
CMST 21(4) 191-200 (2015) DOI:10.12921/cmst.2015.21.04.003

Family of Parallel LMS-based Adaptive Algorithms
of Echo Cancellation

A. Dobrucki1, M. Walczyński2, W. Bożejko3

1Wrocław University of Technology
Faculty of Electronics, Department of Acoustics and Multimedia

Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
2General Tadeusz Kościuszko Military Academy of Land Forces

Faculty of Management, Department of System Engineering
ul. Czajkowskiego 109, 51-150 Wrocław, Poland

3Wrocław University of Technology
Institute of Computer Engineering, Control and Robotics

Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

E-mails: andrzej.dobrucki@pwr.wroc.pl maciej.walczynski@pwr.wroc.pl wojciech.bozejko@pwr.wroc.pl

Received: 22 September 2014; revised: 29 June 2015; accepted: 08 July 2015; published online: 01 December 2015

Abstract: In this paper we propose a number of new, genuine parallel LMS-based adaptive algorithms in the context of their
use in the acoustic echo cancellation. The most complex parts of the LMS-based algorithms were determined and parallelized.
A number of genuine parallelization methods were proposed taking into consideration varied types of architectures of modern
concurrent computing environment, such as GPUs, clusters of workstations and cloud computing.
Key words: GPU, DSP, adaptive algorithms, echo cancellation, parallel algorithms

I. INTRODUCTION

The problem of acoustic echo cancellation has been
widely discussed in literature (see [1-5]), but mainly in the
context of calculation with the use of one processor (sequen-
tial). While considering multiprocessor approaches one can
enumerate, among others, subband echo cancellation which
is a method by its nature predisposed to effective implemen-
tation in parallel calculation systems [6].

This paper develops a description of an approach applied
in use of parallel and distributed calculation environment both
in acoustic echo cancellation [7], and noise elimination [8, 9],
pattern search [10, 11] and issues connected with parallel
processors work optimization [12]. Herein we present a case
study of a parallel single-run algorithm of acoustic echo can-
cellation. Results can be implemented in the GPU (Graphics
Processing Unit) computing environment as well as in VLSI
or FPGA architectures.

The application and development of modern technologies
results in creating new, better and quicker communication
methods. The number of phone calls realised through headsets
has recently risen rapidly. The number of conference calls and
video conferences is also growing quickly. In view of acoustic
specificity of these types of communication that results from
weak acoustic isolation between the speaker (speakers) and
microphone (microphones) there appears a serious problem
of acoustic echo occurrence. As long as for most users of
tele- and videoconference systems the occurrence of their
own, slightly delayed voice in the “receiver” is a neutral or
even desirable phenomenon, delays of tens of milliseconds
[13] make the conversation arduous, and in case of 250 ms
delays simply impossible [14]. For this reason it seems really
important to use an effective method of echo damping or
cancellation. Figure 1 presents a diagram of acoustic echo
cancellation system using the adaptive filtering algorithm.

192 A. Dobrucki, M. Walczyński, W. Bożejko

Fig. 1. Diagram of acoustic echo cancellation system using LMS
algorithm

In this paper we shall propose parallel schemes of the
LMS algorithm execution in the GPGPU environment. The
closest theoretical model of such calculation environment
assuming processor access to shared memory in short time
is the parallel random access computer (PRAM). This model
shall be discussed in the next chapter and then used to carry
out theoretical analysis of parameters (speedup Sp, efficiency
Ep, for p processors) of the proposed methods.

II. LMS FAMILY ALGORITHMS

LMS Algorithm. The LMS (Least Mean Square) related
filters are used extremely frequently in the process of echo
cancellation. These filters constitute a group of gradient adap-
tive filters, realizing the strategy of temporal minimization,
but not expected error value. The function of cost takes the
form:

J = J(n) = e2 (n) , (1)

instead of

J = E[e
2
(n)], (2)

where for some discrete random variable Z that can take
value zi with probability pi, E denotes the expected value
which takes the form:

E [Z] =

n∑
i=1

zipi, (3)

and e (n) is the error function that can be defined as:

e (n) = y (n)− ŷ(n). (4)

In case of echo cancellation vector y (n) will be simply the
signal that comes back to the first of the speakers. The signal
can be presented as superposition of three constituent signals
according to the following dependence:

y (n) = ye (n)+v (n)+w (n) , (5)

where ye (n) is the echo of the first speaker, v (n) contains
the speech signal of the second speaker, whereas w (n) is the
signal containing noise. The component v (n) occurs only
in the case when both speakers talk at the same time. Such
a situation is defined as DT (Double Talk). When the speak-
ers talk concurrently, the correlation between signals x (n)
and y (n) is smaller than in case when only the first speaker
talks. The detection of concurrent speech of both speakers
is a task of DTD algorithms (Double Talk Detection). When
such a situation is detected, the adaptive filter coefficients are
“frozen”. The adaptation process is then continued after the
completion of second speaker’s speech.

It is assumed that the echo signal of the first speaker ye (n)
may be presented as follows:

ye (n) =

N−1∑
i=0

hixi (n) = hTx(n), (6)

where N indicates the filter order, whereas hi is the i-th filter
coefficient.

The vector of h coefficients is, however, unknown. There-
fore, we can define the estimate set by the following equation:

ŷ (n) = ĥ
T
x (n) + v (n)+w (n) , (7)

where ŷ (n) makes the estimation of combined echo signal
from the first speaker, noise signal and the second speaker.

Adaptive filtering assumes continuous ĥ vector matching
to h vector, so that with each iteration ĥ vector much better
approximates h value. However, since h vector is unknown,
therefore ĥ and h matching must occur not directly. One
of the matching methods is minimizing the error function
described in (4).

In this case the ĥ coefficients adaptation consists in such
a correction that would make the allowance proportional to
the cost function gradient, but with an opposite sign. Hence
the equation determining the filter coefficient update takes
the following form:

ĥ (n+ 1) = ĥ (n)+4ĥ (n) = ĥ (n)− ∂J(ĥ (n))

∂ĥ (n)
. (8)

In many cases the equation (8) is expanded to the form of:

ĥ (n+ 1) = ĥ (n)− 1

2
µ (n)W (n)

∂J(ĥ (n))

∂ĥ (n)
, (9)

where time variable scale factor µ (n) determines the rate of
4ĥ (n) vector change, whereas W (n) matrix is responsible
for the adaptation process rate.

In case of classical LMS filter the weight matrix W (n) is
replaced by a diagonal unit matrix I:

W (n) = I, (10)

whereas the scalar scale coefficient remains time-constant:

µ (n) = µ = const. (11)

Family of Parallel LMS-based Adaptive Algorithms of Echo Cancellation 193

In case of algorithms based on temporal value of error square
value, where the cost function is defined with the equation
(1), derivative of this function in relation to filter coefficient
changes is given with the formula:

∂J(ĥ (n))

∂ĥ (n)
=

[
∂e2

∂ĥ0(n)
,

∂e2

∂ĥ1(n)
, . . . ,

∂e2

∂ĥN−1(n)

]T
,

(12)
where N designates filter order.

Moreover, the value of partial derivative in relation to
k-th filter coefficient can be presented as:

∂e2 (n)

∂ĥk (n)
= 2e (n)

∂e (n)

∂ĥk (n)
=

= 2e (n)
∂(y (n)−

∑N−1
k=0 (ĥkx(n− k))
∂ĥk (n)

=

=− 2e (n)x (n− k) ,

(13)

where the expression
∑N−1
k=0 ĥkx(n− k) is the estimator of

y(n) signal.
Eventually the equation determining the filter coefficient

value in the next iteration in case of LMS algorithm takes the
following form:

ĥ (n+ 1) = ĥ (n)+µx (n) e(n). (14)

The advantage of the classical LMS algorithm is the sim-
plicity of its implementation and stability, while its biggest
disadvantage is slow convergence. In order to improve this
feature numerous modifications have been created to improve
the convergence rate through insignificant increase of the
number of operations.

NLMS Algorithm. The NLMS (Normalized Least Mean
Square) is a variant of LMS. The main difference between
those two algorithms is that the NLMS contain a time vary-
ing scale coefficient which is proportionate to the magnitude
of x signal. The value of scale coefficient is given µ (n) by
following formula:

µ (n) =
µ0

xT (n)x(n)
. (15)

For the NLMS algorithm the equation determining filter coef-
ficient value in the next iteration takes the following form:

ĥ (n+ 1) = ĥ (n) +
µ0

xT (n)x(n)
x (n) e(n). (16)

PNLMS Algorithm. The PNLMS (Proportionate Normal-
ized Least Mean Square) is a variant of NLMS. This algorithm
is a modification of the NLMS algorithm that includes a set of
individual scale coefficients which are calculated individually
for each filter coefficient. For the PNLMS algorithm the equa-
tion determining filter coefficient value in the next iteration
takes the following form:

ĥ (n) = ĥ (n− 1)

+
µ

γ + xT (n)G (n)x (n)
G(n)x (n) e(n),

(17)

where G(n) is a diagonal matrix that adjust contains indi-
vidual scale coefficients for taps of filters, and γ is a scalar
parameter that prevents division by zero and stabilizes the
solution.

III. PARALLEL COMPUTER MODEL

The theoretical model of parallel computer being expan-
sion of a sequential RAM model is called PRAM (Parallel
Random Access Machine) and is extraordinarily close to prac-
tical realizations of GPU (Graphics Processing Unit) cards.
The model includes a set of n-identical RAM machines. Each
of them (they are numbered with consecutive natural num-
bers) has its unique index and its own, local register set.
Moreover, as a part of PRAM computer functions a set of
global registers enabling storing any integer number. Oper-
ation of the PRAM computer begins with positioning of ian
nput set in the initial cells of global register. Originally only
one processor is active. Each stage of performance of mo-
mentarily active processors may consist of performing in
parallel and synchronically one operation from the standard
set of instructions or activating successive not active proces-
sor that in the next step shall perform the instructions as any
activated processor.

We should also notice that since in the primary PRAM
model none of the processors is privileged in relation to others
there are possible conflicts in parallel access to common mem-
ory. When two or more processors tried to read or write to one
and the same memory cell at the same time, the systems could
become unstable. Due to this reason in the primary PRAM
model it was forbidden to refer to the same storage area si-
multaneously by more than one processor. Later, however,
the situation of parallel access to the same area of common
memory has been solved. In view of the organization method
for simultaneous access to memory to write and read, the
PRAM computers can be divided into 4 categories: EREW
(Exclusive Read Exclusive Write), CREW (Concurrent Read
Exclusive Write), ERCW (Exclusive Read Concurrent Write)
and CRCW (Concurrent Read Concurrent Write). Although
the EREW PRAM computer model has the biggest limitations
among the four basic types of PRAM machines, in view of
practical difficulties that may occur during the trial of simulta-
neous write and read from the same memory cells, the actual
realizations are close to that PRAM machine model. Never-
theless, there exist a series of solutions enabling simulation
of CREW, ERCW and CRCW PRAM machines with the use
of EREW PRAM model.

While testing the efficiency of parallel algorithms imple-
mented for the PRAM model basic assumptions is made, that
the time measure of their performance may be the number of

194 A. Dobrucki, M. Walczyński, W. Bożejko

parallel references to memory during program execution [15].
For simplicity it is adopted, that access time of one processor
to memory is unit time. This assumption results directly from
the fact, that for the RAM machine the time of algorithm
execution measured as the number of references to memory
is in limit (asymptotic) the same, as the time measured with
any other measure.

Additionally, we will need following definitions of
speedup and efficiency:

Definition 1. Speedup. Let us consider a problem
P a parallel algorithm Ap and a parallel machine M with
q identical processors. Let us define by TAp,M (p) the time of
calculations the algorithm Ap needs to solve the problem P on
the machine M making use of p ≤ q processors. Let TAs be
the time of calculations needed by the best (the fastest) known
sequential algorithm As which solves the same problem P on
the sequential machine with the processor identical to proces-
sors of the parallel machine M . We define the speedup as

Sp =
TAs

TAp,M (p)
.

Definition 2. Efficiency. The efficiency Ep of the parallel al-
gorithm Ap executed on the parallel machine M is defined as

Ep =
Sp
p
.

and describes an average fraction of time used by each proces-
sor effectively. The value of efficiency belongs to the range
[0, 1].

IV. PARALLEL LMS ALGORITHM

A single-run algorithm of acoustic echo cancellation shall
be called here such an algorithm, in which the filtering pro-
cess is done one-time on a given set of data.

In this paper the following designations have been ac-
cepted:
x(n) – the input of adaptive filter, containing the value of

far-end speaker’s signal in n-th time moment,
y(n) – the signal containing the echo of far-end speaker’s

speech and possibly near-end speaker’s speech and
noises in n-th time moment.

ŷ (n) – output of adaptive filter containing adaptively filtered
signal x, being the estimate of echo signal in n-th time
moment,

e (n) = y (n)− ŷ(n) – the value of the error function in n-th
time moment,

N – the number of weight coefficients of adaptive filter,
µ – the coefficient of adaptation rate (0 < µ <1),
ĥ(n) – weight coefficients of adaptive filter in n-th time

moment.

IV. 1. Single-run LMS algorithm
The first of single-run algorithms of echo cancellation

that shall be discussed here is the classical sequential LMS
algorithm. This algorithm has a strict sequential character and
can be executed on a single-processor RAM machine.

Theorem 1. The LMS algorithm may be executed in
O(N) time on a single-processor RAM machine.

Proof. Step 0 of Algorithm 1 is executed in constant time
O(1). Step 1 is also executed in constant time O(1). Summa-
tion in step two is executed in time O(N). Step 3 is executed
in constant time O(1). Step 4 requires computational expendi-
ture O(N), whereas step 5 is executed again in constant time
O(1). The whole determines the time of step two and four
execution determining the time of algorithm performance
time to O(N).�

The diagram of sequential LMS algorithm for RAM ma-
chine has been presented in Figure 2.

Algorithm 1. LMS algorithm scheme

1 S tep 0 n := 0 ;
2 S t ep 1 Read i n p u t x(n) and y(n) ,
3 S t ep 2 C a l c u l a t e :
4 temp:= 0 ;
5 f o r i := 0 t o N − 1 do
6 temp:=temp+ĥi(n)x(n− i) ;
7 ŷ(n) = temp ;
8 S tep 3 C a l c u l a t e :
9 e(n) = y(n)− ŷ(n) ;

10 S tep 4 / / Upda t ing o f f i l t e r c o e f f i c i e n t s :
11 f o r i := 0 t o N − 1 do
12 ĥi(n+ 1) = ĥi(n) + 2µ · e(n) · x(n− i);
13 S tep 5
14 n := n+ 1 ;
15 i f n < L t h e n go t o S t ep 1 ;

Fig. 2. The diagram of sequential LMS algorithm

IV. 2. Single-run ParLMS algorithm
The next of the single-run echo cancellation algorithms is

a parallel ParLMS algorithm. It constitutes a parallel version
of the single-run classical LMS algorithm. First, we shall dis-
cuss the algorithm version working on N – processor CREW
PRAM machine. Next we shall prove that the same algo-
rithm can be executed on O(N

logN) processor CREW PRAM
machine preserving the time of computation at the level of
O(logN).

The ParLMS algorithm has been enhanced in relation to
the LMS algorithm taking the following designations:

p = N – number of processors,
id – identification (number) of the processor,
µid – coefficient of adaptation rate (0 < µid < 1), local

for each processor.

Theorem 2. The ParLMS algorithm can be executed in
O(logN) time on CREW PRAM machine with the use of N
processors.

Family of Parallel LMS-based Adaptive Algorithms of Echo Cancellation 195

Proof. Step 0 is executed in constant time O(1). Step 1 is
executed only by zero processor also in constant time O(1).
The summation instep two is executed in time O(logN) with
the use of computation scheme, in which the processors are
organized in a logical structure of a binary tree. Steps 3, 4
and 5 demand constant time O(1). The whole determines the
time of step two execution determining the time of algorithm
performance time to O(logN).�

Conclusion 2. For the method based on Theorem 2 we
obtain speedup Sp = O (N/logN) and efficiency Ep =
O (1/logN) .�

The scheme of the parallel single-run ParLMS algorithm,
being the transposition of LMS algorithm to the parallel
CREW PRAM machine has been presented in Figure 3. This
algorithm can be executed both on O(N) and O(N/logN) –
processor CREW PRAM machine preserving the computation
time at the level of O(logN), which shall be demonstrated
in proves of Theorem 2 and 3.

Algorithm 2. The diagram of parallel ParLMS algorithm.

1 S tep 0 n := 0 ;
2 S t ep 1 i f id = 0 t h e n
3 Read i n p u t x(n) and y(n) ,
4 S t ep 2 C a l c u l a t e :
5 ŷ(id) := ĥid(n)x(n− id) ;
6 f o r i := 0 t o dlog(N − 1)e do
7 ŷ(id) := ŷ(id) + ŷ(id+ 2i) ;
8 S t ep 3 i f id = 0 t h e n
9 e(n) = y(n)− ŷ(0) ;

10 S tep 4 / / Upda t ing o f f i l t e r c o e f f i c i e n t s
11 ĥid(n+ 1) = ĥid(n) + 2µid · e(n) · x(n− id) ;
12 S tep 5
13 n := n+ 1 ;
14 I f n < L t h e n go t o S t ep 1 ;

Fig. 3. The diagram of parallel ParLMS algorithm.

Theorem 3. The ParLMS algorithm can be executed in
O(logN) time on CREW PRAM machine with the use of
O(N/logN) processors.

Proof. While considering Step 2 of the ParLMS algorithm,
an assumption has been made that the vector of input is stored
in global memory. In this memory the intermediate results are
also stored. Access to each vector element, as well as execu-
tion by each of the processors on the data elementary function
may be realized in constant time O (1). The computation has
a tree character, hence we can demonstrate in what way one
must assign tasks to O(N

logN) processors to satisfy the as-
sumption of computational complexity defined as O(logN).
The following designations of were made: g – depth (level
number) of tree computation scheme, N – the number of
ParLMS coefficient filters, p – number of processors.

It should be observed that performance at the i-th level
cannot be executed before all computation at level i+ 1 has
been done. This limitation results directly from the fact that
the computation of a given tree node cannot be executed be-
fore computing all its slave nodes in the tree. The input of

all elements at level g are initial input of all ParLMS algo-
rithm, therefore it is impossible to execute the computation
at level g − 1 without previous executing all computation for
level g. Generally, it is impossible to execute all computation
at level i without previous execution of all computation at
levels from g to i+ 1.

Let n be the total number of elements in the circuit. For
g-level circuit we can define n as follows:

n =

g∑
i=1

ni, (18)

where ni denotes the number of elements at i-th level. The
elements at i-level can be assigned to

⌈
ni

p

⌉
processor groups.

Where d.e denotes ceil function and b.c floor function. In this
case

⌊
ni

p

⌋
processor groups shall contain p elements each,

whereas the last of the groups in case when
⌈
ni

p

⌉
6=
⌊
ni

p

⌋
shall contain the rest of not assigned elements. In view of the
above the computation complexity at i-th level is O(

⌈
ni

p

⌉
).

Hence the total computational time for all levels (thus the
time of executing all the step 2 of the algorithm) is of the
order of O(

∑g
i=1

⌈
ni

p

⌉
). Using the ceiling function we get:∑g

i=1

⌈
ni

p

⌉
≤
∑g
i=1 (

ni

p + 1) = n
p + g. Moreover, observ-

ing that g = dlog(ng)e = dlog(N)e we obtain finally the
computational complexity of step two given as O(logN).
The substitution operations in lines 5 and 11 are executed by
N processors in time O (1). If O(N

logN), i.e. N
N/logN times

less processors were used, then the computation time would
be N

N/logN = logN times longer, in accordance to Brent
theorem [16]. Hence the computational complexity of lines 5
and 11 shall be in the method from Theorem 3.O(N

logN), pre-
serving (towards the complexity of O (1) of lines 1,2,3,9,13)
the total algorithm execution time O

(
N

logN

)
.�

Conclusion 3. For the method based on Theorem 3 we
obtain speedup Sp = O(N

logN) and efficiency Ep = O (1).
The method based on Theorem 3 is cost optimal.�

For the purpose of verification of theoretical results com-
putational experiments have been realized in the GPGPU en-
vironment with the use of computation card nVidia GeForce
9600M GS.

The results are presented in Table 1. It can be observed
that by such short computation times (of the order of thou-
sandth part of second) the proposed methodology enables
application of parallel methods of echo cancellation in real
time circuits.

IV. 3. Single-run NLMS algorithm
The successor of the LMS algorithm, a single run acoustic

echo cancellation algorithm that is described in this paper, can
be considered the sequential NLMS (Normalized LMS) algo-
rithm. Implementation of this algorithm to the RAM machine

196 A. Dobrucki, M. Walczyński, W. Bożejko

Tab. 1. ParLMS algorithms runtimes

Filter length
Time [ms]

min. max. average

128 1, 7251 · 10−4 1, 7306 · 10−4 1, 7263 · 10−4

256 3, 4417 · 10−4 3, 4533 · 10−4 3, 4456 · 10−4

512 6, 8750 · 10−4 6, 8996 · 10−4 6, 8858 · 10−4

1024 1, 3741 · 10−3 1, 3791 · 10−4 1, 3765 · 10−3

described herein is an extension of the original NLMS algo-
rithm with the flowchart and the proof for its computational
complexity. This algorithm has a strict sequential character
and can be executed on a single-processor RAM machine.

Similarly as for the LMS algorithm, the following desig-
nations were made:

x(n) – input of an adaptive filter, containing the value of
far-end speaker’s signal function in n-th time moment,

y(n) – a signal containing the echo of far-end speaker’s
speech and possibly near-end speaker’s speech and
noises in the n-th time moment,

ŷ (n) – output of adaptive filter containing adaptively filtered
signal x, being the estimate of echo signal in the n-th
time moment,

e (n) = y (n)− ŷ(n) – the error function in the n-th time
moment,

N – the number of weight coefficients of the adaptive filter,
µ – the coefficient of adaptation rate (0 < µ < 1),
γ – the coefficient with the close to zero value, aim-

ing at prevention of zero value appearance in the
denominator of the formula ĥ (n+ 1) = ĥ (n) +

µ
γ+xT (n)x(n)

x (n) e (n),

ĥ(n) – weight coefficients of the adaptive filter in the n-th
time moment.

The diagram of the sequential NLMS algorithm for the
RAM machine has been presented in Figure 4.

Theorem 4. The NLMS algorithm may be executed in
O(N) time on single-processor RAM machine.

Prove. Step 0 is executed in constant time O(1). Step 1
is also executed in constant time O(1). Summation in step 2
is executed in time O(N). Step 3 is executed in the constant
time O(1). Steps 4 and 5 require computational expenditure
O(N), whereas step 6 is executed again in constant time
O(1). The whole determines the time of step 2, 4 and 5 exe-
cution determining the time of algorithm performance time
to O(N).�

IV. 4. Single-run ParNLMS algorithm
The next of the single-run echo cancellation algorithms is

the parallel ParNLMS algorithm. It constitutes a parallel ver-
sion of the single-run classical NLMS algorithm. First, while
describing the ParNLMS algorithm, we shall discuss the algo-
rithm version working on N – processor CREW PRAM ma-
chine. We shall prove that the same algorithm can be executed
on O(N

logN) processor CREW PRAM machine preserving the
time of computation at the level of O(logN).

Figure 5 presents the diagram of the parallel NLMS algo-
rithm for the SM SIMD architecture (Shared Memory SIMD)

1 Algo r i t hm 3 . NLMS a l g o r i t h m scheme
2 S tep 0 n : = 0 ;
3 S tep 1Read i n p u t x (n) and y (n) ,
4 S t ep 2 C a l c u l a t e :
5 ŷ(n) =

∑N−2
i=0 ĥi(n)x(n− i) ;

6 S t ep 3 C a l c u l a t e :
7 e(n) = y(n)− ŷ(n) ;
8 S t ep 4 / / Upda t ing o f µ c o e f f i c i e n t :
9 z := 0 ;

10 f o r i := 0 t o N − 1 do
11 z := z + x2(n− i) ;
12 µ(n) = µ

γ+z

13 S tep 5 / / Upda t ing o f f i l t e r c o e f f i c i e n t s :
14 f o r i := 0 t o N − 1 do
15 ĥi(n+ 1) = ĥi(n) + 2µ · e(n) · x(n− i) ;
16 S tep 5
17 n := n+ 1 ;
18 i f n < L t h e n go t o S t ep 1 ;

Fig. 4. The diagram of sequential NLMS algorithm

Family of Parallel LMS-based Adaptive Algorithms of Echo Cancellation 197

with the p number of processors. Additional denotations
have been accepted for the NLMS algorithm diagram, and
so:p = N – number of processors, id – identification (num-
ber) of the processor.

1 Algo r i t hm 4 . ParNLMSalgori thm scheme
2
3 S tep 0 n := 0 ;
4 S t ep 1
5 i f id = 0 t h e n
6 Read i n p u t x (n) and y (n) ,
7 S t ep 2 C a l c u l a t e :
8 ŷ(id) := hathid(n)x(n− id) ;
9 f o r i := 0 t o dlog(N − 1)e do

10 ŷ(id) := ŷ(id) + ŷ(id+ 2i) ;
11 S tep 3
12 i f id = 0 t h e n
13 e(n) = y(n)− ŷ(n) ;
14 S tep 4 / / Upda t ing o f µ c o e f f i c i e n t s
15 z(id) := x2(n− id) ;
16 f o r i := 0 t o dlog(N − 1)e do
17 z(id) := z(id) + z(id+ 2i) ;
18 \ mu(n) = \ f r a c { \mu} { \ gamma+z (0) } ;
19 S tep 5 / / Upda t ing o f f i l t e r c o e f f i c i e n t s
20 ĥid(n+ 1) = ĥid(n) + 2µ(n) · e(n) · x(n− id) ;
21 S tep 6
22 n := n+ 1 ;
23 i f n < L t h e n go t o S t ep 1 ;

Fig. 5. The diagram of parallel ParNLMS algorithm

Theorem 5. The ParNLMS algorithm can be executed in
O(logN) time on the CREW PRAM machine with the use of
N processors.

Prove. One may note that the ParNLMS algorithm con-
struction is the extension of the ParLMS algorithm with the
update statements of the µ coefficient. The proof is there-
fore in significant part analogous to the proof of theorem
of computational complexity of the ParLMS algorithm on
the N -processor PRAM machine. Step 0 is executed in the
constant time O(1). Step 1 is executed only by the zero pro-
cessor also in constant time O(1). The summation in step 2
is executed in time O(logN), in accordance with the “tree”
computational diagram. Step 3 requires again constant com-
putational input O(1). The update of µcoefficient, that is per-
formed in step 4 is based – as in the case of step 2 computation
– on the tree summation diagram that requires the O(logN)
computational input. In distinction from step 2 computation
after summation, the result is used to compute the µ(n) coef-
ficient value that requires constant computational time O(1).
The computational complexity of step 4 is determined by the
operation of the “tree” summation. The computation in steps
5 and 6 demand constant time O(1). The whole determines
the time of step 2 and 4 execution determining the time of
algorithm performance to O(logN).�

Conclusion 5. For the method based on Theorem 5
we obtain speedup Sp = O(N

logN) and efficiency Ep =

O(1
logN).�

Theorem 6. The ParNLMS algorithm can be executed
in O(logN) time on CREW PRAM machine with the use of
O(N

logN) processors.

Prove. Similarly to Theorem 5 that has been the extension
of theorem 2, Theorem 6 is the extension of theorem 3 with
the actions described in step 4 of the ParNLMS algorithm.
Hence, the theorem proof is the complement of the Theorem
3 proof. The extension is made by the computation in step
4. However, the computational complexity in lines 13-15 in
Theorem 6 is proved in the same way as the computational
complexity in lines 5-7 in theorem 3.

Conclusion 6. For the method based on Theorem 5 we
obtain speedup Sp = O(N

logN) and efficiency Ep = O(1).�
The presented method of NLMS algorithm parallelization

is therefore optimal in cost.

IV. 5. Single-run sequential PNLMS algorithm
The successor of the LMS, NLMS ParNLMS and

ParNLMS algorithms, a single run acoustic echo cancellation
algorithm that is described in this paper can be considered
the sequential PNLMS (Proportional Normalized LMS) algo-
rithm. Implementation of this algorithm to the RAM machine
described herein is an extension of the original PNLMS algo-
rithm with the flowchart and the proof for its computational
complexity. This algorithm has strict sequential character and
can be executed on a single-processor RAM machine.
The diagram of the sequential PNLMS algorithm has been
presented in Figure 6. The denotations have been enhanced by
the coefficients gj , δj (n+ 1) , ρ and γp defined as follows:

gj(n+ 1) =
δj(n+1)

1
L

∑N−1
i=0 δi(n)

, 0 ≤ j ≤ N − 1,

δj (n+ 1)=max{δmin,
∣∣∣ĥj (n)∣∣∣}, 0 ≤ j ≤ N − 1,

δmin=ρmax{γp,
∣∣∣ĥ0 (n)∣∣∣ , ∣∣∣ĥ1 (n)∣∣∣ , . . . , ∣∣∣ĥN−1 (n)

∣∣∣},
whereρ and γp are constants, usually taking the values ρ = 5

N
and γp = 0, 01 [17].

Theorem 7. The PNLMS algorithm may be executed in
O(N2) time on single-processor RAM machine.

Prove. Step 0 is executed in constant time O(1). Step 1
is also executed in constant time O(1). Summation in step 2
is executed in time O(N). Step 3 is executed in the constant
time O(1). Steps 4, 5 and 6 require O(N) computational
input, while step 7 requires denomination of N elements of
ĥ(n) vector, for each while performing the matrix multipli-
cation in time O(N) (the multiplied matrixes are vectors, or
diagonal matrix of the N order). Hence, the time of step 7
execution is O(N2). The complete time is determined by

198 A. Dobrucki, M. Walczyński, W. Bożejko

Algorithm 5. PNLMS algorithm scheme
1 S tep 0 n := 0 ;
2 S t ep 1 Read i n p u t x(n) and y(n) ,
3 S t ep 2 C a l c u l a t e :
4 ŷ(n) =

∑N−1
i=0 ĥi(n)x(n− i) ;

5 S t ep 3 C a l c u l a t e :
6 e(n) = y(n)− ŷ(n) ;
7 S t ep 4 / / S e a r c h i n g f o r δmin
8 max := γp ;
9 f o r i := 0 t o N − 1 do

10 i f (max < ĥi(n)) t h e n
11 max := ĥi(n) ;
12 δmin := ρ ·max ;
13 S tep 5 / / C a l c u l a t i n g o f δj(n+ 1)
14 f o r j := 0 t o N − 1 do
15 i f (δmin < |ĥj(n)|) t h e n
16 δj(n+ 1) := ĥj(n) ;
17 e l s e
18 δj(n+ 1) := δmin ;
19 S tep 6 / / C a l c u l a t i n g o f gj(n+ 1)
20 / / Only once−s h a r e d f o r each gj
21 sum := 0 ;
22 fori := 0 t o N − 1 do
23 sum := sum+ δi(n) ;
24 sum := sum/N ;
25 f o r j := 0 t o N − 1 do
26 gj(n+ 1) := n+1

sum
;

27 S tep 7 / / Upda t ing o f f i l t e r c o e f .
28 f o r i :=0 t o N − 1 do
29 ĥi(n+ 1) = ĥi(n) +

µ
γ+xT (n)G(n)x(n)

G(n)x(n)e(n) ;
30 S tep 8
31 n := n+ 1 ;
32 i f n < L t h e n go t o S t ep 1 ;

Fig. 6. The diagram of sequential PNLMS algorithm

step seven execution time determining the time of algorithm
performance time to O(N2).�

IV. 6. Single-run sequential PNLMS algorithm
Implementation of this algorithm to the PRAM machine

described herein is a parallel extension of the original sequen-
tial PNLMS algorithm with the flowchart and the proof for its
computational complexity.

Theorem 8. The parallel ParNLMS algorithm can be exe-
cuted in O(logN) time on the CREW PRAM machine with
the use of N2 processors.

Prove. Step 0 is executed in constant time O(1). Step 1 is
also executed in constant time O(1). Summation in step 2 is
executed in time O(logN). Step 3 is executed in the constant
time O(1). Steps 4 and 6 require O(logN) computational
input, step 5 is performed in constant time O(1), while step 7
requires denomination of N elements of ĥ(n) vector, for each
while performing the matrix multiplication in time O(logN)
(using a tree diagram of N-processor summation). Hence, the

time of step 7 execution is O(logN)with the use of N2 pro-
cessors. The complete time is determined by step 7 execution
time determining the time of algorithm performance time to
O(logN).�

Conclusion 8. For the method based on Theorem 8
we obtain speedup Sp = O(N2

logN) and efficiency Ep =

O(1
logN).�

Theorem 9. The parallel ParPNLMS algorithm can be
executed in O(logN) time on the CREW PRAM machine
with the use of O(N2

logN) processors.

Prove. The proof method is similar to Theorem 8 with the
difference that in step 7 there are used O(N2

logN) processors
during the cost optimal scheme of N number summation, in
accordance with the Brent Theorem.�

Conclusion 9. The proposed method in the proof of Theo-
rem 9 is cost optimal with the efficiency Ep = O(1) . The
speedup value for this method is Sp = O(N2

logN).�

Family of Parallel LMS-based Adaptive Algorithms of Echo Cancellation 199

The diagram of parallel ParPNLMS for the selected pro-
cessor with the id p index – processor CREW PRAM machine
has been presented in Figure 7.

Algorithm 6. ParPNLMSalgorithm scheme

1 S tep 0 n := 0 ;
2 S t ep 1
3 i f id = 0 t h e n
4 Read i n p u t x(n) and y(n) ,
5 S t ep 2 C a l c u l a t e :
6 ŷ(id) := ĥid(n)x(n− id) ;
7 f o r i := 0 t o dlog(N − 1)e do
8 ŷ(id) := ŷ(id) + ŷ(id+ 2i) ;
9 S t ep 3

10 i f id = 0 t h e n
11 e(n) = y(n)− ŷ(n) ;
12 S tep 4 / / S e a r c h i n g f o r δmin v a l u e
13 z(id) := ĥid(n) ;
14 f o r i := 0 t o dlog(N − 1)e do
15 z(id) := max(z(id), z(id+ 2i)) ;
16 max := max(z(0), γp) ;
17 δmin := ρ ·max ;
18 S tep 5 / / C a l c u l a t i o n s o f δ(n+ 1)

19 i f (δmin < |ĥid(n)|) t h e n
20 δid(n+ 1) := ĥid(n) ;
21 e l s e
22 δid(n+ 1) := δmin ;
23 S tep 6 / / C a l c u l a t i o n o f g(n+ 1)
24 / / E v a l u a t e d on ly ones
25 z(id) := δi(n) ;
26 f o r i := 0 t o dlog(N − 1)e do
27 z(id) := (z(id), z(id+ 2i)) ;
28 sum :=

z(0)
N

;
29 gid(n+ 1) := n+1

sum
;

30 S tep 7 / / Upda t ing o f f i l t e r c o e f f i c i e n t s
31 ĥid(n+ 1) = ĥid(n) +

µ
γxT (n)G(n)x(n)

G(n)x(n)e(n);

32 S tep 8
33 n := n+ 1 ;
34 i f n < L t h e n go t o S t ep 1 ;

Fig. 7. The diagram of parallel ParPNLMS algorithm
with the id index

V. CONCLUSIONS

For a serial and different parallel implementations of the
LMS algorithm and two of its modifications, we derive and
discuss the order of execution time of these algorithms. Using
a general purpose graphics processing unit (GPGPU)-card
they evaluated the execution time of the parallel LMS algo-
rithm in an echo cancellation application for different filter
lengths. The benefits of applying parallel algorithms from the
computational time point of view basing on PRAM parallel
computing model have been discussed. The theoretical re-
sults have been carried by numerical experiments conducted
in CPU and GPU environments.

References

[1] H. Yusukawa, S. Shimada, An acoustic echo canceller using
subband sampling and decorrelation methods, IEEE Trans.
Signal Processing, 41, 926-930 (1993).

[2] J. Chen, H. Bes, J. Vandewalle, P. Janssens, A new structure
for sub-band acoustic echo canceler, Proc. IEEE ICASSP,
2574-2577 (1988).

[3] W. Kellermann, Some aspects of the frequency-subband ap-
proach to the cancellation of acoustical echoes, Proc. IEEE
ICASSP, 2570-2573 (1988).

[4] B. Hatty, Block Recursive Least Squares Adaptive Filters Us-
ing Multirate Systems for Cancellation of Acoustical Echoes,
Proc. IEEE ASSP Workshop on Application of Signal Pro-
cessing to Audio and Acoustics, 1989.

[5] A. Gilliore, M. Vetterli, Adaptive filtering in subbands with
criticalsampling: analysis, experiments, and application to
acoustic echo cancellation, IEEE Trans. Signal Processing,
40, 1862-1875 (1992).

[6] A. Herikstad, Gpu sound processing, December 2008. Spe-
cialization Project TDT4590, Complex Computer Systems,
NTNU. 33, 36, 39, 47.

[7] A. Dobrucki, W. Bożejko, M. Walczyński, Parallelizing of
digital signal processing with using GPU, Signal processing,
algorithms, architectures, arrangements, and (2012) applica-
tions, SPA 2010 : conference proceedings, Poznan, 23-25th
September 2010. [Poznań : Chapter Circuits and Systems
Chapter Signal Processing Poland Section, Institute of Elec-
trical and Electronics Engineers, 2010], 29-33.

[8] W. Bożejko, M. Walczyński, Noise reduction with using par-
allel algorithms, Noise Control ’10 [electronic document]:
15th International Conference on Noise Control, 6-9 June
2010, Wałbrzych. Warszawa : Centralny Instytut Ochrony
Pracy – Państwowy Instytut Badawczy, 2010, 1-8.

[9] M. Walczyński, Zastosowanie algorytmów równoległych w
problemie odszumiania sygnałów dźwiękowych i wizyjnych
na przykładzie algorytmu LMS w mechatronice, Mechatron-
ika. Nauka dla gospodarki. Rzeszów 2011. ISBN 978-83-
63151-01-0 (in polish).

[10] A. Dobrucki, S. Brachmański, P. Pruchnicki, P. Staroniewicz,
P. Plaskota, M. Walczyński, Subvocal speech recognition
based on electromyography : Package WP7:Source codes of
software for parameterization of recorded SVR signals and
for management of files with signals. Technical documenta-
tion of SVR sensor. Package WP8: Test of the realized SVR
sensor Results of subvocal speech recognition using sensor.
Summary of results achived in project, Report SPR series,
2012.

[11] A. Dobrucki, S. Brachmański, P. Pruchnicki, P. Staroniewicz,
P. Plaskota, M. Walczyński, Subvocal speech recognition
based on electromyography : Package WP4: Purchased
equipment and its running EMG-SVR parametrization al-
gorithms; Database of test signals; Experiments with EMG
signals for vocal and subvocal speech, Report SPR series,
2011.

[12] A. Dobrucki, W. Bożejko, M. Walczyński, LMS algorithms
parallelization in GPGPU environment, Elektronika (War-
saw), 52(5), 49-53 (2011).

[13] M.M. Sondhi, An adaptive echo canceller, Bell Syst. Tech.
J., 46(3), 497-511 (1967).

[14] M.M. Sondhi and A.J. Presti, A self-adaptive echo canceller,
Bell Syst. Tech. J., 45(12), 1851-1854 (1966).

[15] W. Bożejko, On single-walk parallelization of the job shop
problem solving algorithms, Computers & Operations Re-
search 39, 2258-2264 (2012).

200 A. Dobrucki, M. Walczyński, W. Bożejko

[16] T.H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Intro-
duction to algorithms, MIT Press, 2009.

[17] T. Gansler, J. Benesty, D. R. Morgan, M. M. Sondhi, S. L.

Gay, Advances in Network and Acoustic Echo Cancellation,
Springer-Verlag, Berlin, Germany, 2001.

Andrzej Dobrucki was born in Rawicz, Poland, in 1949. He received the MSc degree in 1971 from the Faculty
of Electronics of Wroclaw University of Technology. In 1977 he received the PhD degree for a dissertation on
vibration and sound radiation of conical shells. In 1993 he received the DSc degree (habilitation). In 2007
Andrzej Dobrucki received the title of professor. His research interests are in the construction and measurement
of electroacoustic transducers, the numerical modeling of acoustic fields, vibrations in mechanical structures
and signal processing. The total number of his publications is: 3 scientific monographs, 2 handbooks, over 40
papers in scientific journals, over 120 presentations at international and local conferences published in the
conference’s proceedings, 6 Polish patents. He was the supervisor in 14 PhD projects. Andrzej Dobrucki is the
member of the Polish Acoustical Society and the Fellow of the Audio Engineering Society (AES). In 2014
he was elected the President of Polish Acoustical Society. He is also the Head of the Chair of Acoustics and
Multimedia in Wrocław University of Technology.

Maciej Walczyński was born in Wrocław, Poland, in 1983. He received the MSc degree in 2008 from the
Faculty of Physics of Wroclaw University. He is also PhD student at the Wroclaw University of Technology in
Faculty of Electronics. His PhD dissertation is about acoustic echo cancellation with using parallel algorithms.
His research interests include Digital Signal Processing, Algorithms, Parallel Processing. He is an author of
about 15 published in books and conference proceedings from the field of parallel processing, Digital Signal
Processing. He is also an Assistant Professor at General Tadeusz Kościuszko Military Academy of Land
Forces in Wroclaw.

Wojciech Bożejko is an Associated Professor at Wrocław University of Technology. He obtained his MSc at
the University of Wroclaw, Institute of Computer Science, in 1999, PhD in Wrocław University of Technology,
Institute of Engineering Cybernetics in 2003 and D.Sc. (habilitation) in Wrocław University of Technology,
Faculty of Electronics, in 2011. Since 2013 he has been working as the Associated Professor at the Institute of
Computer Engineering, Control and Robotics. He is an author of over 160 papers (over 150 citations on ISI
Web of Knowledge, h-index: 8) published in peer-reviewed journals and conference proceedings in the field
of parallel processing, scheduling and optimization. He is interested in parallel algorithms, GPU computing,
scheduling and discrete optimization.

CMST 21(4) 191-200 (2015) DOI:10.12921/cmst.2015.21.04.003

