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Abstract: The goal of this work is to detect any potentially harmful change in a process. The reliability tests are assumed to
generate type-I right-censored data following a log-logistic distribution with scale parameter (η) and shape parameter (β).
For this purpose, we have constructed a likelihood ratio based simultaneous cumulative sum (CUSUM) control chart that
targets changes in both the failure mechanism and the characteristic life (the simultaneous CUSUM chart for detecting shifts
in the shape and the scale parameters). This control chart displays best performance for combinations with larger positive or
negative shifts in the shape parameter, signaling on average in 5 samples in an out-of-control situation, while targeting an
in-control average run length of 370. The simultaneous CUSUM chart’s performance is highly dependent on the values of β,
and on the interaction between them and the censoring rates and shift sizes.
Key words: Likelihood ratio, Type-I right-censoring, Log-logistic distribution, Cumulative sum (CUSUM) chart, Average
run length

I. INTRODUCTION

Reliability data are typically censored (exact failure times
are not known). The most common reason for censoring is
the frequent need to analyze life test data before all units have
failed. More generally, censoring arises when actual response
values (e.g., failure times) cannot be observed for some or
all units under study. Thus censored observations provide
a bound or bounds on the actual failure times. Most reliabil-
ity data are modeled using distributions for positive random
variables like the exponential, weibull, gamma, lognormal
and log-logistic. Relatively few applications use the normal
distribution as a model for product life [1]. If one is interested
in monitoring the quality and reliability characteristics of
such processes, one needs to account for the challenges im-
posed by the nature of the data. We propose likelihood ratio
based cumulative sum (CUSUM) control charts for censored
lifetime data with non-normal distributions.

Hawkins and Olwell [2] observed that the optimal diag-
nostic for a step change in the parameter of any distribution

is a cumulative sum (CUSUM) chart following with the score
statistic

zi = log
L(yi|out− of − control)

L(yi|in− control)
, (I.1)

where yi; i = 1, 2, ... is the ith sample of size n and L is the
likelihood function, formulated according to the distribution
of choice and to the censoring scheme. Thus, zi is determined
as the logarithm of the ratio between the likelihood of the
data in the out-of-control and in-control scenarios, in the other
word, zi is the likelihood ratio test statistic which is obtained
by using Neyman-Pearson lemma. In this article, we consider
optimal diagnostic for a step change in the parameter of any
distribution is a cumulative sum (CUSUM) chart. In section
II, we customize the score statistic zi for a likelihood ratio
based CUSUM chart with samples of n right-censored data.
The CUSUM chart to monitor for shifts in both parameter
of log-logistic lifetimes is provided in section III. In section
IV, we provide results of out-of-control performance of the
simultaneous CUSUM chart. Finally, in section V, we present
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tables of simultaneous CUSUM chart for the shape and the
scale parameters.

II. CENSORING OF LIFETIME DATA

Two aspects specific to lifetime data make the develop-
ment of a control chart more demanding:

1. The data tend to be skewed and non-normally dis-
tributed.

2. The data typically are censored.
Right censoring is most common. It occurs whenever at least
one item does not fail over the course of the test. Type-I
right-censoring occurs when one stops the test at a certain
predetermined time, and the testing of the remaining units
that did not fail by that time is suspended.

In general, the likelihood function for any distribution
including right-censored data is

L(u, b, y) =

n∏
j=1

f(yj)
δj [1− F (yj)]1−δj , (II.1)

where

δj =

 1 if item fails at time t,

0 if item is censored.

and f and F are, respectively, the probability density function
(pdf) and the cumulative distribution function (cdf) of the
assumed distribution [2].
Using (1.1) and (2.1), the statistic zi for a single sample of n
observations becomes

zi = log
L(yi|(η1, β1))
L(yi|(η0, β0))

= log

∏n
j=1 f1(yij)

δij [1− F1(yij)]
1−δij∏n

j=1 f0(yij)
δij [1− F0(yij)]1−δij

= log

n∏
j=1

[
f1(yij)

f0(yij)
]δij
[
1− F1(yij)

1− F0(yij)

]1−δij
=

n∑
j=1

log

[
f1(yij)

f0(yij)

]δij
+

n∑
j=1

log

[
1− F1(yij)

1− F0(yij)

]1−δij
=

n∑
j=1

δij log

[
f1(yij)

f0(yij)

]

+

n∑
j=1

(1− δij) log
[
1− F1(yij)

1− F0(yij)

]
.

(II.2)

II. 1. Log-logistic distribution
The log-logistic distribution is very useful in a wide vari-

ety of applications, especially in the analysis of survival data
[3]. The log-logistic distribution is very similar in shape to the

log-normal distribution; however, it has the advantage of hav-
ing simple algebraic expressions for its survivor and hazard
functions and a closed form for its distribution function. It is
therefore more convenient than the log-normal distribution in
handling censored data. However, due to the symmetry of the
log-logistic distribution, it may be inappropriate for modeling
censored survival date, especially for the cases where the
hazard rate is skewed or heavily tailed.

The probability density function and cumulative distri-
bution function of log-logistic distribution are given as fol-
lows [4]

f(t) =
(βη )(

t
η )
β−1

[1 + ( tη )
β ]2

, t > 0,

F (t) =


[1 + ( tη )

−β ]−1, t > 0, β > 1,

0, elsewhere,
where η > 0 and β > 0 are parameters. Its survivor function
and hazard function are, respectively [5]

s(t) = 1− F (t) =

[
1 +

(
t

η

)β]−1

,

and
h(t) =

(βη )(
t
η )
β−1

1 + ( tη )
β
, t > 0.

II. 2. Detect simultaneous shifts in the shape parameter
β, and in the scale parameter η of the log-logistic
distribution

We adjust the likelihood ratio based CUSUM chart to
monitor for shifts in the process, caused by both a shift in the
shape parameter β, from β0 to β1 = (1−dβ)×β0, and a shift
in the scale parameter η, from η0 to η1 = (1−dη)×η0, where
d×100% represents a percent change in η and β. We generate
samples of n items in a testing process and T represents the
lifetime of the products. We stop the test at a predetermined
time C. Any product that had not failed by time C generates
a censored lifetime. By using Eq. (II.2), the statistic zi is
given by

zi =

n∑
j=1

δij log
β1
β0

+ n log
η1
β1

η0β0

+ (β1 − β0)
n∑
j=1

δij log t

+

n∑
j=1

(1− δij) log
η0
β0 + tβ0

η0β1 + tβ1
.

(II.3)

III. CUMULATIVE SUM CONTROL CHART

In this section, we construct the CUSUM chart to monitor
for shifts in both the scale parameter and the shape parameter
of log-logistic lifetimes. The in-control values of the scale
and shape parameters are assumed to be known.
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III. 1. Design the CUSUM chart
The CUSUM chart, developed by E. Page [6] incorporates

past information into each individually plotted observation.
This increases the sensitivity of the CUSUM chart in detect-
ing small shifts in the process. The cumulative sum (CUSUM)
control chart has been widely used in modern industries to
monitor process mean shifts. We consider two separate pieces
of the Eq. (II.3):

ki = −

 n∑
j=1

δij log
β0
β1

+ n log
η0
β0

η1β1

 , (III.1)

wi = (β1 − β0)
n∑
j=1

δij log t

+

n∑
j=1

(1− δij) log
η0
β0 + tβ0

η0β1 + tβ1
,

(III.2)

where Eq. (III.1) is constancy value and Eq. (III.2) is variable
in CUSUM chart statistics. If we are interested in detecting
a decrease in both the scale parameter and the shape parame-
ter of log-logistic lifetimes, therefore the chart statistics are
given as follows [7]

c−0 = 0,

c−i = min[0, c−i−1 + wi − ki]. i = 1, 2, ...

The CUSUM signals if c−i < −h−, when the chart indicates
a decrease in both parameters. Similarly, if we want to detect
a positive shift in both the scale parameter and the shape
parameter of log-logistic lifetimes, we use the chart statistics

c+0 = 0,

c+i = max[0, c+i−1 + wi − ki]. i = 1, 2, ....

The chart signals if c+i > h+, when the chart indicates an in-
crease in both of the scale parameter and the shape parameter
of log-logistic lifetimes, h+ is a decision parameter. Factor for
determining decision Interval [h−, h+] which acts as a con-
trol limit. Its values depend on the value of the probability of
type-I error or ARL0. Generally, h+ is defined as 5, although
sometimes 4 is utilized and h− = −h+. The correlation
between beta and eta is not necessarily positive.

III. 2. Criterion for performance evaluation
The design of the conventional CUSUM chart involves

evaluation of the control-chart performance based on aver-
age run length (ARL) [8, 9]. The in-control ARL, which
refers to the average number of observations from the in-
control process before a false out-of-control alarm is raised,
is a measurement of the false-alarm rate. The out-of-control
ARL, which is the average number of observations required

to detect a specific mean shift, represents the detection power
of the control chart. The best chart gives the lowest out-of-
control ARL (OARL).

IV. SIMULATION

In this section we study the properties of the simultane-
ous chart that detects changes in both the scale and the shape
parameters through simulations and we discuss the results.

IV. 1. Simulation Description
We evaluated the performance of the likelihood based

CUSUM chart monitoring for simultaneous shifts in both
parameters of a log-logistic distribution in the following sce-
narios [10]:

1. Sample size n = 3, 5, 10 (The samples with 3, 5, and
10 size are repeated 10000 times to reach the favorite
OARL and IARL).

2. Theoretical in-control censoring rates pc= 5%, 50%,
80%,

pc =

[
1 +

(
t

η

)β]−1

.

3. In-control values for the shape parameter β = β0 =
0.5, 1, 3, 5.

4. In-control value for the scale parameter η = η0 = 1,
without loss of generality, since the chart’s design and
performance is independent of the in-control values of
the scale parameter.

5. Shift size for the scale parameter dη =
+5%,+20%,−5%,−20%. The out-of-control η value
is then η1 = η0 × (1− dη).

6. Shift size for the shape parameter dβ =
+5%,+20%,−5%,−20%. The out-of-control β value
is then β1 = β0 × (1− dβ).

7. Desired in-control average run length (IARL) is equal
to 370.

8. We run the simulations to obtain the threshold and then
to evaluate the out-of-control performance for each
scenario with 10,000 replications.

IV. 2. Simulation Results
We explore the behavior of the simultaneous chart for

different censoring rates, in-control values of the shape pa-
rameter and sample size, and for small and large positive and
negative shifts in both the shape parameter and the scale pa-
rameter. Next, Figures 1 through 8, as well as tables 1 through
3, illustrate the performance of the simultaneous CUSUM
chart for specific combinations of shifts in the scale and the
shape parameters. Each panel of each figure displays the im-
pact of different combinations of shifts in the scale parameter
and in the shape parameter on the out-of-control performance
of the charts designed for those combinations with low and
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high values of beta. Each panel corresponds to a certain cen-
soring rate. All panels are based on a sample size of n = 5.
Tables 1 through 3 support the information from the figures
with numerical examples. Figures 1 and 2 consider combina-
tions of a positive shift in the scale parameter, accompanied
by a positive shift in the shape parameter. Figures 3 and 4
consider a positive shift in the scale parameter and a negative
shift in the shape parameter. Figures 5 and 6 summarize the
results for combinations with negative shifts in the scale pa-
rameter and positive shifts in the shape parameter. Figures 7
and 8 consider combinations with a negative shift in the scale
parameter and a negative shift in the shape parameter. Tables
1, 2, and 3 illustrate numerically the shift effects by β0 value
and for different censoring amounts.

Fig. 1. Out-of-control performance of the simultaneous chart to de-
tect an increase in the scale parameter and an increase in the shape

parameter for β0 = 0.5 and sample size = 5

Fig. 2. Out-of-control performance of the simultaneous chart to de-
tect an increase in the scale parameter and an increase in the shape

parameter for β0 = 5 and sample size = 5

Fig. 3. Out-of-control performance of the simultaneous chart to de-
tect an increase in the scale parameter and a decrease in the shape

parameter for β0 = 0.5 and sample size= 5

In these figures and tables we examine the out-of-control
performance in low, moderate, and high censoring scenarios
and for different in-control failure mechanisms (modeled by
β0). We detail these behaviors for the intermediate sample
size n = 5. We notice that a 20% shift in the shape parameter,

either positive or negative, in combination with any of the
considered shifts in the scale parameter, result in the best
chart performance, with any censoring rate. Here β0 = 0.5.
It appears that the magnitude of the shift in the shape param-
eter is an important performance driver. On the other hand,
a 5% positive or negative shift in shape results in considerably
poorer performance in the same scenario. A large in-control β
value β0 = 5 mitigates the impact of the combination of shifts
sizes and directions, especially for low and moderate censor-
ing rates. As censoring rate increase the OARL increases
accordingly. The chart’s out-of-control performance is better
for higher values of β0. This conclusion can be drawn for
values higher than 5 of β0. There is a significant interaction
effect between the in-control β values, the censoring rates
and the shift size and direction combinations. For example,
from table 3, when we expect about 80% data to be censored,
the chart signals on average in 220 samples a simultaneous
20% negative shift in the scale parameter and 5% positive
shift in the shape parameter when the in-control β is β0 = 0.5.
On the other hand, the chart signals on average in 7 samples
in the same scenario when β0= 5.

Fig. 4. Out-of-control performance of the simultaneous chart to de-
tect an increase in the scale parameter and a decrease in the shape

parameter for β0 = 5 and sample size = 5

Tab. 1. Out-of-control performance of the simultaneous CUSUM
chart for β0 = 0.5 and β0 = 5, low censoring rate of 5%, sample

size n = 5

% Scale % Shape OARL β0 = 0.5 OARL β0 = 5

−20 −20 18.8696 5.6975
20 −20 19.4082 7.1666
−5 −20 19.5911 16.3852
5 −20 19.4733 17.0915

−20 20 26.3436 5.3128
20 20 27.0275 6.7992
−5 20 28.2848 20.7731
5 20 28.7084 21.5411

−20 −5 74.6637 6.0021
20 −5 84.9149 7.8298
−5 −5 105.104 38.1665
5 −5 106.711 40.9919

−20 5 78.4067 5.8362
20 5 87.364 7.5516
−5 5 113.256 38.215
5 5 114.363 40.7282
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Fig. 5. Out-of-control performance of the simultaneous chart to
detect a decrease in the scale parameter and an increase in the

shape parameter for β0 = 0.5 and sample size = 5

Fig. 6. Out-of-control performance of the simultaneous chart to
detect a decrease in the scale parameter and an increase in the

shape parameter for β0 = 5 and sample size = 5

Fig. 7. Out-of-control performance of the simultaneous chart to
detect a decrease in the scale parameter and a decrease in the

shape parameter for β0 = 0.5 and sample size = 5

Fig. 8. Out-of-control performance of the simultaneous chart to
detect a decrease in the scale parameter and a decrease in the

shape parameter for β0 = 5 and sample size = 5

Tab. 2. Out-of-control performance of the simultaneous CUSUM
chart for β0 = 0.5 and β0 = 5, moderate censoring rate of 50%,

sample size n = 5

% Scale % Shape OARL β0 = 0.5 OARL β0 = 5

−20 −20 26.1644 5.7401
20 −20 37.7026 13.5246
−5 −20 31.3665 19.5428
5 −20 34.8824 43.6485

−20 20 59.3121 5.6492
20 20 41.5908 7.3519
−5 20 56.8183 34.898
5 20 49.9723 25.2974

−20 −5 78.9061 6.0791
20 −5 138.631 10.4381
−5 −5 135.306 38.8582
5 −5 167.683 55.6008

−20 5 107.019 6.0183
20 5 92.6019 8.9417
−5 5 184.566 46.2717
5 5 146.802 41.5159

Tab. 3. Out-of-control performance of the simultaneous CUSUM
chart for β0 = 0.5 and β0 = 5, high censoring rate of 80%,

sample size n = 5

% Scale % Shape OARL β0 = 0.5 OARL β0 = 5

−20 −20 25.846 5.9859
20 −20 40.9191 41.6452
−5 −20 31.6003 19.4964
5 −20 35.011 57.2864

−20 20 76.2435 8.1025
20 20 39.2892 11.4766
−5 20 55.7596 119.37
5 20 48.3591 27.4689

−20 −5 81.0333 6.9846
20 −5 236.178 20.1833
−5 −5 132.115 43.4878
5 −5 177.893 106.096

−20 5 220.72 7.5589
20 5 98.7429 15.4725
−5 5 196.936 78.9923
5 5 142.699 53.2435

Tab. 4. Simultaneous CUSUM chart for the shape parameter, %20
decrease in the scale parameter, in-control and out-of-control ARL

for β = β0 = 0.5, η0 = 1

Censoring rate %Shape Threshold h IARL OARL
%5 −5 2.43141 373.609 62.3474
%50 −5 3.2485 374.424 66.5942
%80 −5 3.19512 371.959 68.0452
%5 −20 3.41332 372.307 16.6114
%50 −20 5.31464 372.881 26.2892
%80 −20 5.92879 371.788 24.8298

V. SIMULATION RESULTS FOR THE
SIMULTANEOUS CHART FOR THE SHAPE AND

THE SCALE PARAMETERS

In this section we describe the results given in tables 4
and 5, for each considered in-control value of the shape para-
meter, censoring rate, sample size and the smallest shifts size
to be detected, the parameters of the CUSUM chart design:
the threshold h found through trial-and-error, the estimated
average in-control run length and the estimated average out-
of-control run length are calculated. If there is a 5% negative
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shift in the shape parameter and a 20% negative shift in the
scale parameter, with censoring rates of 5%, 50% and 80%,
in a scenario with sample size n = 10, β0 = 0.5 and β0 = 5,
respectively the simultaneous chart detects such a combined
shift on average in 62, 66, 68 and 4, 5, 9 samples, whereas
20% negative shift in the shape parameter and a 20% negative
shift in the scale parameter, with same conditions, respec-
tively the simultaneous chart detects such a combined shift
on average in 16, 26, 24 and 4, 4, 7 samples, when the chart
is designed for this scenario to achieve an in-control average
run length of 370.

Tab. 5. Simultaneous CUSUM chart for the shape parameter, %20
decrease in the scale parameter, in-control and out-of-control ARL

for β = β0 = 5, η0 = 1

Censoring rate %Shape Threshold h IARL OARL
%5 −5 4.49295 373.853 4.8323
%50 −5 4.83178 370.225 5.5847
%80 −5 4.78027 373.36 9.3696
%5 −20 4.61965 370.422 4.3435
%50 −20 5.87886 373.526 4.6483
%80 −20 5.94266 395.879 7.101

VI. CONCLUSION

The goal of this work was to address a number of chal-
lenges in the area of monitoring reliability characteristics
of lifetime data. Lifetime data resulting from lifetime tests
usually are censored, involve multiple items on test, and fo-
llow non-normal distributions. The log-logistic distribution
enjoys popularity with in reliability practice, given its flexi-
bility to model a variety of failure mechanisms. We focused
on the paradigm of samples of n ≥ 1 products on a test
stand. High values of β0 result in good performance of the

simultaneous chart and mitigate the effect of the other perfor-
mance drivers: the censoring rate, the sample size, and the
types of shifts. This research introduces a more comprehen-
sive monitoring procedure for the log-logistic process with
right-censored data, meant to bring insight into what type
of changes can occur and what is the out-of-control perfor-
mance of the monitoring procedures in each circumstance.
We have also provided detailed guidelines for the practitioner
to develop customized charts.
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