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A Note on the Singh Six-order Variant of Newton’s Method
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Abstract: In 2009 in this journal it was published the paper of M. K. Singh [1], in which the author presented a six-order
variant of Newton’s method. Unfortunately, in this paper there were a number of printer errors and a serious error in the
proof of theorem on the order of the method proposed. Therefore, we have opted for presenting the correct proof of this
theorem.
Key words: Newton’s method, nonlinear equations, iterative methods, order of convergence

I. INTRODUCTION

In [1] the author presented a three-point iterative scheme
for solving nonlinear equations of the form

f(x) = 0,

where f : I ⊂ R → R is a continuously differentiable real
function. Starting with a given x0 this scheme uses four func-
tion evaluations, namely f(xn), f ′(xn), f ′(yn), f(zn) and
can be written as

yn =xn −
f(xn)

f ′(xn)
,

zn =xn −
f(xn)

(
f ′(xn) + f ′(yn)

)
f ′(xn)2 + f ′(yn)2

,

xn+1 =zn −
f(zn)

(
f ′(xn)2 + f ′(yn)2

)
2f ′(xn)f ′(yn)2

,

(1)

where (see Eq. (11) in [1])

2f ′(xn)f ′(yn)2

f ′(xn)2 + f ′(yn)2
≈ f ′(zn).

Apparently this way of replacing f ′(zn) by earlier calcu-
lated quantities is caused by the intention to reduce the cost
of the procedure by decreasing the number of evaluations of
f(·) and f ′(·) to have higher efficiency index (see Def. II.2
in [1]). It should be mentioned that in the original paper the
denominator of the last equation (1) contains f ′(yn) instead
of f ′(yn)2.

II. CONVERGENCE ANALYSIS

The main theorem on the order of the method (1) pre-
sented in [1] (Theorem IV.1 on page 187) is as follows:

Let α ∈ I be a simple zero of a sufficiently differentiable
function f : I ⊂ R→ R for an open interval I . If x0 is suf-
ficiently close to α, then the method defined by (1) has six–th
order convergence.

The proof contains a number of misprints. However, the
careful reader can easily fix these errors and guess the cor-
rect form of adequate equations. The serious error is at the
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end of proof. Using the approximation (2) the last line of the
formula for xn+1 can be written in the form (see page 189
in [1])

xn+1 = α+
(

2C2
2 +

C3

2

)
e3n

+O(e4n)−

(
2C2

2 + C3

2

)
e3n +O(e4n)

1 +Ae3n +O(e4n)
.

(2)

We use here the symbols Cj introduced in the not labeled
equation below eq.(13) in the paper of Singh

Cj =
1

j!

f j(α)

f ′(α)
. (3)

From (2) it follows that

xn+1 = α+
(

2C2
2 +

C3

2

)
e3n +O(e4n)−

(
2C2

2 +
C3

2

)
e3n

−O(e4n) = α+O(e4n) = α+Be4n +O(e5n),

where B is some constant. It suggests that the error equation
is of the form

en+1 = Be4n +O(e5n).

However, Singh claims that

en+1 = Ae6n +O(e7n),

what seems to contradict the above short reasoning. Mirac-
ulously, it turns out that the form of eq. (24) in [1] does not
depend on the terms smaller than e5n because they cancel out
in the final expression: the terms e4n and e5n hidden in the
Big-Oh symbolsO(e4n) subtract each other leaving non-zero
term e6n and indeed Singh method is of the sixth order, what
can be proved in details as follows.

We have

f(xn) =f(α+ en) = f ′(α)en + f ′′(α)
e2n
2!

+ f ′′′(α)
e3n
3!

+f IV (α)
e4n
4!

+ fV (α)
e5n
5!

+ fV I(α)
e6n
6!

+O(e7n) =

=f ′(α)[en + C2e
2
n + C3e

3
n + C4e

4
n

+C5e
5
n + C6e

6
n +O(e7n)],

f ′(xn) =f ′(α)[1 + 2C2en + 3C3e
2
n + 4C4e

3
n

+5C5e
4
n + 6C6e

5
n +O(e7n)]

(4)
From the above equations it follows that

f(xn)

f ′(xn)
=

en + C2e
2
n + C3e

3
n + C4e

4
n

+ C5e
5
n + C6e

6
n +O(e7n)

1 + 2C2en + 3C3e
2
n + 4C4e

3
n

+ 5C5e
4
n + 6C6e

5
n + 7C7e

6
n +O(e7n)

(5)

= en−C2e
3
n−(2C3−2C2

2 )e3n−B4e
4
n−B5e

5
n−B6e

6
n+O(e7n)

where Bk, (k = 4, 5, 6) denote some constants containing
Cj . From (5) and the first equation in (1) we get

yn =α+ C2e
2
n + (2C3 − 2C2

2 )e3n +B4e
4
n

+B5e
5
n +B6e

6
n +O(e7n).

Let us denote

g(en) =C2e
2
n + (2C3 − 2C2

2 )e3n +B4e
4
n

+B5e
5
n +B6e

6
n +O(e7n).

(6)

From (6) we have

g(en)2 = C2
2e

4
n +D5e

5
n +D6e

6
n +O(e7n). (7)

and

g(en)3 = C3
2e

6
n +O(e7n), (8)

where Dk, (k = 5, 6) are again some constants containing
Cj . Since

f ′(yn) =f ′(α+ g(en)) = f ′(α) + f ′′(α)g(en)

+f ′′′(α)
g(en)2

2!
+ f IV (α)

g(en)3

3!
+O(e8n)

then, using (6), (7) and (8), we get

f ′(yn) =f ′(α) + f ′′(α)[C2e
2
n + (2C3 − 2C2

2 )e3n

+B4e
4
n +B5e

5
n +B6e

6
n]

+
f ′′′(α)

2!
(C2

2e
4
n +D5e

5
n +D6e

6
n)+

f IV (α)

3!
C3

2e
6
n +O(e7n).

Using (3) the above equation yields

f ′(yn) =f ′(α)[1 + 2C2
2e

2
n + (4C2C3 − 4C3

2 )e3n

+E4e
4
n + E5e

5
n + E6e

6
n +O(e7n)],

(9)

where Ek, (k = 4, 5, 6) denote constants containing Cj .
On the basis of the second equation in (4) we have

f ′(xn) = f ′(α)2[1 + 4C2
2en + (4C2

2 + 6C3)e2n

+(12C2C3 + 8C4)e3n + F4e
4
n + F5e

5
n + F6e

6
n +O(e7n)],

(10)
and on the basis of (9)

f ′(yn)2 =f ′(α)2[1 + 4C2
2e

2
n + (8C2C3 − 8C3

2 )e3n

+G4e
4
n +G5e

5
n +G6e

6
n +O(e7n)],

(11)

where Fk and Gk, (k = 4, 5, 6) are other constants contain-
ing Cj . The formulas (10) and (11) yield

f ′(xn)2 + f ′(yn)2 = 2f ′(α)2[1 + C2en + (4C2
2 + 3C3)e2n

+(10C2C3+4C4−4C3
2 )e3n+H4e

4
n+H5e

5
n+H6e

6
n+O(e7n)],

(12)
with some constantsHk(k = 4, 5, 6) containing Cj . Further,
from the second equation in (4) and (9) we have

f ′(xn) + f ′(yn) = 2f ′(α)[1 + C2en + (C2
2 + 3

2C3)e2n

+(2c2C3 + 2C4− 2C3
2 )e3n + I4e

4
n + I5e

5
n + I6e

6
n +O(e7n)],

where Ik, (k = 4, 5, 6) are constants containing Cj . The
above relation and the first formula in (4) yield

f(xn)
(
f ′(xn) + f ′(yn)

)
= 2f ′(α)2[en + C2e

2
n

+
(
2C2

2 +
5

2
C3

)
e3n + J4e

4
n + J5e

5
n + J6e

6
n +O(e7n)],

(13)
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with constants Jk(k = 4, 5, 6) containing Cj . Now, we can
write an expansion for zn given by the second equation in
(1). From (12) and (13) we have

zn = xn −
[
en + 2C2e

2
n +

(
2C2

2 +
5

2
C3

)
e3n + J4e

4
n

+J5e
5
n + J6e

6
n +O(e7n)

]
/
[
1 + 2C2en + (4C2

2 + 3C3)e2n

+(10C2C3 + 4C4 − 4C3
2 )e3n +H4e

4
n +H5e

5
n +H6e

6
n

+O(e7n)
]

= xn − en + (2C2
2 +

1

2
C3)e3n +K4e

4
n +K5e

5
n

+K6e
6
n +O(e7n) = α+ (2C2

2 +
1

2
C3)e3n +K4e

4
n +K5e

5
n

+K6e
6
n +O(e7n),

(14)
where Kk, (k = 4, 5, 6) are other constants containing Cj .
From (14) it follows that

f(zn) =f

(
α+

(
2C2

2 +
1

2
C3

)
e3n +K4e

4
n

+K5e
5
n +K6e

6
n +O(e7n)

)
.

Let us denote

h(en) =

(
2C2

2 +
1

2
C3

)
e3n +K4e

4
n

+K5e
5
n +K6e

6
n +O(e7n).

(15)

Then we can write

f(zn) = f(α+ h(en)) = f ′(α)h(en) + f ′′(α)
h(en)2

2!

+O(h(en)3) = f ′(α)h(en) + f ′′(α)
h(en)2

2!
+O(e9n).

(16)
because in (15) the term en occurs at least in the third power.
Since from (15) it also follows that

h(en)2 = (2C2
2 +

1

2
C3)2e6n +O(e7n),

then from (16) we get

f(zn) = f ′(α)
[(

2C2
2 +

1

2
C3

)
e3n +K4e

4
n +K5e

5
n

+K6e
6
n +O(e7n)

]
+ C2f

′(α)
[(

2C2
2 +

1

2
C3

)2

e6n

+O(e7n)
]

+O(e9n) = f ′(α)
[(

2C2
2 +

1

2
C3

)
e3n +K4e

4
n

+K5e
5
n +

(
K6 + C2

(
2C2

2 +
1

2
C3

)2
)
e6n +O(e7n)

]
.

(17)

Inserting the second relation in (4), (11), (12), (14) and (17)
into the last relation in (1) we have

xn+1 =α+

(
2C2

2 +
1

2
C3

)
e3n +K4e

4
n +K5e

5
n +K6e

6
n

+O(e7n)−
{
f ′(α)[(2C2

2 +
1

2
C3)e3n +K4e

4
n +K5e

5
n

+(K6 + C2(2C2
2 +

1

2
C3)2)e6n +O(e7n)]× 2f ′(α)2

×[1 + 2C2en + (4C2
2 + 3C3)e2n + (10C2C3

+4C4 − 4C3
2 )e3n +H4e

4
n +H5e

5
n +H6e

6
n

+O(e7n)]
}
/
{

2f ′(α)[1 + 2C2en + 3C3e
2
n + 4C4e

3
n

+5C5e
4
n + 6C6e

5
n + 7C7e

6
n +O(e7n)]

×f ′(α)2[1 + 4C2
2e

2
n + (8C2C3 − 8C3

2 )e3n

+G4e
4
n +G5e

5
n +G6e

6
n +O(e7n)]

}
=

=α+ (2C2
2 +

1

2
C3)e3n +K4e

4
n +K5e

5
n +K6e

6
n

+O(e7n)− [(2C2
2 +

1

2
C3)e3n + L5e

5
n + L6e

6
n

+O(e7n)]/[1 + C2en + (4C2
2 + 3C3)e2n

+(5C3
2 + 8C2C3 + 4C4)e3n +M4e

4
n

+M5e
5
n +M6e

6
n +O(e7n)],

(18)
where Lk and Mk, (k = 4, 5, 6) are consecutive constants
containing some combinations of Cj . In particular, we have

L4 =K4 + 2C2

(
2C2

2 +
1

2
C3

)
,

L5 =K5 + 2C2K4 +

(
2C2

2 +
1

2
C3

)
(4C2

2 + 3C3),

L6 =K6 + 2C2K5 + (4C2
2 + 3C3)K4 +

(
2C2

2 +
1

2
C3

)
×
(

21

2
C2C3 + 4C4 − 2C3

2

)
(19)

(the forms of Mk are unimportant further). If we denote

K3 = L3 = 2C2
2 +

1

2
C3,

M1 = 2C2,

M2 = 4C2
2 + 3C3, (20)

M3 = 4C3
2 + 8C2C3 + 4C4,

then the equation (18) can be written in a simpler form

xn+1 = α+K3e
3
n +K4e

4
n +K5e

5
n +K6e

6
n +O(e7n)

− L3e
3
n + L4e

4
n + L5e

5
n + L6e

6
n +O(e7n)

1 +M1en +M2e
2
n +M3e

3
n +M4e

4
n

+M5e
5
n +M6e

6
n +O(e7n)

.

(21)
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Denoting the fraction in (21) by Φ it can be calculated that

Φ = L3e
3
n + (L4 −M1L3)e4n + [L5 −M1L4

+(M2
1 −M2)L3]e5n + [L6 −M1L5 + (M2

1 −M2)L4

+(2M2M2 −M3
1 −M3)L3]e6n +O(e7n).

(22)
But from (19) and (20) it follows that

L3 =K3,

L4 =K4 +M1L3,

L5 =K5 +M1K4 +M2L3,

L6 =K6 +M1K5 +M2K4

+
(21

2
C2C3 + 4C4 − 2C3

2

)
L3.

Inserting these results in (22) we obtain

Φ = K3e
3
n +K4e

4
n +K5e

5
n

+[K6 +
(5

2
C2C3 − 6C3

2

)
K3]e6n +O(e7n).

(23)

Thus, from (21) we finally have

xn+1 = α+ C2

(
6C2

2 −
5

2
C3

)
e6n +O(e7n).

The last relation states that the Singh method is of the
sixth order and now the proof is correct. On page 186 in [1]

Singh defines efficiency index as p1/m, where p is the order
of the method and m is the number of functions evaluations
required by the method. Usual Newton’s method is of order 2
and requires 2 functions evaluations, therefore the efficiency
index of Newton’s method is 21/2 = 1.414 . . .. The whole
algorithm of Singh presented in eq. (1) contains 4 function
evaluations, 5 multiplication and 3 divisions, while the usual
Newton method three times iterated has the order eight with
6 function evaluations and 3 divisions without any multipli-
cation involved. Thus three times iterated Newton’s method
has the efficiency index 81/6 =

√
2 = 1.4142 (the same as

usual Newton method) in contrast to the efficiency index of
the Singh’s method 61/4 = 1.5651. However the advantage
of the method proposed by Singh seems to us to be illusive in
view of complicated character of computer implementation
and time consuming extra operations (intermediate results of
arithmetical operations have to be stored in temporary vari-
ables).
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