
CMST 21(4) 251-260 (2015) DOI:10.12921/cmst.2015.21.04.009

Using Genetic Algorithms for Optimizing Algorithmic Control
System of Biomimetic Underwater Vehicle

Tomasz Praczyk

Institute of Naval Weapon, Polish Naval Academy
81-103 Gdynia, ul. Śmidowicza 69
E-mail: t.praczyk@amw.gdynia.pl

Received: 24 November 2015; revised: 15 December 2015; accepted: 16 December 2015; published online: 29 December 2015

Abstract: Autonomous underwater vehicles are vehicles that are entirely or partly independent of human decisions. In
order to obtain operational independence, the vehicles have to be equipped with a specialized control system. The main
task of the system is to move the vehicle along a path with collision avoidance. Regardless of the logic embedded in
the system, i.e. whether it works as a neural network, fuzzy, expert, or algorithmic system or even as a hybrid of all the
mentioned solutions, it is always parameterized and values of the system parameters affect its effectiveness. The paper
reports the experiments whose goal was to optimize an algorithmic control system of a biomimetic autonomous underwater
vehicle. To this end, three different genetic algorithms were used, i.e. a canonical genetic algorithm, a steady state genetic
algorithm and a eugenic algorithm.

Key words: biomimetic underwater vehicle, evolutionary computation

I. INTRODUCTION

Autonomous Underwater Vehicles (AUV), as the name
implies, are vehicles which need the ability to operate au-
tonomously or, in other words, independently of a human
being. This ability can be used on different levels and in dif-
ferent situations, e.g. during the entire operation of the ve-
hicle – a vehicle completely independent of an operator, or
only when a communication system with the operator is bro-
ken – a remotely operated vehicle with a function to safely
come back to the operator. To act autonomously, not only
in emergency situations, each AUV has to be equipped with
a specialized software that is able, to at least lead the vehi-
cle along a path fixed by the operator and to avoid collisions
with obstacles.

The software with the abilities outlined above was im-
plemented for the Biomimetic Autonomous Underwater Ve-
hicle (BAUV) [3, 9] constructed within the framework of
the project no. DOBR-BIO4/033/13015/2013, entitled “Au-
tonomous underwater vehicles with silent undulating propul-
sion for underwater reconnaissance” financed by the

National Center of Research and Development. It was func-
tionally divided into two separate parts, i.e. Low-Level
Control System (LLCS) and High-Level Control System
(HLCS). LLCS is responsible for executing commands pro-
vided by HLCS, i.e. its task is to implement decisions of
HLCS by means of BAUV propellers. In other words, LLCS
transforms high-level decisions of HLCS, e.g. to move for-
ward, to turn left, to submerge to depth of 15 meters, into
low-level decisions for BAUV propellers. To this end, dif-
ferent types of controllers, e.g. PID or fuzzy controllers,
are used. In turn, HLCS is responsible for high-level deci-
sions, i.e. decisions regarding direction of movement, turn-
ing on/off on-board devices, depth etc. Whereas LLCS per-
forms tasks which have to be performed not only on au-
tonomous vehicles, HLCS is characteristic exclusively for
autonomous platforms.

Generally, HLCS can have different types of tasks; how-
ever, its basic responsibility is to lead the vehicle along
a fixed path and to avoid obstacles encountered during the
voyage. To perform this task, different control strategies and

252 Tomasz Praczyk

different types of high-level controllers can be used, e.g. a
neural network, a fuzzy system, an expert system, an algo-
rithmic system or even a hybrid which can somehow com-
bine all the mentioned solutions.

The current implementation of HLCS is algorithmic with
the potential to include into the system other solutions, for
example the ones mentioned above. To make the system ef-
fective in various collision and collision free situations, it
was repeatedly tested, rebuilt and each next variant of the
system was manually tuned. However, the manual tuning
does not guarantee optimality of HLCS and BAUV behavior.
In order to increase effectiveness of the current hand-tuned
variant of HLCS, the decision was made to apply optimiza-
tion techniques. Due to the complexity of BAUV control
problem, the genetic algorithms (GA) were selected for that
purpose. Their globality and discrete character influenced
the decision.

The paper is a report on the experiments with the ge-
netic algorithms used to optimize parameters of algorithmic
HLCS. Its further part consists of four main sections: first,
a control algorithm used in HLCS is shortly outlined, then,
three types of genetic algorithms applied in the experiments
are presented, in the next section, the experiments are re-
ported, and finally, a summary is given.

II. THE ALGORITHM OF HLCS

The main idea of HLCS is to perform a mission of BAUV
defined by the vehicle operator on a specialized computer
application and provided to the vehicle by means of a radio-
modem. The mission takes the form of a sequence of op-
erations or orders for BAUV. The operations can determine
successive movements of the vehicle but they also can con-
trol vehicle devices, e.g. sonars, cameras, and echo sounders.
They can be very simple, e.g. stop, move forward, rotate, but
also more complex, e.g. move to next waypoint, turn right
at 20 deg, immerse 10 meters deep. In the latter case, the
operations can be combined with simpler ones.

In normal conditions, i.e. when BAUV moves between
successive waypoints with collision avoidance, HLCS per-
forms one operation after another, but there can be situations
when the mission has to be interrupted and an emergency
action has to be taken. Collision with an obstacle is an ex-
ample of such a situation. In this case, HLCS stops the op-
eration which is currently run and starts an operation whose
task is to lead BAUV to a position in which the mission can
be safely resumed.

When navigating between waypoints and avoiding colli-
sions, behavior of BAUV is, in principle, a sequence of op-
erations: move forward, turn right/left and change the depth.
The moment of activating specific operations depends on the
situation under water and the logic embedded in HLCS. The
situation observed by BAUV depends, in turn, on sensors in-
stalled on board. It is assumed that the BAUV sensors are

used to form an environment map made up of simple ele-
ments like spheres and all the decisions on the vehicle move-
ments are made based on the map, not based on direct indi-
cations of the sensors. In other words, HLCS “lives” in a vir-
tual world which consists of a set of spheres and all system
decisions are made in this world.

The logic of the system, if limited only to navigating be-
tween waypoints and avoiding collisions, can be reduced to
one operation, say, GoToWayPoint. This operation, when
possible, leads BAUV directly to a next waypoint, along a
straight line, and when impossible, mainly because of obsta-
cles, avoids collisions through changing direction of move-
ment and depth of the vehicle. The choice of a specific
collision-avoidance maneuver depends on location of the ob-
stacles with reference to BAUV. When HLCS finds that there
is a space for BAUV to directly move toward a next way-
point, the course to the waypoint is calculated and the vehicle
continues its voyage according to the fixed course. The depth
at which BAUV moves is equal to coordinate Z of the next
waypoint. If BAUV is close to the goal waypoint, the opera-
tion stops and a next GoToWayPoint operation is run.

III. GENETIC ALGORITHMS

All the evolutionary techniques used in the experiments
reported in the further part of the paper, regardless of the
type, work according to the simple algorithm depicted in Fig.
1. First, a population of individuals is generated, typically at
random. Each individual is then evaluated, i.e. a measure of
goodness, called fitness, is assigned to it. In the next step,
some individuals from the population are selected. The cho-
sen individuals are parents for newborn offspring. To gener-
ate the offspring, different genetic operators are used on the
parents. The newly generated offspring are then evaluated.
The next activity is to replace the parents with the offspring.
This way we obtain a new population of individuals. The
population, depending on the replacement strategy, contains
either exclusively newly generated individuals or both the
parents and the children. The new population undergoes the
same evolutionary procedure as the previous population, i.e.
individuals are selected for reproduction, different operators
are applied on selected individuals, offspring are generated,
evaluated and finally a next population arises. This procedure
is repeated until some stopping criterion is satisfied.

III. 1. Canonical Genetic Algorithm
The Canonical Genetic Algorithm (CGA) (see Fig. 2),

like each GA, operates on the level of encoded solutions, i.e.
genotypes represented as binary strings. In CGA, different
selection schemes can be used to select genotypes for re-
production. The most frequently used schemes are: the pro-
portional, ranking and tournament selection scheme [2, 6].
All the schemes present a selection philosophy according to
which better individuals have a greater chance to be selected
than the worse ones.

Using Genetic Algorithms for Optimizing Algorithmic Control System of Biomimetic Underwater Vehicle 253

Fig. 1. Pseudocode of Evolutionary Algorithm [6]

In order to select individuals for reproduction, the tour-
nament selection, which is the only selection scheme used in
the experiments presented further, organizes a cycle of tour-
naments. In each tournament, a number of randomly selected
individuals participate. Selecting individuals for the tourna-
ment is uniform. Each tournament ends with selecting a win-
ner individual which is better than the remaining individuals
taking part in the competition. In order to fill out a newly
created population, it is necessary to repeat the tournament
many times.

The selected individuals undergo different genetic oper-
ators. Two commonly used genetic operators are crossover
and mutation [2, 6]. The crossover recombines a genetic ma-
terial from two parental chromosomes creating an offspring
chromosome. The mutation introduces random changes into
a chromosome flipping some bits (genes) to an opposite
state. In CGA, the key operator is the crossover [2, 6]
whereas the mutation usually plays a supporting role.

Fig. 2. Pseudocode of Evolutionary Algorithm [6]

Generally, there are three basic forms of the crossover,
i.e. the one-point, two-point and uniform crossover [8, 11].
The one-point crossover cuts two parental chromosomes into
two segments. The left segment from the first chromosome
is attached to the right segment from the second chromo-
some. This way, the first offspring is produced. The same
procedure as above is applied with respect to the remaining
unattached segments from both chromosomes. Thus, the sec-
ond offspring is generated. The two-point crossover works
similarly. However, this time, parental chromosomes are cut
in two places. Accordingly, instead of two segments, as in

the previous case, three separate segments are generated.
To produce offspring, the two-point crossover swaps cen-
tral segments of both chromosomes. The third version of the
crossover is the uniform crossover. It exchanges correspond-
ing bits from both chromosomes with the probability 0.5.

The mutation is the next evolutionary operator used in
CGA. As mentioned above, the mutation is rather a sup-
porting operator in relation to the crossover. Nevertheless,
functioning of CGA and other GAs without this operator is
rather impossible. The mutation helps in exploration of un-
known regions of a genotype space. The lack of this opera-
tor would cause CGA to be not able to produce new, perhaps
useful, combinations of bits. The mutation is a simple oper-
ator since it randomly flips bits from a chromosome to their
opposite state.

III. 2. Steady State GA
Unlike CGA, Steady State GA (SSGA), in the reproduc-

tion phase, creates only one offspring which then replaces a
single individual from the existing population. The newborn
individual is generated from two randomly selected parents.
As in CGA, better individuals have a greater chance to be
parents than worse individuals. There are at least two dif-
ferent strategies to select an individual to replace. The first
of them replaces the worst individual from a population. The
next strategy randomly selects individuals to replace. In gen-
eral, selecting individuals to replace is based on their fitness.
In the experiments, the first mentioned replacement strategy
was used.

III. 3. Eugenic Algorithm
The last GA used in the experiments is the Eugenic Al-

gorithm (EuA) [1, 4, 5, 7]. The main difference between
GAs presented so far and EuA is the way of constructing
offspring. To generate offspring, the techniques presented
previously always use two parents, i.e. they apply the sex-
ual reproduction. In EuA, a single child is created basing
on the information included in the whole population of indi-
viduals. Each individual from the population can affect the
shape of a newborn individual. However, better individuals
have a greater chance to introduce their genetic material into
offspring than the worse ones. The pseudocode for EuA is
presented in Figure 3.

EuA proceeds as follows. First, a randomly initialized
population of binary individuals is generated. Then, a new
individual is formed. To this end, EuA uses a temporary
population of individuals, which in the beginning is a faith-
ful copy of the original population. Initially, all genes from
the new individual are unset. In subsequent steps, the genes
are gradually fixed. The most significant gene, i.e. the gene
which seems to have the greatest influence on fitness of in-
dividuals, is determined from the whole set of unset genes.
To estimate the significance of the gene, the absolute differ-
ence between mean fitnesses fixed for various alleles (allele

254 Tomasz Praczyk

is a value of a gene; in GAs allele is from the set {0,1}) is
used [7]:

Sg = |f̄(g, 1)− f̄(g, 0)| (1)

where Sg is the significance of the gene g and f̄(g, a) is the
mean fitness of individuals whose gene g has the allele a
assigned. An unset gene for which the difference Sg is the
greatest is considered the most significant and it first gets the
allele.

g∗ = arg max
g∈u

Sg (2)

In the above equation, g∗ denotes the most significant
gene while u is the set of unset genes in a newly created
individual. To select a value for the gene, the following for-
mula is used [7]:

xnew[g] =

{
1 if P (g, 1) > P (g, 0)

0 otherwise
(3)

P (g, a) =
f̄(g, a)∑

b∈{′0′,′1′} f̄(g, b)
(4)

where xnew[g] is a value of gth gene in the newborn individ-
ual xnew, and P (g, a) is the probability of the allele a to be
chosen for the gene g.

In the next step, the chosen gene is removed from the set
of unset genes and the process of restricting the temporary
population is started. In order to make a decision about re-
stricting the population, EuA estimates the amount of epista-
sis E, i.e. the level of interdependencies between individual
genes. The estimate is then used to calculate the probability
of restriction PR [7]:

E = 1−Dmax (5)

Dmax = max
g∈u
|P (g, 1)− P (g, 0)| (6)

PR = E (7)

In the case of the restriction, each individual whose value
of gene g∗ is different from x[g∗] is removed from the tem-
porary population.

Fig. 3. Pseudocode for EuA (in the figure the following notation is
used: a:=b->op() – means that a is a result of operation op()
executed for an object b; usually, b is a set which means that op() is

an operation over a set of elements) [7]

The process of creating the new individual described
above is performed until the set of unset genes is empty.
Once the new individual is completely formed it replaces the
worst individual from the original population and the pro-
cess of creating a next new individual starts once again. It is
continued until some termination criterion is satisfied.

IV. EXPERIMENTS

IV. 1. Conditions of experiments
In order to optimize HLCS of BAUV, experiments were

carried out in which GAs presented in the previous section
were used as optimization tools. The experiments were per-
formed in simulation, and to this end a simulation model
of BAUV was implemented [10], which was the model
of Remotely Operated Vehicle (ROV) “Gluptak” (Fig. 4)
with inclusion of oscillation in horizontal plane. The oscil-
lation made it possible to simulate undulating propulsion of
BAUV1.

In order to maximally speed up calculations during evo-
lutionary processing, the model was not constructed in the

1 At the time of writing the paper a real BAUV does not exist yet. In the project whose one element is reported in the paper, it was assumed that the work
on physical construction of BAUV and HLCS has to be continued simultaneously. The purpose is to have HLCS almost ready to work once BAUV to be
built. To this end, experiments in simulation have to be done, whose goal is to prepare HLCS possibly the most close to the variant of the system provided
for work on real BAUV. To make HLCS easy to adjust to the real vehicle it was parametrized appropriately, the change of parameters will allow adaptation
of HLCS to the real BAUV. In order for the adaptation to be quick and trouble-free, parameters determined for ROV mimicking BAUV should be close to
the optimal ones.

Using Genetic Algorithms for Optimizing Algorithmic Control System of Biomimetic Underwater Vehicle 255

Fig. 4. ROV “Gluptak” [12]

traditional way, i.e. as a set of differential equations, but as a
combination of recorded behavior of the traditional model
(in the form of matrices with recorded parameters of the
model in selected maneuvers, e.g. during turning left/right)
and C++ implementation whose task was to “glue” pieces of
records in one coherent model [10]. This way, calculations
performed during simulations and associated with repeated,
intense use of the model were shortened several times.

Construction of the model in the form of recorded be-
haviors of the vehicle “glued” by means of the specialized
software has yet another very important purpose. Namely, it
enables quick and easy modeling of almost every underwa-
ter vehicle which will be necessary in further stages of the
project when physical construction of BAUV is ready. To
perform simulations on the real BAUV, not on ROV “Glup-
tak” mimicking the real vehicle, it will be necessary to record
behavior of BAUV for selected maneuvers, to replace the
matrices that represent ROV “Gluptak” with matrices that
represent BAUV, and finally to gently tune some parameters
of the “gluing” software. It is assumed that it will be a con-
siderably easier and faster process than building the model
of BAUV according to the traditional approach.

To perform simulations with collision-avoiding BAUV,
in addition to the vehicle itself, its vision system, i.e. its
sensors, also had to be modeled. Two virtual echo sounders
were applied as the vehicle sensors, the first of which looked
straight ahead whereas the second one looked down, and
each of them was installed in front of BAUV. To simulate
operation of an echo sounder, the distance was measured be-
tween current position of BAUV and a first point located on
the straight line being prolongation of the observation line of
the echo sounder.

All the experiments were carried out in virtual sim-
ulation environment with obstacles of size: length=100m,

width=100m, depth=20m (Fig. 5).
To optimize HLCS, the system was examined in thirty

different testing scenarios. The scenarios were prepared
manually in such a way that the complexity of the task which
HLCS had to perform gradually increased. When preparing
the scenarios, HLCS with parameters determined by system
designers was used. In the preparation process, BAUV was
run many times and each run was evaluated visually by the
designers. To evaluate the scenarios, the complexity crite-
rion was applied. The evaluation of each scenario depended
on the path which BAUV selected to reach the goal point, the
paths with a greater number of collision-avoidance maneu-
vers were generally considered to be more difficult. Note,
however, that HLCS shaped in the evolutionary way might
decide in a different way than its “hand-made” counterpart
with the effect that scenarios considered by the designers as
easy could be difficult, and conversely.

After preparing a number of scenarios, some of them
were selected for experiments and ordered according to their
complexity. First, BAUV had to get a goal point moving near
a single obstacle. In the following scenarios, BAUV had to
deal with a growing number of obstacles, and to get to the
goal point, it had to do different maneuvers. In the final sce-
narios BAUV controlled by a “hand-made” HLCS cannot
get to the goal point without collision with an obstacle. In
such a case, HLCS ran the procedure which moved BAUV
backward with respect to the obstacle so the vehicle could
continue its voyage.

The scenarios generally differed in the following param-
eters: starting point, goal point, initial course. Moreover,
in order not to prolong each scenario, each of them was
parametrized by the maximum number of HLCS decisions
which the system could make to succeed in the scenario. This
number corresponded to the number of iterations which the

256 Tomasz Praczyk

Fig. 5. Environment used in experiments

“hand-made” HLCS needed to lead BAUV to the goal.
To evaluate HLCSs produced during the evolutionary

process, the following fitness function was used:

f(HLCS) =

n∑
i=0

fi (8)

fi =


1 + 1/N it

i , BAUV reached goal in ith scenario

1/Distancei(BAUV, goal), BAUV did not

reach goal in ith scenario

0, BAUV did not reach goal in previous scenario
(9)

where

n – is the number of testing scenarios (n=30),

fi – is fitness received by HLCS in ith scenario,

N it
i – is the number of iterations in which BAUV reached

the goal point (the number of HLCS decisions) in ith

scenario,

Distancei(BAUV, goal) – is the Euclidean distance be-
tween the final position of BAUV in ith scenario and
the goal point

Each HLCS was evaluated maximally in thirty scenarios.
If the goal point was not reached in a scenario, HLCS was
not tested in next scenarios. In consequence, according to
(8) and (9), fitness of HLCS is equal to the sum of fitnesses
for reaching the goal and fitness received in one scenario in
which BAUV did not arrive to the goal in the assumed max-
imum number of iterations.

In the experiments, the task of each GA was to determine
eighteen different parameters of HLCS shortly outlined be-
low:

1. P1 – is a threshold which decides when BAUV, af-
ter the decision to turn, should stop this maneuver and
start to move forward, in other words, P1 is a param-
eter of a simple course controller which works as fol-
lows: once the difference between a desired course and
actual course of the vehicle is less than or equal P1

the vehicle starts to move forward. Such construction
of the course controller was dictated by oscillations
of BAUV course when the vehicle moves, construct-
ing the course controller based on the average course
fixed for some time appeared to be ineffective near ob-
stacles when BAUV has to perform a quick collision
avoidance maneuver, and there is no time for average
course calculations,

2. P2 – is the distance between successive corrections
of the BAUV course. The vehicle moves toward a
next waypoint and every P2 meters corrects its course.
In some situations, this distance can be intentionally
shortened by HLCS, e.g. near obstacles – see P7 and
P8,

3. P3 – is the distance from the closest obstacle which,
when reached, reduces the BAUV speed to 0.5m/s.
The vehicle, when far away from obstacles, moves
with the speed determined by the operator, when ob-
stacles appear near the vehicle, its speed is reduced to
make it more maneuverable,

4. P4 – is a minimal BAUV depth for which it is possible
to further reduce it when there is a great risk of col-
lision with an underwater obstacle, it is assumed that
BAUV should avoid the ascent to the surface of the
sea,

5. P5 – is the distance from the closest obstacle which
enables an operational BAUV depth to be changed;
changing the operational depth does not entail chang-

Using Genetic Algorithms for Optimizing Algorithmic Control System of Biomimetic Underwater Vehicle 257

ing the actual BAUV depth immediately, the opera-
tional BAUV depth indicates a safe depth of BAUV,

6. P6 – is the difference between the collision-free course
of BAUV determined by a standard procedure used
for that purpose and the current course of the vehicle.
This difference is applied to detect a situation when
the BAUV course should be calculated by a different
procedure than the standard one,

7. P7 – is the distance to the closest obstacle for which
parameter P2 is replaced with P8, when the distance is
less than or equal to P7 corrections of BAUV course
are made more often (every P8 meters) with the effect
that the vehicle is more maneuverable,

8. P8 – see description of parameter P7,
9. P9 – is the distance to the closest obstacle which af-

fects the way of how BAUV depth is changed: verti-
cally or with simultaneous movement forward,

10. P10 – is the distance to the goal point which affects the
way of BAUV depth change,

11. P11 – is a parameter which determines magnitude of
BAUV depth change when obstacles are detected very
close to BAUV,

12. P12 – is the difference between the actual BAUV depth
and the operational depth which entails change of the
former,

13. P13, P14, P15 – are parameters of simple BAUV depth
controller which works approximately as follows: if
the difference between the desired depth and the ac-
tual depth is less than or equal to P13 the vehicle starts
to change the depth, the depth alteration maneuver is
stopped and the vehicle starts to move forward if the
difference between the desired depth and the actual
depth is less than or equal to P14 or P15

2, P14 is used
when the depth is changed vertically, P15 otherwise,

14. P16, P17, P18 – are ranges of sensor vision applied
when decisions on BAUV maneuvers are made.

All the parameters above were organized in binary chro-
mosomes in which each parameter was encoded as a 7-bit
gene. In consequence, the chromosomes included 126 bits
in total. To obtain a specific value of a parameter, an integer
value encoded in 7-bit gene was scaled to a range determined
for the parameter.

In the experiments, the following parameters of GAs
were used:
• a number of individuals in each population: 100,
• a maximum number of evolutionary iterations: 1000

(this value was the result of very time-consuming evo-
lutionary calculations).

Parameters of CGA and SSGA:
• crossover probability: 0.7
• per-bit mutation probability: 0.01, 0.1,
• size of tournament: 2.

Parameters of EuA:
• selection noise: 0.01, 0.2,
• creation rate: 0.01, 0.2,
• restriction operator: on.

(a) the path which runs above is the path of “hand-made” HLCS

(b) the path on the left-hand side is the path of “hand-made” HLCS

(c) the path on the right-hand side with visible move-backward maneuver
is the path of “hand-made” HLCS

Fig. 6. Paths of BAUV for evolved and “hand-made” HLCS:
(a),(b),(c) – the same paths visible from other observation points

2 in fact, to stop the depth change maneuver, other conditions also have to be satisfied

258 Tomasz Praczyk

(a)

(b)

(c)

Fig. 7. Next paths of BAUV for evolved and “hand-made” HLCS:
(a),(b),(c) – the same paths visible from other observation point,
the path with move-backward maneuver is the path of “hand-made”

HLCS

IV. 2. Experimental results
The optimization task imposed on GAs appeared to

be quite challenging. Each algorithm was run thirty times,
which means ninety runs in total, and only ten out of all the

GA runs, i.e. six runs of EuA and four runs of CGA, ended
with evolving HLCS which was more effective than “hand-
made” HLCS: fitness of “hand-made” HLCS was equal to
30.04 whereas fitness of the best evolved HLCS was equal
to 30.083. When comparing individual GAs, it appeared that
the most effective HLCSs are produced by EuA, then classi-
cal CGA and SSGA, on average.

(a)

(b)

Fig. 8. Another view of the paths from Figure 7

As it turned out, the objective of the experiments was
achieved, i.e. GAs improved behavior of BAUV in relation
to the vehicle equipped with “hand-made” HLCS. The im-
provement manifested mainly in visually more optimal paths
and in a fewer number of HLCS decisions necessary to lead
BAUV to the goal. The paths of BAUV with the “hand-
made” HLCS, usually, included more changes of the vehicle
depth compared to the paths produced by the evolved sys-
tem. This, in effect, resulted in extension of BAUV way and
a longer duration of voyage.

Another symptom of the improvement is also the lack
of collisions for the optimized BAUV. In the case of “hand-
made” HLCS, there were testing scenarios in which BAUV

3 both HLCS’s took the vehicle to the goal point in each scenario, the only difference between both types of HLCS’s concerns N it
i which has a little

influence on fitness function – see (9)

Using Genetic Algorithms for Optimizing Algorithmic Control System of Biomimetic Underwater Vehicle 259

could not get to the goal without a collision with an obsta-
cle. As already mentioned, the collision obviously did not
imply interruption of the scenario in such situation the ve-
hicle could continue its voyage (provided that the maximum
number of HLCS decisions assumed in a scenario was not
exceeded), but after the moving-backward maneuver. The
only visible consequence of the collision was a longer ve-
hicle path and a longer duration of the vehicle voyage. The
use of the optimized variant of HLCS eliminated completely
collisions from all the testing scenarios, BAUV equipped
with the evolved HLCS was more effective in its maneuvers
and could successfully avoid all obstacles encountered on its
way. Example paths produced by “hand-made” HLCS and
its evolved counterparts are presented in Figures 6–8.

To confirm effectiveness of HLCSs produced by means
of GAs, all of them were also tested in ten generalizing sce-
narios. As it turned out, eight out of the ten systems which
were put to the extra tests succeeded, i.e. they led BAUV to
the goal with no collision. What is more, they performed all
the tasks faster than “hand-made” HLCS.

When comparing HLCS parameters set by the design-
ers and the ones evolved and optimized by GAs, it appeared
that in most cases they differ from each other. What is more,
parameters set in separate evolutionary runs were often dif-
ferent as well. Example parameters evolved by CGA, EuA
and the parameters determined by the designers are given in
Tab. 1.

Tab. 1. Example parameters evolved by CGA (PCGA
i), EuA

(PEuA
i) and the parameters determined by the designers (P oper

i)

PCGA
i PEuA

i P oper
i

P1 4.6875 2.5 3
P2 9.375 4.6875 10
P3 2.8125 7.03125 15
P4 3.59375 0.46875 0.46875
P5 1.875 1.25 10
P6 36.5625 5.625 50
P7 5.15625 13.125 20
P8 5.78125 3.4375 3
P9 24.375 1.875 20
P10 34.375 46.875 30
P11 1.5625 3.125 1.5
P12 7.34375 6.875 3
P13 15.625 8.4375 8
P14 4.0625 9.6875 5
P15 7.96875 1.71875 3
P16 10.3125 8.4375 5
P17 17.5 15.4 3
P18 18.4375 16.5625 5

The list of the parameters specified above indicates that
some parameters have roughly the same value no matter who
or what determined the value. It seems that parameters no.

1,2,4,8,10,11,12,14,16 can be assigned to that group of pa-
rameters. The remaining parameters differ in values depend-
ing on the method used to set them: GA or the designers.
Usually, two methods agree on the choice of the value for
the parameter and simultaneously they differ in their choice
from the third method.

In the case of parameter no. 3 which decides when ve-
locity of BAUV is reduced to 0.5m/s, different values of that
parameter are due to the fact that for all the testing scenarios
starting velocity of BAUV was set to 0.5 m/s, which means
that this parameter had rather no influence on HLCS effec-
tiveness.

Low values of parameter no. 5 that was produced by GAs
imply that BAUV should change the operational depth as
quickly as possible. Value 10m of the parameter which was
indicated by the designers enabled HLCS to modify the op-
erational depth considerably further from obstacles with the
effect that the vehicle was more inert in this case.

As in the previous case, also for parameter no. 6,
GAs proposed lower values than the designers. This time,
it means that a special procedure for determining course
of BAUV – a new course of the vehicle corresponds to
a collision-free course that is closest to the current course
of the vehicle, location of the goal does not affect the new
course – is run more often than when the parameter value
is set by the designers. In other words, when a new BAUV
course, which takes into consideration the location of the
goal point, requires turning at more than 36 (CGA) or 5
(EuA) degrees, HLCS chooses a more gentle collision-free
maneuver affected only by the current BAUV course. This
simply suggests that optimized HLCSs prefer more gentle
maneuvers compared to their “hand-made” counterpart.

For parameter no. 7, the advice of GAs is again to de-
crease the value proposed by the designers. It means that the
change of BAUV course correction frequency is made only
in close proximity to obstacles. In further distance, the stan-
dard correction frequency is maintained.

In the case of parameter no. 9, GAs do not agree. One
solution, supported also by the designers, is to vertically
emerge/submerge BAUV close to obstacles and far away
from them. Another solution is to use a vertical method for
changing BAUV depth only in close proximity of obstacles.

The difference in opinion is also visible for parameters
no. 13 and 15: CGA proposes greater values than EuA and
the designers. Since these parameters, roughly speaking, de-
cide about how fast BAUV changes its depth, the suggested
values for parameters no. 13 and 15 can be shortly com-
mented as follows: CGA advises slower changes than EuA
and the designers.

Parameters no. 17 and 18 determine ranges of vision for
BAUV sensors, and both GAs propose in this case to in-
crease the ranges with respect to the values suggested by the
designers. The consequence is that the vehicle can notice ob-
stacles faster than for the ranges determined by the design-

260 Tomasz Praczyk

ers. However, it also means that when BAUV is surrounded
at all sides by obstacles located at different distances from
the vehicle, HLCS will not be able to fix a collision-free
course because each course will be found to be colliding,
each of them will point at a noticed obstacle.

V. SUMMARY

The paper reports on the experiments whose objective
was to determine parameters for the High-Level Control Sys-
tem (HLCS) of the Biomimetic Autonomous Underwater
Vehicle (BAUV). All the experiments were carried out on
a simulated vehicle and there were two reasons for this: first,
the real vehicle did not exist at the point of starting the ex-
periments, and second, once the real vehicle appears it has to
be equipped in an effective, safe, intensely tested, and con-
sequently, reliable HLCS as quickly as possible. Works on
HLCS cannot be started and continued on the real vehicle
because of a large cost of such an approach and inevitable
delays in providing the final product of the project.

Generally, the experiments showed that GAs have in
many points a different approach to controlling BAUV than
the group of designers responsible for HLCS implementa-
tion. It appeared that HLCS parameters determined by GAs
differ in many cases from the ones set by the designers. New
optimized HLCS parameters allowed BAUV to behave more
effectively, the paths of the vehicle movement were shorter,
duration of the voyage decreased and, what is more, the ve-
hicle successfully avoided collisions with obstacles, which
was sometimes impossible for “hand-made” HLCS.

Acknowledgments

The paper is supported by the project no. DOBR-
BIO4/033/13015/2013, entitled “Autonomous underwater

vehicles with silent undulating propulsion for underwater re-
connaissance” financed by the National Center of Research
and Development.

References

[1] Alden, M. and Van Kesteren, A. and Miikkulainen, R., Eu-
genic Evolution Utilizing a Domain Model, Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO-2002), 2002

[2] D. E. Goldberg, Genetic algorithms in search, optimiza-
tion and machine learning, Addison Wesley, Reading, Mas-
sachusetts, (1989)

[3] Malec M., Morawski M., Zając J. Fish-like swimming pro-
totype of mobile underwater robot, Journal of Automation,
Mobile Robotics & Intelligent Systems, Vol. 4, No 3, 2010,
25-30

[4] Polani, D. and Miikkulainen, R., Fast Reinforcement Learn-
ing through Eugenic Neuro-Evolution, The University of
Texas at Austin, AI 99-277, 1999

[5] Polani, D. and Miikkulainen, R., Eugenic Neuro-Evolution
for Reinforcement Learning, Proceedings of the Genetic and
Evolutionary Computation Conference, 2000

[6] T. Praczyk, Using Assembler Encoding to construct Artificial
Neural Networks with a modular architecture, Polish Naval
Academy, 2011

[7] Prior, J. W., Eugenic Evolution for Combinatorial Optimiza-
tion, The University of Texas at Austin, 1998

[8] G. Syswerda, Uniform Crossover in Genetic Algorithms, Pro-
ceedings of the 3rd International Conference on genetic Al-
gorithms, 1989

[9] Szymak P., Malec M., Morawski M. Directions of develop-
ment of underwater vehicle with undulating propulsion, Pol-
ish Journal of Environmental Studies, Hard Publishing Com-
pany, 19(3), 107-110 (2010).

[10] P. Szymak, T. Praczyk, Control-oriented Model of
Biomimetic Underwater Vehicle Motion, Solid State
Phenomena 236 , 121-127 (2015).

[11] D. Whitley, A Genetic Algorithm Tutorial, Statistics and
Computing 4, 1994, 65-85, http://citeseer.ist.psu.edu

[12] http://cmtm.pg.gda.pl/systemy-techniki-glebinowe

Tomasz Praczyk is a senior lecturer at the Institute of Naval Weapon of Polish
Naval Academy in Gdynia. He received his MSc degree in computer science in 1996.
In 2001, he received his PhD degree; with thesis focused on using artificial neural net-
works to identify ships. His research interest is in neuro-evolution, artificial immune
systems, and reinforcement learning.

CMST 21(4) 251-260 (2015) DOI:10.12921/cmst.2015.21.04.009

