
, (10)

where I is the second moment of the cross-section area of
the beam and MT is the thermal moment and I and MT are
given by

I =

∫ h
2

−h
2

dz2dz =
dh3

12
,MT = βd

∫ h
2

−h
2

Tzdz. (11)

The equation of transverse deflections of the beam is given
by Rao [21]

∂2M

∂x2
− ρA∂

2w

∂t2
= 0, (12)

where A = dh is the cross-sectional area of the beam. From
equations (10) and (12), yield

[(λ+ 2µ) I + αA]
∂4w

∂x4
+
∂2MT

∂x2
+ ρA

∂2w

∂t2
= 0, (13)

and the heat conduction equation can be written as

∇2T − ρce
K

(
∂T

∂t

)
+
βT0

K
z
∂3w

∂x2∂t
= 0. (14)

Multiply (14) by zdz and integrate from interval
(−h/2, h/2), yields(

∂2MT

∂x2
− 12

h2
MT

)
(x, t) +

hβd

2

{
∂T

∂z

(
x,
h

2
, t

)

+
∂T

∂z

(
x,−h

2
, t

)}
− ρce

K

(
∂MT

∂t

)
− β2T0I

K

∂3w

∂x2∂t
= 0

(15)
where MT is mathematically approximated as the difference
between the temperatures at the upper and bottom surfaces of
the beam, the temperature is assumed to vary linearly through
the thickness of the beam, thus we have

T

(
x,
h

2
, t

)
− T

(
x,−h

2
, t

)
=

12

βdh2
MT (x, t) (16)

The non-dimensional quantities can be written as

x′ =
x

L
z′ =

z

L
,w′ =

w

L
, t′ =

νt

L
, T ′ =

βT

E
,

M ′ =
M

dEh2
,M ′T =

MT

dEh2
, ν2 =

E

ρ
, t′x =

tx
E
.

(17)

where E = µ(3λ+2µ)
(λ+µ) is the Young modulus, ν = λ

2(λ+µ) is
the Poisson ratio, respectively.

By using (17) in (13) and (15), after surpassing the primes,
yield

∂4w

∂x4
+ a1

∂2MT

∂x2
+ a2

∂2w

∂t2
= 0, (18)

(
∂2MT

∂x2
− 12a2

3MT

)
(x, t) +

a3

2

{
∂T

∂z

(
x,
h

2
, t

)

+
∂T

∂z

(
x,−h

2
, t

)}
− a4

∂MT

∂t
+ a5

∂3w

∂x2∂t
= 0,

(19)
where

a1 =
dEh2L

(EI + αA)
, a2 =

ρAν2L2

(EI + αh)
,

a3 =
L

h
, a4 =

ρceνL

K
, a5 =

T0β
2Iν

KdEh2
.

IV. SOLUTION IN THE LAPLACE DOMAIN

We define the Laplace transform as

L {f (t)} =

∫ ∞
0

e−stf (t) dt = f̄ (s) , (20)

where s is the Laplace transform parameter. Applying Laplace
transform defined by (20) on equations (18) and (19), we ob-
tain (

D4 + a2s
2
)
w̄ = −a1D

2M̄T , (21)

(
D2 − Γ1

)
M̄T + Γ2D

2w̄ = −Q̄ (s) , (22)

where

D =
d

dx
,Γ1 =

(
12a2

3 + a4s
)
, Γ2 = a5s,

Q̄ (s) =
a3

2

{
dT̄

dz

(
x,
h

2
, s

)
+
dT̄

dz

(
x,−h

2
, s

)}
.

(23)

The differential equation of the lateral deflection w̄ and the
thermal moment M̄T are{
D6 − pD4 + qD2 − r

} [ w̄
M̄T

]
=

[
0

−a2s
2Q̄ (s)

]
,

(24)
where

p = (Γ1 + a1Γ2) , q = a2s
2, r = qΓ1.

The differential equation governing the lateral deflection w̄
can take the form(

D2 − λ2
1

) (
D2 − λ2

2

) (
D2 − λ2

3

)
w̄ = 0, (25)

where ±λ1,±λ2and ±λ3 are the characteristic roots of the
equation:

λ6 − pλ4 + qλ2 − r = 0. (26)
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and satisfy the well-known relations:

λ2
1 +λ2

2 +λ2
3 = p, λ2

1λ
2
2 +λ2

2λ
2
3 +λ2

3λ
2
1 = q, λ2

1λ
2
2λ

2
3 = r.

(27)
where p, q, r are the sum of all the roots, sum of the roots
taken two at a time and product of all the roots, respectively.
Then the lateral deflection as:

w̄ (x, s) =

3∑
i=1

(
Aie

λix +Bie
−λix

)
, (28)

where Ai and Bi, i = 1, 2, 3, are constant coefficients and
depend on the Laplace variable s. The thermal moment is
given by

M̄T (x, s) =

3∑
i=1

(
A′ie

λix +B′ie
−λix

)
+
Q̄

Γ1
, (29)

where Ai, A′i and Bi, B′i, i = 1, 2, 3, are constant coeffi-
cients and depend on the Laplace variable s. Substituting (28)
and (29) in (22), yields(

A′i
B′i

)
=

Γ2λ
2
i

(Γ1 − λ2
i )

(
Ai
Bi

)
, i = 1, 2, 3. (30)

In equation (29) and with the aid of (30), yield

M̄T (x, s) =

3∑
i=1

Γ2λ
2
i

(Γ1 − λ2
i )

(
Aie

λix +Bie
−λix

)
+
Q̄

Γ1
.

(31)
Making use of equations (8), (16), (17) and (20) and with the
aid of (29) and (31), the axial stress is obtained

T̄x (x, s) =

3∑
i=1

λ2
i

(
−h (λ+ 2µ)

EL
+

12Γ2

(λ2
i − Γ1)

)
×
(
Aie

λix +Bie
−λix

)
− 12Q̄

Γ1
,

(32)

where

T̄x (x, s) = t̄xavg
(x, s) = t̄x

(
x,
h

2
, s

)
− t̄x

(
x,−h

2
, s

)
.

(33)

V. APPLICATION

We will discuss thermal loads over the upper surface of the
beam:
The constant heat flux (−q0) normal to the upper sur-
face

(
z = h

2

)
of the beam and keeping bottom surface(

z = −h2
)
at zero temperature gradient. The boundary con-

ditions on the upper and bottom surfaces of heat conduction
equation as

q0 = K
∂T

∂z

(
x,
h

2
, t

)
,
∂T

∂z

(
x,−h

2
, t

)
= 0. (34)

Apply (17) and (20) on (34), we obtain

dT̄

dz

(
x,
h

2
, s

)
=
q0

K
,
dT̄

dz

(
x,−h

2
, s

)
= 0. (35)

VI. BOUNDARY CONDITIONS

w (0, t) = 0,
∂2w (0, t)

∂x2
= 0, MT (0, t) = 0 (36)

w (L,t) = 0,
∂2w (L,t)

∂x2
= 0, MT (L,t) = 0. (37)

From (23) and (35), the thermal influence is given by

Q̄ =
a3q0

2K
. (38)

Using (17) and (20) in the boundary conditions (36) and (37),
yield

w̄ (0, s) = 0,
d2w̄ (0, s)

dx2
= 0, M̄T (0, s) = 0 (39)

w̄ (1, s) = 0,
d2w̄ (1, s)

dx2
= 0, M̄T (1, s) = 0. (40)

Substituting the values of w̄ and M̄T from (28) and (31) in
the boundary conditions (39) and (40), with the aid of (38),
after some simplification, we obtain the expressions of lateral
deflection, thermal moment and axial stress average as

w̄ (x, s) =

3∑
i=1

(
Aie

λix +Bie
−λix

)
, (41)

M̄T (x, s) =

3∑
i=1

Mi

(
Aie

λix +Bie
−λix

)
+
a3q0

2KΓ1
, (42)

T̄x (x, s) =

3∑
i=1

Ni
(
Aie

λix +Bie
−λix

)
− 6a3q0

KΓ1
, (43)

where
A1, A2, A3,B1, B2, B3 are given in Appendix.

VII. PARTICULAR CASES

(i) If α = 0, in equations (41)-(43), we obtain the results for
lateral deflection, thermal moment and axial stress average in
a thermoelastic beam and these results are similar as obtained
by Sirafy et al. [22] in a specific case.
Inversion of the Laplace transform
To obtain the solution of the present application in the physi-
cal domain, we first apply the well-known formula:

f (t) =
1

2πi

∫ c+i∞

c−i∞
f̄ (s) e−stds, (44)



Response of Thermoelastic Beam due to Thermal Source in Modified Couple Stress Theory 99

0 1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
La

te
ra

l 
d
e
fl
e
ct

io
n
 w

x

Fig. 1. Variation of lateral deflection w with length x
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Fig. 3. Variation of axial stress average Tx with length x

Secondly, we adopt a numerical inversion method on the
fourier series expansion, by which the integral (45) can be
approximated as a series

f (t) =
ect

t1

[
− 1

2
Re f̄ (c) +

∞∑
j=0

Re

(
f̄

(
c+

ijπ

t1

))

×cos

(
jπ

t1

)
−
∞∑
j=0

Im

(
f̄

(
c+

ijπ

t1

))
sin

(
jπ

t1

)]

−
∞∑
j=1

e−2cjt1f (2jt1 + t) .

(45)
for 0 ≤ t ≤ 2t1. The above series (45) is called the Durbin
formula and the last term of this series is called the discretiza-
tion error. Honig, U. Hirdes [23] developed a method for
accelerating the convergence of the Fourier series and a pro-
cedure that computes approximately the best choice of the
free parameters.
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Fig. 2. Variation of thermal moment MT with length x

VIII. NUMERICAL RESULTS AND DISCUSSION

For numerical computations we take the magnesium material.
The physical data chosen for magnesium are taken as Daliwal
and Singh [24] and Sirafy et al. [22].

λ = 2.696× 1010 Kg m−1 s−2,

µ = 1.639× 1010 Kg m−1 s−2,

ρ = 1.74× 103 Kg m−3,

T0 = 0.293× 103 K,

E = 45× 103 GPa,

αt = 1.78× 10−5 K−1,

ν = 0.35,

ce = 1.04× 103 J Kg−1 K−1,

q0 = 2.25× 1011 Wm−2,

L/h = 10, d/h = 0.5, h = 10 µm,

α = 2.5 Kg m s−2,

K = 1.7× 102 Wm−1K−1,

t = 0.5 s.

The software Matlab 7.10.4 have been used to deter-
mine the absence and presence of couple stress on lateral
deflection w, thermal moment MT and axial stress average
Txfor the coupled thermoelastic (CT) theory in the absence
and presence of couple stress are computed numerically and
shown graphically in Figs. 1-3, respectively. In all these Figs.,
the solid line with a centre symbol (—∗—) corresponds to
CT(α = 0), and the small dash line with a centre symbol
(- -∗- -) corresponds to CT(α = 2.5).

Fig. 1 shows the variation of lateral deflection w with
respect to length. It is clear from the figure that the value of
lateral deflection decreases monotonically in the considered
region. Also, the value of lateral deflection for couple stress
(α = 2.5) is lower in comparison to (α = 0) for the coupled
thermoelastic theory.

Fig. 2 represents the variation of thermal moment MT

with respect to length. It is evident that the value of thermal
moment decreases as length increases further. On the other
hand, the values of the thermal moment is higher in the ab-
sence of couple stress and smaller in the presence of couple
stress for CT theory.

Fig. 3 depicts the variation of average of axial stress Tx
with respect to length. It is observed from the figure that the
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value of axial stress increases slowly in the range 0 ≤ x ≤ 9
and then again increases abruptly in the remaining range.
Similar behavior is observed for both cases of coupled ther-
moelastic (CT)(α = 0, 2.5) .

IX. CONCLUSIONS

Analysis of lateral deflection, thermal moment and axial
stress average is a significant problem of solid mechanics. The
resulting quantities are observed to be very sensitive towards
the couple stress parameters. The interactions of a thermoe-
lastic beam in the modified couple stress theory in the context
of the coupled thermoelastic (CT) model of thermoelasticity
has been investigated using the Euler-Bernoulli theory and

the Laplace transform technique. A numerical technique has
been used to recover the solutions in the physical domain.
The expressions for lateral deflection, thermal moment and
axial stress average have been derived successfully and shown
graphically in the absence and presence of couple stress. It is
observed from the figures that the value of lateral deflection,
thermal moment are higher in the absence of couple stress
and lower for presence of couple stress for the CT theory
and reverse behavior is observed for axial stress average. The
results obtained in the study should be beneficial for people
working in medical science, thermomechanical, engineering,
accelerometers, sensors, resonators and also working in the
field of a thermoelastic beam in the modified couple stress
theory for the coupled thermoelastic model.

APPENDIX

A1 =
∆1

∆
, A2 =

∆2

∆
, A3 =

∆3

∆
, B1 =

∆4

∆
, B2 =

∆5

∆
, B3 =

∆6

∆
,

and

∆ =



1 1 1 1 1 1

eλ1 eλ2 eλ3 e−λ1 e−λ2 e−λ3

λ2
1 λ2

2 λ2
3 λ2

1 λ2
2 λ2

3

λ2
1e
λ1 λ2

2e
λ2 λ2

3e
λ3 λ2

1e
−λ1 λ2

2e
−λ2 λ2

3e
−λ3

M1 M2 M3 M1 M2 M3

M1e
λ1 M2e

λ2 M3e
λ3 M1e

−λ1 M2e
−λ2 M3e

−λ3


,

Mi =
Γ2λ

2
i

(Γ1 − λ2
i )
, Ni = λ2

i

(
−h (λ+ 2µ)

EL
+

12Γ2

(λ2
i − Γ1)

)
,

∆i (i = 1, . . . , 6) are obtained by replacing 1st, 2nd, 3rd, 4th, 5th and 6th column by
[
0, 0, 0, 0,

(
− Q̄

Γ1

)
,
(
− Q̄

Γ1

)]T
in ∆i.

References

[1] E. Cosserat, F. Cosserat, Theory of deformable bodies. Her-
mann et Fils, Paris, 1909.

[2] R.A. Toupin, Elastic materials with couple-stresses, Arch. for
Ratio. Mech. Analy. 11, 385-414 (1962).

[3] R.D. Mindlin, H.F. Tiersten. Effects of couple-stresses in lin-
ear elasticity, Arch. for Ratio. Mech. and Analy. 11, 415-448
(1962).

[4] F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress
based strain gradient theory for elasticity, Int. J. Solids Struct.
39. 2731-43. (2002).

[5] S.K. Park, X.L. Gao, Bernoulli-Euler beam model based on
a modified couple stress theory, J. of Micromech. and Micro
Engg., 16 2355 (2006).

[6] M. Simsek, J.N. Reddy, Bending and vibration of functionally
graded microbeams using a new higher order beam theory

and the modified couple stress theory, Int. J. of Engg. Sci. 64,
37-53 (2013).

[7] M. Mohammad-Abadi, A.R. Daneshmehr, Size dependent
buckling analysis of micro beams based on modified couple
stress theory with high order theories and general boundary
conditions, Int. J. of Engng. Sci 74, 1-14 (2014).

[8] H. Darijani, A.H. Shahdadi, A new shear deformation model
with modified couple stress theory for microplates, Acta Mech.
226 2773-2788 (2015).

[9] Y.T. Beni, F. Mehralian, H. Razavi, Free vibration analysis of
size-dependent shear deformable functionally graded cylin-
drical shell on the basis of modified couple stress theory,
Composite Structures 120, 65-78 (2015).

[10] A.M. Dehrouyeh-Semnani M. Dehrouyeh, M. Torabi-
Kafshgari, M. Nikkhah-Bahrami, A damped sandwich beam
model based on symmetric-deviatoric couple stress theory, Int.
J. of Engng. Sci. 92, 83-94 (2015).



Response of Thermoelastic Beam due to Thermal Source in Modified Couple Stress Theory 101

[11] Y. Sun, D. Fang, M. Saka, A.K. Soh, Laser-induced vibrations
of micro-beams under different boundary conditions, Int. J. of
Solids and Structures 45, 1993-2013 (2008).

[12] Y. Li, C.J. Cheng, A nonlinear model of thermoelastic beams
with voids, with applications J. of mech. of materials and
Structures 5(5), 805-820 (2010).

[13] J.N. Sharma, Thermoelastic damping and frequency shift in
Micro/Nano-Scale anisotropic beams, J. of Thermal Stresses
34, 650-666 (2011).

[14] J. Zang, Y. Fu, Pull-in analysis of electrically actuated vis-
coelastic microbeams based on a modified couple stress the-
ory, Meccanica 47, 1649-1658 (2012).

[15] G. Rezazadeh, A.S. Vahdat, S. Tayefeh-Rezaei, C. Cetinkaya,
Thermoelastic damping in a micro-beam resonator using mod-
ified couple stress theory, Acta Mechanica 223(6), 1137-1152
(2012).

[16] X. Guo X, Y.B. Yi, S. Pourkamali, A finite element analysis of
thermoelastic damping in vented MEMS beam resonators, Int.
J. of Mech. Sci. 4: 73-82 (2013).

[17] A.E. Abouelregal, A.M. Zenkour, Effect of phase lags on
thermoelastic functionally graded microbeams subjected to

ramp-type heating, Iranian Journal of Science and Technology:
Transactions of Mechanical Engineering 38(M2), 321-335
(2014).

[18] J.N. Sharma, M. Kaur, Transverse vibrations in thermoelastic-
diffusive thin micro-beam resonators, J. of Thermal Stresses
37, 1265-1285 (2014).

[19] A.M. Zenkour, A.E. Abouelregal, Thermoelastic Vibration of
an Axially Moving Microbeam Subjected to Sinusoidal Pulse
Heating, Int. J. Str. Stab. Dyn. 15(6), 1-15 (2015).

[20] W. Nowacki, Dynamical problems of thermo diffusion in
solids, Engg. Frac. Mech. 8, 261-266 (1976).

[21] S.S. Rao, Vibrations of continuous systems. John Wiley &
Sons, New York 2007.

[22] I.H. EI-Sirafy, M.A. Abdou, E. Awad, Generalized lagging
response of thermoelastic beams, Mathematical Problems in
Engineering Article ID 780679, 1-13 (2014).

[23] G. Honig, U. Hirdes, A method for the numerical inversion of
the Laplace transform, J. Comput. Appl. Math. 10, 113-132
(1984).

[24] R.S. Daliwal, A. Singh Dynamical coupled thermoelasticity.
Hindustan Publishers, Delhi, 1980.

Rajneesh Kumar is a professor at Kurukshetra University Kurukshetra (Haryana, India). He received his PhD
in Applied Mathematics from Guru Nanak Dev University, Amritsar (Punjab, India) in 1986. His area of inter-
ests include Continuum Mechanics (Micropolar elasticity, thermoelasticity, poroelasticity, magnetoelasticity,
micropolar porous couple stress theory, viscoelasticity, double porosity, modified couple stress theory. He has
published 448 publications in international journals.

CMST 22(2) 95-101 (2016) DOI:10.12921/cmst.2016.22.02.004


