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Abstract: In this article, at first, a quantitative structure–property relationship (QSPR) model for estimation of the normal
boiling point of liquid amines is developed. QSPR study based multiple linear regression was applied to predict the boiling
points of primary, secondary and tertiary amines. The geometry of all amines was optimized by the semi-empirical method
AM1 and used to calculate different types of molecular descriptors. The molecular descriptors of structures were calculated
using Molecular Modeling Pro plus software. Stepwise regression was used for selection of relevance descriptors. The linear
models developed with Molegro Data Modeller (MDM) allow accurate estimate of the boiling points of amines using
molar mass (MM), Hansen dispersion forces (DF), molar refractivity (MR) and hydrogen bonding (HB) (1◦ and 2◦ amines)
descriptors. The information encoded in the descriptors allows an interpretation of the boiling point studied based on the
intermolecular interactions. Multiple linear regression (MLR) was used to develop three linear models for 1◦ , 2◦ and 3◦

amines containing four and three variables with a high precision root mean squares error, 15.92 K, 9.89 K and 15.76 K
and a good correlation with the squared correlation coefficient 0.96, 0.98 and 0.96, respectively. The predictive power and
robustness of the QSPR models were characterized by the statistical validation and applicability domain (AD).
Key words: liquid amines, boiling points, QSPR, MLR, prediction

I. INTRODUCTION

Fundamentally, an amine is a derivative of ammonia that
centers around a single nitrogen atom. Amines are organic
compounds and functional groups that contain a basic nitro-
gen atom with a lone pair. Amines are derivatives of ammonia,
in which one or more hydrogen atoms have been replaced
by a substituent such as an alkyl or aryl group. Amines are
classified as primary, secondary, or tertiary, depending on the
number of carbon atoms bonded directly to nitrogen. The
substituent groups (R) may be alkyl or aryl. Another group
of amines are those in which the nitrogen forms part of a ring
(heterocyclic amines) [1].

The amines are used as flotation agents, anticacking
agents, corrosion inhibitors, dispersants, emulsifiers and ad-
ditives, and chemical intermediates.

Besides the amines of which the human body is composed
(amino acids), humans have found a range of other uses for
amines. Medicines based on amines such as Morphine and
Demerol are commonly used as analgesics – medicines that
relieve pain. Amines such as Novocaine are commonly used
as anesthetics. The amine Ephedra is a common decongestant.
Tetramethyl ammonium iodide is used in the disinfection of
drinking water. Amines also have many other functions in an
array of daily functions. Many amines are used in industries
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for pest control and tanning of leather. The amine Aniline
finds application in the manufacturing of man-made dyes.
Some amines, such as methamphetamines and amphetamines,
are popular recreational drugs. Similar to ammonia, amines
are basic in nature, which means that they have pH above
seven. Due to this, they are neutralized by using acids. The
process of their neutralization results in the formation of
alkylammonium salts, having many industrial applications
themselves. Choline, one of these salts, plays a role in the
production of some neurotransmitters in the human body that
make the brain work properly.

Knowledge of the physical properties of organic com-
pounds is necessary for the design, development and man-
ufacture of products in which they are used. The suitability
of a particular compound for a given purpose depends on its
physicochemical properties. Physicochemical properties of or-
ganic compounds change in a systematic way with changes in
the chemical structure, which actually determine the type and
magnitude of intra-molecular and intermolecular interactions
[2].The boiling-point (BP) of a pure liquid is defined as the
temperature at which the vapor pressure of the liquid exactly
equals the pressure exerted on it by the atmosphere. When
the external pressure is 1 atmosphere, the boiling temperature
is called the normal boiling-point. The BP of a compound is
an important property, and like the vapor pressure it provides
an indication of the attractive forces between the molecules.
These intermolecular forces are directly related to the struc-
ture of the compound, and therefore the boiling-point may be
correlated to the structure. The higher a compound’s normal
boiling-point, the less volatile that compound is overall, and
conversely, the lower a compound’s normal boiling-point, the
more volatile that compound is overall. Some compounds de-
compose at higher temperatures before reaching their normal
boiling-point [3, 4].

BP is an important property for consideration in certain
environmental problems and, further, it is a useful property
for testing to develop a QSPR model. For both of these rea-
sons, we have chosen to examine the relationship between
BP and a new set of molecular structure descriptors.

Generally, normal boiling points are not difficult to deter-
mine: however, when a chemical is unavailable, or hazardous
to handle, a reliable procedure for estimating its boiling-point
is required. Furthermore, theoretical estimation of boiling
points is also important for combinatorial chemistry, when
literally millions of new compounds are synthesized and
tested. Other physical properties, such as critical tempera-
tures [4], flash points [5], and enthalpies of vaporization [6],
can be predicted or estimated from boiling points. With the
increased need for reliable data for optimization of industrial
processes, it is important to develop reliable QSPR models
to estimate normal boiling points for compounds not yet
synthesized or whose boiling points are unknown. Several
references [7-9] were made to investigations regarding the
relationship between the normal boiling-point (NBP) and

molecular structure descriptors. Many methods for prediction
of BPs have therefore been developed, including many quan-
titative structure-property relationship (QSPR) studies using
multiple linear regression (MLR) [10-14] and neural network
(NN) Methods [15-17]. Karelson et al. and Katrizky et al.
reviewed the earlier physicochemical, topological, geometri-
cal and constitutional descriptors in QSPR studies, including
the methods for boiling-point estimations of diverse organic
compounds [18]. Sharma et al. [19] and Kier et al. [20] used
topological and electrotopological descriptors for predicting
normal boiling points of 34 and 21 amines by MLR method,
respectively. Compared with the previous work, the data set
used in our investigation is more diverse and the developed
model is more general, stable and practicable.

Our goal here is to develop an accurate, simple, fast,
and less expensive method for calculation of BP values of
216 amine derivatives. A stepwise multiple linear regression
procedure [21] was used for selection of descriptors and mod-
eling. Also, in this work we applied the back propagation
neural network (BPNN) [22] and support vector machine
regression (SVMR) [23] on this data set, but with no signif-
icant difference between results with the MLR method, so
we preferred to report the results of the MLR method. The
predictive power of the resulting model is demonstrated by
testing them on unseen data that were not used during model
generation. A physicochemical explanation of the selected
descriptors is also given.

II. MATERIALS AND METHODS

II. 1. Data set
The normal boiling points values of 216 liquid amines

compounds taken from the literature [24] are presented in the
supplementary materials section. The dataset used for this
work consists of 90 primary (1◦), 30 secondary (2◦) and 96
tertiary (3◦) amines. The BP data and molecular descriptors
were randomly split into training (75%) and test (25%) for
each data set. The training set was used to adjust the parame-
ters of the MLR models and the test sets were used to evaluate
its prediction ability.

II. 2. Molecular modeling and descriptor generation
All calculations were run on a Dell Inspiron N5010 laptop

computer with Intel CoreTM i7 processor with Windows 7
operating system. The molecular structures of all compounds
were drawn into the HyperChem 8.0 program (Hypercube,
Inc., Gainesville, 2011) and pre-optimized using the MM+

molecular mechanics method (Polak–Ribiere algorithm).
The final geometries of the minimum energy conformation
were obtained by more precise optimization with the semi-
empirical AM1 method, applying a root mean square gradient
limit of 0.01 (Kcal · mol−1· Å−1), as a stopping criterion
for optimized structures. The HyperChem output files were
transferred into the Molecular Modeling Pro plus (MMP+)
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(ChemSW Inc., version 6.3.3, Norgwy, 2004) software to
calculate six kinds of molecular descriptors: MMP+ software
computes six classes of structural descriptors: constitutional;
topological; geometrical; electrostatic; quantum chemical and
thermodynamic molecular descriptors [25, 26]. Then a total
of 72 molecular descriptors were calculated for each com-
pound by the MMP+ on the minimal energy conformations.
In order to reduce redundant and non-useful information,
constant or near constant values and descriptors found to
be highly correlated pair-wise (one of any two descriptors
with a correlation greater than 0.75) were excluded in a pre-
reduction step; therefore 43 molecular descriptors underwent
subsequent variable selection.

II. 3. Stepwise regression for descriptor selection
After the calculation of molecular descriptors, a stepwise

regression routine implemented in the Molegro Data Mod-
eller (MDM) software package was used to develop the linear
QSPR model using calculated descriptors. The selection of
relevant descriptors, which relate the BPs to the molecular
structure, is an important step to construct a predictive model.
In order to select the subset of descriptors that best explain
compounds BP, we have used stepwise regression [27, 28].
The stepwise regression was applied to the input set of 43
molecular descriptors for each chemical of the studied data
sets and the related response, in order to extract the best set
of molecular descriptors, which are, in combination, the most
relevant variables in modeling the response of the training set
chemicals. Stepwise regression, included in the MDM soft-
ware, was used for variables selection (based on the training
set). Finally we obtained a four-significant descriptor subset,
which keeps most interpretive information for BP. A total of
four descriptors were calculated for each compound in each
dataset contain molar mass (MM), Hansen dispersion forces
(DF), molar refractivity (MR) and hydrogen bonding (HB)
(for 1◦ and 2◦ amines). The values of selected descriptors are
shown in the supplementary materials section.

II. 4. Multiple linear regressions
The datasets used in the QSPR analysis are, as already

mentioned, composed of descriptors that should be correlated
with the corresponding experimental responses. At this step
it is necessary to apply a quantitative method able to find the
existing relationship between a limited number of structural
descriptors and the modeled response. In MDM, the used
method is the MLR approach that can be exemplified by the
following formula:

yi=b0+

n∑
j=1

bjxij+ei (1)

where a linear relationship is computed between the studied
responses (yi) and the selected values of the descriptors (xij );
ei is the random error (also called model residual) and n is the
number of descriptors. The intercept (b0) and the coefficients

(bj ) are thus to be estimated. The eq. (1) can be rewritten in
a more compact form using the matrix notation:

y = Xb + e (2)

where y is the responses vector, b the vector of the coef-
ficients, and e the vector of the errors. X is the matrix of
the model, where the columns are the descriptors. In this
software, to estimate the vector of the coefficients, the OLS
technique is used:

b̂=(XTX)
−1

XTy (3)

where b̂ is the vector that estimates the b vector of the coef-
ficients, XT the transposed X matrix and −1 is the inverse
matrix operation. The OLS minimizes the sum of squares of
the difference between the experimental responses and the
ones calculated by the model. To work properly, the OLS
assumes that: (1) a linear relationship exists between the de-
scriptors and the response, (2) the response errors are indepen-
dent and similarly distributed, (3) the descriptors are not too
correlated among them (4) there are more compounds than
modeling descriptors (a ratio that should always be higher
than 5:1). Once the coefficients of the model are calculated,
it is possible to obtain the vector of the ŷ, as in the following
formula:

ŷ=Xb̂=X(XTX)
−1

XTy=Hy (4)

where H is the leverage (or hat) matrix that relates the calcu-
lated and the experimental responses. The diagonal elements
of the hat matrix hii are useful to determine the distance
of the i object from the centre of the chemical space of the
model, [29] thus, for checking the structural applicability
domain (AD) of the model. MLR techniques based on least-
squares procedures are very often used for estimating the
coefficients involved in the model equation [30].

II. 5. Validation of QSPR model
Validation of the developed models is an important aspect

of any QSPR study. Once a model is obtained, it is important
to determine its reliability and statistical significance. Several
procedures are available to assist in this. These can be used
to check whether the number of parameters is appropriate for
the available data, as well as to provide some estimate of how
well the model can predict the property for new molecules.
In order to be reliable and predictive, QSPR models should
(1) be statistically significant and robust, (2) be validated by
making accurate predictions for external data sets not used
in the model development, and (3) have a defined domain of
application.

Model validation is of crucial importance to QSPR mod-
eling. The training and predictive capability of a QSPR model
should be tested through model validation [31-34].
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Leave one out (LOO) and leave many out (LMO) cross
validation are of the QSPR model internal validation. Pre-
dictability of the QSPR model is determined using the LOO-
CV and LMO-CV methods. The cross validated explained
variance (Q2

LOO or Q2
LMO) is calculated by the following

equation:

Q2
LOO or Q2

LMO =1−
∑n

i=1 (yi−ŷi)
2∑n

i=1 (yi−y)
2 (5)

where yi, ŷi and y are the measured, predicted, and averaged
(over the entire training set) values of the dependent variable,
respectively; the summations cover all the compounds in the
training set. The cross validation approach is not sufficient to
assess robustness and predictivity. The QSPR model devel-
oped using only training set chemicals is then applied to the
external validation set chemicals to verify, more reliably, the
predictive ability of the model.

The formula for the calculation of Q2
ext is:

Q2
ext=1−

∑test
i=1 (yi−ŷi)2∑test
i=1 (yi−ytr)

2 (6)

where yi and ŷi are respectively the measured and predicted
(over the test set) values of the dependent variable, and ytr
is the averaged value of the property for the training set; the
summations cover all the compounds in the validation set.
The Q2 values are good tests for evenly distributed data, but
they are not always reliable for unevenly distributed datasets;
instead, RMSEs (Root Mean Squared Errors) provide a more
reliable indication of the fitness of the model, independently
of the applied splitting. Other useful parameter to be consid-
ered are the RMSEs calculated on different sets: on training
(RMSEtr) and prediction (RMSEext). RMSE is calculated as
in Equation 7:

RMSE=

[
1

n

n∑
i=1

(yi−ŷi)2
]0.5

(7)

where yi and ŷi are respectively the measured and predicted
values of the property; n is the number of compounds in each
set of data.

Another method for validation of the model is random-
ization testing or Y -scrambling. Randomization testing is a
technique for checking the robustness of a QSPR model and
the statistical significance of the estimated predicted power. In
this test, the dependent variable vector (BP), Y -vector, is ran-
domly shuffled and a new QSPR model is developed using the
original independent variable matrix. The process is repeated
several times. It is expected that the resulting QSPR models
will generally have low R2(R2Yscr), low Q2 (Q2Yscr) and
high RMSE values. If the new models developed from the
data set with randomized responses have significantly lower
R2 and Q2 than the original model, then this is strong evi-
dence that the proposed model is well-founded, and not just
the result of chance correlation [35, 36].

II. 6. Chemical domain of model applicability
An important problem of a QSPR model is the applicabil-

ity domain (AD) [37]. The chemical domain of applicability
is a theoretical region in the space defined by the modeled
response and the descriptors of the model, for which a given
QSPR should make reliable predictions. This region is de-
fined by the nature of the chemicals in the training set, and
can be characterized in various ways. The Williams plot of
the regression allows a graphical detection of both the outliers
for the response and the structurally influential chemicals in
a model. The leverage (h) [38, 39] of a compound measures
its influence on the model. The leverage of a compound in
the original variable space is defined as:

H=X(XTX)
−1

XT , (8)

where the X is the model matrix derived from the train-
ing set descriptor values and the leverage values of train-
ing set are diagonal elements of the Hat or Influence matrix
H(hi= diag (H)). The leverage values are always between
0 and 1. The warning leverage h∗ is defined as follows:

h∗=3×
∑

i hi
n

=3×p
′

n
(i=1, . . ., n) (9)

where n is the number of training set compounds and p′ is
the number of model parameters plus one. Observations with
standardized residuals greater than (−3; +3) range, which
lie outside the horizontal reference lines on the plot, are out-
lier’s responses in the QSARINS version 2.2 (standardized
residuals >±3σ, σ is the standard deviation of residuals).
Standardized residual (SRi) for each sample is calculated as
in Equation 10:

SRi =
(yi − ŷi)√∑n

i=1(yi−ŷi)2

n

(10)

where yi and ŷi are respectively the measured and predicted
values of the property; n is the number of compounds in each
set of data.

In the standardized residuals plot all values are within
the (−3; +3) range, which confirms that there are no outliers.
Furthermore, there is no clear pattern in the residuals, so noth-
ing seems to be wrong with the model. To visualize the AD of
a QSPR model, the plot of standardized residuals versus lever-
age values (h) (Williams plot) can be used for an immediate
and simple graphical detection of both the response outliers
and structurally influential chemicals in a model (h > h∗).
Samples with high leverages have a stronger influence on the
model than other samples; they may or may not be outliers,
but they are influential. An influential outlier (high residual
+ high leverage) is the worst case; it can, however, easily be
detected using an influence plot. Leverages are useful for the
detection of samples which are far from the centre within the
space described by the model. If a sample has a very large
leverage, it may be different from the rest and can be consid-
ered to be an outlier. Large leverage shows a high influence on
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the model. There are several methods for defining the AD of
QSPR models [40], but the most common one is determining
the leverage values for each compound [33].

III. RESULTS AND DISCUSSION

Experimental dataset of 90 primary amines, 30 secondary
amines and 96 tertiary amines compounds were used to gen-
erate QSPR models which involved (4 and 3) descriptors
based only on the molecular structure. All descriptors were
calculated for the neutral species. The descriptors showed
the importance of the effects related to the HB, MM, LF and
MR interactions in the liquid media. Positive values in the
regression coefficients show that the indicated descriptors
contribute positively to the value of BP, whereas negative
values indicate that the greater the value of the descriptor, the
lower the value of BP.
III. 1. Model Analysis

A number of good models were obtained using the MLR
technique. However, the training set was used to develop
models (I), (II) and (III) that consisted of 67, 22 and 72 com-
pounds, respectively. The specifications for models are given
in Equation 11, 12 and 13. Inspection of the models revealed
the superiority of models (I), (II) and (III), owing to better
predictive power.

BP =33.37 (±20.55) + 0.44 (±0.16) MM
+8.88 (±1.27) DF + 5.19 (±1.23) HB
+4.50 (0.53) MR

(11)

n = 67, R2 = 0.95, s = 16.56,

F = 290.40, Q2LOO = 0.94, model(I)

BP =0.77(±0.25)MM + 13.73(±1.44)DF
+4.65(±0.86)HB + 1.99(±0.82)MR + 9.17(2.15)

(12)
n = 22, R2 = 0.98, s = 11.25,

F = 233.76 , Q2LOO = 0.97, model(II)

BP =51.45 (±15.82) +0.29 (±0.12) MM
+4.14 (±0.48) MR + 10.76 (±0.96) DF

(13)

n = 72, R2 = 0.9338, s = 16.22,

F = 319.80, Q2LOO = 0.93, model(III)

The squared correlation coefficients, R2, squared cross
validated correlation coefficients, Q2, Fisher criterion value,
F, and standard deviation, s, all give information about the
“goodness” of the model. The square of the correlation coef-
ficient (R2) is indicated the quality of fit of all the data to a
straight line is calculated for the checking of training and test
set, and is calculated as:

R2 =

∑n
i=1 (ŷi − ȳ)

2∑n
i=1(yi − ȳ)2

, (14)

where yi is the experimental BP of the compound in the sam-
ple i, ŷi represented the predicted BP of the compound in the
sample i, ȳ, is the mean of experimental BP in the train set
and n is the total number of samples used in the training set.

The molecular descriptors, experimental BP, predicted
BP and residuals values of train and external prediction set
by the MLR method are presented in the supplementary ma-
terials section. The plots of predicted BP versus experimental
BP and the residuals (experimental BP − predicted BP) ver-
sus experimental BP value, obtained by the MLR modeling,
and the random distribution of residuals about zero mean are
shown in Fig. 1, 2 and 3. The stability and validity of model
was tested by prediction of the response values for the predic-
tion set. The robustness of the MLR model was also validated
with the chance correlation procedure. The dependent vari-
able vector (BP) was randomly shuffled and a new QSPR
model was developed using the original independent variable
matrix. The new QSPR model is expected to have lowR2 and
high RMSE values. Several random shuffles of the y vector
were performed and the results are shown in Tab. 1, 2 and
3. The R2 and RMSE values indicate that the good results
for the MLR model are not due to a chance correlation or
structural dependency of the training set. The fitting criteria,
internal validation criteria and external validation criteria are
shown in Tab. 1, 2 and 3.

To visualize the AD of a QSPR model, the plot of stan-
dardized residuals (SR) versus leverage values (h) can be
used for an immediate and simple graphical detection of both
the response outliers (i.e., compounds with standardized resid-
uals greater than three standard deviation units, > 3s) and
structurally influential chemicals in a model (h > h∗). The
Williams plots for the presented MLR models are shown in
Fig. 4, 5 and 6. From these plots, the applicability domain
is established inside a squared area within ±3 standard de-
viations and a leverage threshold (h∗ = 0.224, 0.6818 and
0.17). For making predictions, predicted BP data must be
considered reliable only for those compounds that fall within
this AD on which the model was constructed. It can be seen
from Fig. 4, 5 and 6 that the majority of compounds in the
data sets are inside this area. However, only two compounds
(1,2,3-Triaminopropane and Di-(2-hydroxyethyl) amine) in
the training set of primary and secondary amine and two
compounds (Tri-methylamine and N,N-Di-butyl-aniline) in
the training set of tertiary amine slightly exceeds the critical
hat value that the developed MLR models have good gener-
alizability and predictivity for the compound with descriptor
values significantly far from the centroid of the descriptor
space. Also, the N-Methyl-pyrrolidine in the test set of tertiary
amine is wrongly predicted (<3s), but with higher leverage
values (h > h∗).These erroneous predictions could proba-
bly be attributed to wrong experimental data rather than to
molecular structures.
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Tab. 1. Fitting, internal validation and external validation criteria for primary amines model

Criteria Statistical parameters
Fitting criteria R2 = 0.95, R2 adj = 0.946 RMSEtr = 15.92 S = 16.55, F = 290.40

Internal validation Q2
LOO = 0.94, Q2

LMO = 0.93 RMSEcv= 17.85 R2Yscr = 0.062, Q2 Yscr = 0.10,
RMSEscr = 69.61

External validation Q2
ext = 0.96 RMSEext = 13.69

Tab. 2. Fitting, internal validation and external validation criteria for primary amines model

Criteria Statistical parameters
Fitting criteria R2 = 0.95, R2 adj = 0.946 RMSEtr = 15.92 S = 16.55, F = 290.40

Internal validation Q2
LOO = 0.94, Q2

LMO = 0.93 RMSEcv= 17.85 R2Y scr = 0.062, Q2Yscr = 0.10,
RMSEscr = 69.61

External validation Q2
ext = 0.96 RMSEext = 13.69

Tab. 3. Fitting, internal validation and external validation criteria for primary amines model

Criteria Statistical parameters
Fitting criteria R2 = 0.95, R2 adj = 0.946 RMSEtr = 15.92 S = 16.55, F = 290.40

Internal validation Q2
LOO = 0.94, Q2

LMO = 0.93 RMSEcv= 17.85 R2Yscr = 0.062, Q2Yscr = 0.10,
RMSEscr = 69.61

External validation Q2
ext = 0.96 RMSEext = 13.69

III. 2. Interpretation of the selected descriptors
The boiling-point of an organic compound reflects its

molecular structure, specifically the type of intermolecular in-
teractions that bind the molecules together in the liquid state.
The developed QSPR showed that HB (1◦ and 2◦ amine),
MM, DF and MR descriptors significantly influence amines
normal boiling point. In the MMP+ software has been used
from Hansen’s approach for calculation cohesion energy [41].
The basic equation governing the assignment of Hansen pa-
rameters is that the total cohesion energy, E, must be the sum
of the individual energies that make it up.

E = ED + EP + EH (15)

ED is dispersion cohesion energy; EP is polar cohesion en-
ergy, and EH is Hydrogen bonding cohesion energy [41].

The first descriptor is hydrogen bonding (HB). Hydro-
gen bonding is a molecular interaction and resembles the
polar interactions in this respect. The basis of this type of
cohesive energy is attraction among molecules because of
the hydrogen bonds. The number of hydrogen atoms on the

nitrogen available for hydrogen bonding greatly influences
the strength of the intermolecular forces. Hydrogen bonding
occurs in molecules containing the highly electronegative
elements F, O, or N directly bound to hydrogen. Since H has
an electronegativity of 2.2 these bonds are not as polarized as
purely ionic bonds and possess some covalent character. How-
ever, the bond to hydrogen will still be polarized and possess
a dipole. The dipole of one molecule can align with the dipole
from another molecule, leading to an attractive interaction
that we call hydrogen bonding. As you might expect, the
strength of the bond increases as the electronegativity of the
group bound to hydrogen is increased. So in a sense, HO,
and NH are “sticky” - molecules containing these functional
groups will tend to have higher boiling points than you would
expect based on their molar mass. Hydrogen bonding signif-
icantly influences the properties of primary and secondary
amines. Hydrogen Bond forming ability is a measure of the
tendency of a molecule to form hydrogen bonds. The HB
is an intermediate range intermolecular interaction between
electron deficient hydrogen and a region of high electron
density. Hydrogen bonding is a special type of dipole-dipole
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interaction between acidic hydrogen (δ+) and a lone pair
(δ−). The hydrogen bonding is the powerful intermolecular
attraction that results from -N-H. . . N- hydrogen bonding in
amines. So the increase in the boiling point for 1◦-amines
increase. The results illustrates differences associated with
isomeric 1◦, 2◦ and 3◦-amines, as well as the influence of
chain branching. Since 1◦ amines have two hydrogens avail-
able for hydrogen bonding, we expect them to have higher
boiling points than isomeric 2◦-amines, which in turn should
boil higher than isomeric 3◦-amines (no hydrogen bonding).
This type of polarity is so strong compared to other Van der
Waals interactions. Understandably, hydrogen bonding plays
a significant role in physical property. Hydrogen bonding
is not a true bond, but a very strong form of dipole-dipole
attraction. In this study we have a 1◦ and 2◦ amines contain-
ing hydrogen bond donor (N–H bonds) and hydrogen bond
acceptor (lone pair of nitrogen atom). The hydrogen bonding
(HB) is a measure of the tendency of a molecule to form
hydrogen bonds. As the hydrogen bond formation increases,
BP increases.

Primary and secondary amines can H-bond with them-
selves, so have relatively high boiling points.

However, because the N-H bond is less polar than the
O-H bond, amines have lower boiling points than alcohols.
Primary and secondary amines have boiling points similar to
aldehydes and ketones. Tertiary amines cannot H-bond with
themselves, and so have boiling points near those of ethers
and hydrocarbons. The intermolecular hydrogen bonding can
dramatically influence physical and chemical properties.

The second descriptor is molar mass (MM). Among
the size descriptors, molar mass is the simplest and most
commonly used molecular 0D-descriptor, calculated as the
sum of the atomic masses of all the atoms in a molecule.
It is related to molecular size and is atom-type sensitive. It is
defined as MM =

∑A
i=1mi where m is the atomic mass

and i runs over the A atoms of the molecule. By increasing
molecular mass of compounds the BP increases. The larger
the molar mass, the greater the polarizability of the molecule
and hence also the van der Waals attractive forces between
near neighbors. Increasing molecular mass leads to increasing
the boiling point of amines.

The third descriptor is Hansen dispersion forces (DFs).
DF is a measure of dispersion cohesion energy. The most
general are the nonpolar interactions. These are derived from
atomic forces and have also been called dispersion interac-
tions in the literature. As molecules are built up from atoms,
all molecules contain those types of attractive forces. The DF
of attraction exists between molecules which have no perma-
nent dipole. The van der Waals force is an attractive force
between two atoms or nonpolar molecules, which arises be-
cause a fluctuating dipole moment in one molecule induces a
dipole moment in the other, and the two dipole moments then
interact. With increasing molecular weight, molecular vol-
ume and surface area, the van der Waals forces increase. Van

der Waals attractive forces exist between all polar and non-
polar molecules. The boiling point increases with increasing
dispersion forces.

The fourth descriptor is molar refractivity. The MR is
the volume of the substance taken up by each mole of that
substance. In SI units, MR is expressed as m3 mol−1. MR
is a molecular descriptor of a liquid, which contains both in-
formation about molecular volume and polarizability, usually
defined by the Lorenz-Lorentz equation [42]:

MR =
n2 − 1

n2 + 2
.
MM
ρ

=
ε− 1

ε+ 2
.V (16)

where MM is the molar mass, ρ the liquid density, and V the
molar volume, and n the refractive index of the liquid, and
its square coincides with the dielectric constant ε. Refractive
index measurements yield information about the ability of the
molecular electron distribution to be deformed in an electric
field or in the presence of other molecules. The polarizability
of a molecule is related to the intermolecular forces impor-
tant in the interaction of molecules. Increasing MR leads to
increasing intermolecular forces. However, increasing the in-
termolecular forces increases the extent of BP of the each
compound.

IV. CONCLUSION

In this paper, new QSPR models have been developed for
predicting the BP of a diverse set of amines from the molecu-
lar structure alone. Stepwise-MLR analysis was followed to
develop a model for predicting the BP of amines. The descrip-
tors involved in the correlations reflect the intermolecular
interactions. By performing model validation, it can be con-
cluded that the presented model is a valid model and can be
effectively used to predict the BP of amines with an accuracy
approximating the accuracy of experimental BP determina-
tion. The proposed models give reasonable accuracy and are
predictive because molecular descriptors can be calculated
easily as long as the molecular structure of the concerned
compound is known. Therefore, reliable predictions of boil-
ing points in liquid amines can be obtained before they are
actually synthesized. This work also demonstrates that molec-
ular descriptors are useful for the structural characterization
of amines. Molecular structure is one of the basic concepts of
chemistry, since physical, chemical and biological behaviors
of molecules are determined by it.
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