
CMST 21(4) 181-189 (2015) DOI:10.12921/cmst.2015.21.04.002

Developing of Scientific Software Applications in Python.
I. Transformation of Hubbard Hamiltonian into the Matrix

and its Diagonalization

Ł. Herok1, R. Szczęśniak1,2, A.P. Durajski2*

1Institute of Physics, Jan Długosz University
Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland

2Institute of Physics, Częstochowa University of Technology
Al. Armii Krajowej 19, 42-200 Częstochowa, Poland

∗E-mail: adurajski@wip.pcz.pl

Received: 28 April 2015; revised: 06 September 2015; accepted: 07 September 2015; published online: 06 November 2015

Abstract: In order to perform larger scale physics research in the area of superconductivity, we have developed an application
that can transform the Hubbard Hamiltonian into a matrix and diagonalize it to find the selected model’s energy spectrum.
For that purpose we have used the Python language and its wide ecosystem. This paper proves that selected tools are
capable of creating scientific applications in a general sense. After a short introduction into the physics problem and the
designed algorithm we will present the computer science problems and their solutions in creating usual scientific programs,
in particular: performance and parallelization issues, storage of input data and the results, bottlenecks detections, as well as
optimization and testing. The most interesting examples of the developing cycle will be described to give a prepared solution
for implementing the other scientific software.
Key words: Python, scipy, hamiltonian matrix, sparse matrix

I. INTRODUCTION

Nowadays many problems from physics and the other
natural sciences can be investigated with numerical computa-
tions. Computer science serves as a field for theoretical exper-
iments, so it is crucial for a scientist to have appropriate tools
at the ready. This paper presents the survey of Python lan-
guage libraries and its packages in creating scientific software
with all its issues. The main goal was to prepare a program
that could handle transformation of the Hubbard Hamiltonian
for asked number of sites into Hamiltonian matrix. The next
step was the matrix diagonalization. When implementing this
solution we had to face the usual problems that have to be
solved in most scientific computation programs, especially in
physics and chemistry, including:
• parallelization and concurrent access to data,
• handling large amount of data in the memory,

• storing results,
• code and algorithms optimization,
• creating code prepared for further developing and

changing.

The scientists’ programming environment, beside a power-
ful language, should have a wide scientific ecosystem with
rich mathematical and engineering libraries. The researcher
can focus on solving a given issue and not be distracted and
slowed down by coding well-known algorithms. The Python
language meets this requirement perfectly, with a vast num-
ber of packages for numeric computation, mathematics and
statistic libraries even dedicated for physics society. Python
is a general-purpose, dynamic programming language. In-
terpreted languages are usually considered to be slower in
computation time than their compiled equivalents. It is not
always be true and it depends on the case [1]. However, they

182 Ł. Herok, R. Szczęśniak, A.P. Durajski

are really faster in program development, which means that
we get the working code, the required tool, faster. Dynamic
languages can be successfully used for serious work in large-
scale applications without suffering a performance penalty
or significantly increasing software complexity [2]. They are
also more convenient in daily work and allow one to introduce
ad-hoc changes faster, which could be a great benefit during
experiments. The article is organized as follows. Section II de-
scribes a physical problem to be solved, presents foundations
of the program architecture and gives insight into specific
algorithms. Finally, it reports statistical data associated with
the chosen way of solving the issue. Section III discusses
several important Python environment techniques that were
used while creating the tool. It shows the encountered prob-
lems and the way they were handled giving the hints for other
scientist interested in developing their own tools in Python.

II. HAMILTONIAN TRANSFORMATION INTO
MATRIX REPRESENTATION

Transformation of the Hubbard Hamiltonian into a ma-
trix for more than three sites is tedious work that should be
done numerically. The best approach would be to process all
equations in a symbolic way to achieve a result that can serve
as an input for further calculations, for example substitute
different values for parameters and do matrix diagonalization.
This approach generates a huge amount of data in the form
of equations that are elements of large sparse matrices. That
reveals the problem of handling this data in a memory and
its later, persistent storage for the next stages. The problem
of transformation could be split into smaller pieces so it is
natural that it should be implemented in a multiprocessing
way.

I(1,0)(0,1)>

(1,0) (0,1)

I(1,1)(1,1)>

(1,1) (1,1)

Fig. 1. Example states of two site model

II. 1. Hubbard Hamiltonian
A Hubbard Hamiltonian that models an electron system

has the following form [3]:

H = t

N∑
σ,i,j

c†iσcjσ+ ε0

N∑
σ,i

c†iσciσ+U

N∑
i

c†i↑ci↑c
†
i↓ci↓, (1)

where N is a number of sites, t is a hoping integral, ε0 de-
scribes a reference energy, U represents on-site Coulomb
interaction, c† and c stand for a fermion creation and annihila-
tion operator, respectively. Indexes i and j describe the sites
while σ is spin of an electron. To find the spectrum energy of
the modelled system the Hamiltonian needs to be transformed
into the matrix form, and after substitution of the hamilto-
nian parameters, according to a chosen model, it should be
diagonalized.

II. 2. Algorithm idea
According to the Equation 1, the hamiltonian for a two-

site model (N=2) takes the following form:

H = t
∑
σ

(c†1σc2σ + c†2σc1σ)

+ ε0
∑
σ

(c†1σc1σ + c†2σc2σ)

+ U(c†1↑c1↑c
†
1↓c1↓ + c†2↑c2↑c

†
2↓c2↓)

(2)

To transform the Hubbard Hamiltonian into matrix repre-
sentation it needs to find its influence on every state that the
system can take. In the discussed situation there is 42 number
of states. They can be visualised using the diagrams presented
in Figure 1.

Due to the Pauli exclusion principle on every site there
can exist at most two electrons with opposite spins. If an
electron with the up spin exists, then it is noted by 1 on the
first position in the site bracket if it does not exist, then it
is marked by 0. Based on the calculated equation according
to the pattern < final_state|H|initial_state > the Hamil-
tonian matrix can be built. The result is presented in Figure
2. We can observe that the reference energy electron system
and the on-site Coulomb potential U occupy the diagonal
elements. On the other hand, the hopping integral t defines
off-diagonal cells. The matrix prepared in such a form, with
parameters in the cells, is a good entry point for further re-
search in order to find the energy spectrum of the examined
model. For that purpose it would be necessary to compute the
Hamiltonian parameters for the selected model, and substitute
those values in the matrix to perform diagonalization.

II. 3. Program’s architecture
General actions that need to be taken to do the transfor-

mation, discussed in the previous sections, are presented in
Figure 3. The program computation flow consists of three
main phases:

Developing of Scientific Software Applications in Python 183

(0,0)
(0,0)

(0,0)
(0,)1

(0,0)
(,0)1

(0,0)
(,)1 1

(0,)
(0,0)

1 (0,)
(0,)

1
1

(0,)
(,0)

1
1

(0,)
(,)

1
1 1

(,0)
(0,0)
1 (,0)

(0,)
1

1
(,0)
(,0)
1
1

(,0)
(,)
1
1 1

(,)
(0,0)
1 1 (,)

(0,)
1 1

1
(,)
(,0)
1 1
1

(,)
(,)
1 1
1 1

(0,0)
(0,0)

(0,0)
(0,)1

(0,0)
(,0)1

(0,0)
(,)1 1

(0,)
(0,0)

1

(0,)
(0,)

1
1

(,)
(,0)
0 1
1

(,)
(,)
0 1
1 1

(,)
(,)
1 0
0 0

(,)
(,)
1 0
0 1

(,)
(,)
1 0
1 0

(,)
(,)
1 0
1 1

(,)
(,)
1 1
0 0

(,)
(,)
1 1
0 1

(,)
(,)
1 1
1 0

(,)
(,)
1 1
1 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Fig. 2. Hamiltonian matrix for N = 2

1. Determination influence of the Hamiltonian on every
state

2. Preparation the Hamiltonian matrix in a symbolic form
3. Matrix diagonalization with substituted values for the

hamiltonian parameters

The results of each phase are stored in the database, and they
work as an input data for every next phase. Thanks to that the
program can be started in any phase. The only requirements
are: availability of data in the database from previous phases,
and user-provided parameters for computation. Every phase
is implemented in a parallelized way to maximally utilize
available computation resources and deliver results as fast as
possible. It is marked in Figure 3 by shadowed blocks. Pro-
cessing in the first and second phases should be realized on
structures that can represent and process equations in a sym-
bolic form. Symbolic calculation is very slow compared to
floating point operations [4]. However, in our case it is cru-
cial to achieve results in a symbolic form to speed up the
next stages of research. They will be repeated plenty of times
starting from our preprocessed data. The third phase, ma-
trix diagonalization, takes as an input matrix with symbolic
equations that could be used for many different Hamiltonian
parameters values, depending on the tested model. Diago-
nalization is made using the Lanczos method that returns
eigenvalues and corresponding eigenvectors.

II. 4. Results
The program was built in the Python language according

to the discussed algorithm. Below we present some statistical
information about its performance. The following results were
obtained on the machine with configuration: 12 CPU cores
Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz and 64 GB
RAM running under: Linux Fedora 19, Python 3.3.2, numpy
1.9.1, scipy 0.14.0, sympy 0.7.4.1 and PostgreSql 9.2.8. Ta-
bles 1 and 2 present processing time and size of output data
in the database, for example the number of sites. H|ket >
presents statistics for computing hamiltonian influence on a
state, and < bra|H|ket > for building a hamiltonian matrix.
Final program was equipped with a dedicated reporting tool.
Results for a particular number of sites can be viewed as
an HTML document in a matrix form as shown in Figure 2.
The next section presents technical solutions for mentioned
issues in the Python language.

III. IMPLEMENTATION IN PYTHON
ENVIRONMENT

Python is a dynamic programming language that allows
fast development of new programs. It is a high-level lan-
guage that allows one to focus on solving the problem rather

184 Ł. Herok, R. Szczęśniak, A.P. Durajski

Generate all possible
states

Determinate H
influence for every

state

Create H matrix

Substitute H
parameters

Diagonalization

Retrive eigen values

DBGenerate HTML
report

R
e
p

e
a
t fo

r th
e

 o
th

e
r H

 p
a
ra

m
e
te

rs

Fig. 3. The program algorithm

than fighting with low level programming issues and in the
end greatly enhance productivity. Python has a "batteries
included" philosophy. This is best seen through the sophisti-
cated and robust capabilities of its larger packages [5]. This
philosophy connected with rich scientific packages makes
it a great choice for developing scientific software. Python
integrates well with other programming languages. For that
reason it can serve as a great control language and glue code
from different programming languages combining it all to-
gether in one program that works [6]. This can really speed up
the development process thanks to using previously created
routines. An important factor for scientists and engineers is
Python’s clarity of syntax. It makes the program code easy
to read, understand and maintain. It is enforced by proper
indentation, namespaces, well-designed built-in instructions
and documentation strings. The clarity of the code, easy us-
age and availability of a rich base of packages, makes it a

significant competitor in comparison with Matlab, Fortran,
and C/C++ [7]. All listed aspects allow one to focus on the
problem and treat the programming language as a tool which
supports creating a clear, readable code that yields the idea
behind it and documents the experiment [2].

The Python language has two core versions 2 and 3, which
differ in syntax and are incompatible with each other. Nowa-
days Python 2 is still more often used, but it is only a matter
of time when its successor Python 3 becomes a daily standard.
The program in this work was fully implemented in Python 3.

III. 1. Performance consideration
Scientists are usually trained to work with the compiled

languages Fortran or C/C++. These languages offer perfor-
mance needed to solve large numerical problems. The prob-
lem is that these languages are not easy to use, the imple-
mentation is hard to change and maintain while the final

Developing of Scientific Software Applications in Python 185

Tab. 1. Computation time

Sites
6 7 8

H|ket > 00h 00m 20s 00h 01m 56s 00h 11m 22s
< bra|H|ket > 00h 03m 25s 00h 38m 18s 09h 37m 37s

Tab. 2. Size of output data in the database tables

Sites
6 7 8

Size Rows Size Rows Size Rows
[MB] [MB] [MB]

H|ket > 0.7 4096 35 16384 179 65536
< bra|H|bra > 35 65535 207 360447 1031 1900543

solution is delivered very slow. The final program code hides
it’s idea behind the language syntax, data structures and in-
structions. Python is a high-level interpreted language. For
many cases it will be slower in execution time than its C/C++
equivalents [8]. As mentioned before, the Python language
is flexible in the manner of glueing with other languages.
So even if a bottleneck is detected, the part of the program
could be rewritten in Fortran or C/C++ code. In our case the
Lanczos algorithm provided by the scipy package is imple-
mented in the Fortran language and distributed in the For-
tran77 ARPACK package [9]. It contains subroutines de-
signed to solve large scale eigenvalue problems. Usage of
this package in the Python code is straightforward as it was
shown in Listing 1.

Listing 1. Usage of the Fortran77 package with the
Lanczos algorithm

from s c i p y . s p a r s e . l i n a l g i m p o r t e i g s h
v a l s , vec s = e i g s h (ma t r ix , e igs_number ,

r e t u r n _ e i g e n v e c t o r s =True ,
which = ’LM’)

Another approach widely used to increase performance
of the Python program is to use Cython [10], an optimis-
ing static compiler for the Python programming language.
It makes writing C extensions for Python as easy as Python
itself. In the end we get a readable high-level language code
that is compiled to a very efficient C code. In that case we
obviously lose dynamic language interactivity.

III. 2. Parallelization
The Python language is equipped with two solutions for

concurrent code execution contained in separated packages
multithreading and multiprocessing. The appropriate choice
of a tool depends on the task to be executed, if it is CPU bound
or IO bound. The multithreading module suffers because of

the Global Interpreter Lock [5] so despite easy use it cannot
utilize multi CPU cores at the same time. For that reason the
main usage of this module is reduced to introduce parallelism
of execution during the IO operations. Scientific numeric com-
putations are the class of problems that are CPU-bound. The
multiprocessing module allows the programmer to fully lever-
age multiple processors on a given machine so it is a good
choice for carrying on simultaneous numerical computations.
In our case concurrent execution appears three times: apply-
ing hamiltonian for all states, creating hamiltonian matrix,
diagonalization. The first two cases are implemented on our
own, the third one is handled by an imported scipy pack-
age, and ARPAC package underneath. The framework for
the first and second case is the same. We start one process
manager that runs a pool of workers with a number equal
to the number of available CPU cores. The difference is in
providing data to process and collecting results. For the first
phase, applying hamiltonian for all states, all possible states
are generated in the main process, and each worker is ordered
with one state and should return the result to the parent pro-
cess which is responsible for collecting results and storing it
in the database. In the second case, the matrix creation phase,
the worker process gets information about the range of data
to process. It reads a portion of input data from the database
and stores back the results directly in the database. Example
implementation for the described phases is illustrated by code
in Listings 2 and 3.

Listing 2. Parallelization of applying hamiltonian for all states

s t a t e _ c n t = 4 ∗∗ s i t e s
poo l = Pool (m a x t a s k s p e r c h i l d =1000)
r e s = [poo l . a p p l y _ a s y n c (a p p l y _ h k e t ,

(s i t e s , s t a t e))
f o r s t a t e i n r a n g e (s t a t e _ c n t)]

poo l . c l o s e ()
poo l . j o i n ()

186 Ł. Herok, R. Szczęśniak, A.P. Durajski

Listing 3. Parallelization of matrix creation

poo l = Pool (m a x t a s k s p e r c h i l d =1)
[poo l . a p p l y _ a s y n c (c o m p u t e _ s l i c e ,

(s i t e s , s l i c e _ n o , s i z e , q u a n t i t y))
f o r s l i c e _ n o i n r a n g e (q u a n t i t y)]

poo l . c l o s e ()
poo l . j o i n ()

The idea of parallelization in the matrix creation phase is
to slash the list of previously computed data in slices. Each
worker is ordered the slice number to compute. The worker
process is responsible for loading the indicated slice of data
from the database into the memory. Then it undertakes com-
putation against its slice and all the other slices. At the same
time every worker can keep in the memory a maximum of two
slices that it operates on. Taking into account this constraint
the number of slices and slice size depend on the available ma-
chine’s RAM memory and number of CPUs. It is demanded
that the slice size be as large as possible to minimize commu-
nication with database, due to the IO bound.

Before coming to this solution, of distributing data and
collecting results from workers, attempts were made to pass
to each worker process the complete list of data. This quickly
ended in out of memory problem and large delays in trans-
ferring the data to subprocesses. The second attempt was to
use the operating system mechanism Copy On Write. The
operating system copies data that is held in global variables
to subprocess only when the subprocess or the main process
is trying to change it. At first sight it promised high efficiency
and memory saving. Unfortunately, we ended up with uncon-
trolled coping data, on accessing list elements, causing out of
memory problems.

III. 3. Data types and structures
The real challenge was to handle data in symbolic rep-

resentation. The sypmpy package with its Expr class for al-
gebraic expressions appeared to be helpful. In connection
with its subpackage physics.quantum it allowed us to hold
all required expressions in a symbolic form and carry all
mathematical operations.

Listing 4. Handling symbolic expressions with the sympy package.

U = symbols (’U’)
k = Ket ((0 , 1) , (0 , 0))
exp r = − U ∗ k
p r i n t (exp r)
>>> −my∗ | (0 , 1) (0 , 0) >

In the first attempt the system state was represented by
a generic Python data type: tuple [5]. Its presentation reflects
the adopted physics state presentation. The tuple was en-
veloped by the Ket object in discussed symbolic expressions
structures. All possible states form series of succeeding bi-
nary numbers from 0 to 2N, left padded with zeros to 2N
places. Discovering this allowed us to create a lightweight

algorithm, where states were generated using built-in Python
functions for handling binary numbers.

Tab. 3. The results of the state generator for two-site model

Decimal Binary Ket
0 0000 |((0, 0), (0, 0)) >
1 0001 |((0, 0), (0, 1)) >
2 0010 |((0, 0), (1, 0)) >
...
7 1111 |((1, 1), (1, 1)) >

Another interesting problem was to find an appropriate
data structure for sparse matrices. The Hamiltonian matrix
is a sparse matrix, which means that most of its cells hold 0
value. It would be a waste of computer resources, and even
impossible to create an array of matrix size in the memory.
This problem was handled differently in the phase of ma-
trix creation and diagonalization. During matrix creation the
results are kept in a list [5] a built-in Python collection. Its
elements are represented by named tuples as it was shown in
Listing 5. For the diagonalization procedure we need to whole
matrix into memory. Python’s package scipy.sparse provides
several implementations of data structures that are capable of
handling a sparse matrix. In our case we have chosen to use
the dok_matrix, because this structure was most convenient
for loading it from the database tables.

Listing 5. Named tuple

e l e m e n t = named tup le (’ Mat r ixTup le ’ ,
[’ bra ’ , ’ ke t ’ , ’ r e s u l t ’])

Listing 6. Sparse matrix

from s c i p y . s p a r s e i m p o r t d o k _ m a t r i x
dm = d o k _ m a t r i x (4∗∗8 , 4∗∗8))
dm[bra , k e t] = r e s u l t

Pointed data structures allowed us to hold a large, sparse
matrix in a memory and access its elements much faster.

III. 4. Profiling
The working program was analyzed for the performance

bottlenecks. For that purpose we have used cProfile [5] tool.
cProfile provide deterministic profiling of Python programs.
It produces a set of statistics that describe how often and for
how long various parts of the program were executed. Accord-
ing to the analysis of the most time-consuming operation it
was found that the slowest instruction was comparing equality
of Bra and Ket states during matrix generation.

Listing 7. Profiling Python code

i m p o r t c P r o f i l e
c P r o f i l e . r u n c t x (’ c o m p u t e _ s l i c e (s i t e s , 0 ,

s i z e , q u a n t i t y) ’ , g l o b a l s () , l o c a l s
() , s o r t =2)

Developing of Scientific Software Applications in Python 187

Slice State Result

1

2

3

4

((0, 0), (0, 0))

((0, 1), (0, 0))

((1, 0), (0, 0))

((1, 1), (0, 0))

((0, 0), (0, 1))

((0, 1), (0, 1))

((1, 0), (0, 1))

((1, 1), (0, 1))

((0, 0), (1, 0))

((0, 1), (1, 0))

((1, 0), (1, 0))

((1, 1), (1, 0))

((0, 0), (1, 1))

((0, 1), (1, 1))

((1, 0), (1, 1))

((1, 1), (1, 1))

Fig. 4. The idea of parallelization creation of matrix

As it was mentioned in the very beginning, a state was
represented by a tuple, formed as binary digits grouped by
parentheses, enveloped by a Bra or Ket object. For models
consisting of more than five sites, a binary state represen-
ation started to be quite a complicated object to compare.
After detecting a problem with performance, representation
was switched to decimal numbers. Previous binary notation,
eg. |((0, 1), (0, 1), (1, 1)) >, was replaced by decimal nota-
tion, eg. |23 >. That change had also a positive influence
on reducing usage of the memory and storage space. There
was no need to change the instructions of states comparison.
Added were only functions for translating a decimal number
to formal state representation for presentation purposes. Per-
formance growth after optimization is presented in Table 4.

Tab. 4. Performance growth after optimization

Sites
6 7 8

Before 00h 04m 23s 01h 20m 06s 25h 17m 19s
After 00h 03m 25s 00h 38m 18s 09h 37m 37s

Performance
growth [%] 22 52 62

Another problem that occurred during developing the
transformation tool was lack of memory. The problem ap-
peared in parallel implementation of matrix creation. With
the help of the resource package and functions available in
the sys module we discovered that there was a problem with
freeing memory for allocated variables in the sympy package.
The resource package provided basic mechanisms for measur-
ing and controlling system resources utilized by a program,
when functions in the sys module were used for investigating

object sizes. The problem was solved by forcing clearing the
sympy cache and restarting the worker process after every job.

Listing 8. Solving out of memory problem in the sympy package

sympy . c l e a r _ c a c h e ()
poo l = Pool (m a x t a s k s p e r c h i l d =1)

III. 5. Persistent storage
The program generates a large amount of data that needs

to be persisted for particular phases. The simplest way of
storing data are flat files. According to Grays Law’s [11], as
a storage engine for our application, the PostgreSql relational
database was chosen. Postgresql is the most advanced open
source database which can handle multiple client access at
the same time. Using a database instead of file storage solves
a couple of problems, including concurrent access to data,
concurrent writings, convenient and fast retrieving data, and
scalability [12]. The data generated by the first and second
phases are stored in separate tables with a structure presented
in Figure 5. The obj column holds serialized objects: num-
ber of sites, state and its resulting equation. The data in other
columns are added demonstratively in order to facilitate direct
viewing of results.

Fig. 5. Database structure

188 Ł. Herok, R. Szczęśniak, A.P. Durajski

For our application the relational database has been cho-
sen, but looking at the structure of the data and usage scenar-
ios probably a document database could be a better choice.

III. 6. Testing
Tests are a kind of insurance that allows future program

modification, optimization and development. It serves also
as a project documentation and usage example. The whole
development process was carried out in the Test Driven De-
velopment technique. It resulted in the high quality code that
was checked to work as it was expected. The Python envi-
ronment provides several testing frameworks: unittest, nose,
pytest, and doctest. In our development cycle we stayed with
the unittest framework that supports test automation, aggrega-
tion of tests into test cases, and helpers for easy test scenario
creation.

Listing 9. Test case for applying hamiltonian on a state

c l a s s TestH (u n i t t e s t . T e s t C a s e) :
d e f t e s t _ a p p l y (s e l f) :

u , e , t = symbols (’ u e t ’)
e x p e c t e d = t ∗KetDec (5 9) − t ∗KetDec

(6 2) + 2∗u∗KetDec (4 7) − 5∗ e∗
KetDec (4 7)

s e l f . a s s e r t E q u a l (a p p l y (n =3 , s t a t e
=47) , e x p e c t e d)

Using the unit test framework we have also implemented
an integration test for diagonalization procedure to make sure
it returns solutions in accordance with mathematical equation
Av = λv, where λ is an eigenvalue of matix A, and v is its
corresponding eigenvector. A complete test suit allowed us
for safe program refactoring, optimization and modifications
that appeared many times in the development cycle.

III. 7. Science packages
As it was said in the very beginning, Python has a strong

scientific ecosystem that is centralized around SciPy stack.
It gathers a variety of Python open-source extensions for
mathematics, engineering, physics and other disciplines. It en-
riches the scientist’s kit with tools for:
• fundamental library for scientific computing, statistical

functions and numerical methods (SciPy library),
• n-dimensional homogenous array package allowing

fast array manipulation (NumPy),
• symbolic mathematics and physics (Sympy),
• result visualization with comprehensive Plotting (Mat-

plotlib),
• interactive console with Mathematica like notebooks

(iPython),
• and many others.
In our case we have used Scipy packages for matrix diag-

onalization. The Sympy module allowed us to write down and
carry on hamiltonian transformation in a symbolic way and

in the final step substitute real values for symbols. iPython
deserves special attention. It makes the most of Python inter-
activity. It provides access to the programing language and
all its packages through well-known Mathematica or Matlab
like notebooks [5]. It allows live programing for testing ideas
and at the same time provides a visual running environment
for your programs. Ipython exhibits the scientific nature of
the Python language.

IV. CONCLUSIONS

In this work we have shown the process of building the sci-
entific application in the Python language and its environment.
We have designed and created the program for hamiltonian to
matrix transformation that will be used in our further research.
In this article we have shared our experiences in building
specialized physics application in the Python language. The
outlined approach is so general that it is applicable to many
different scientific areas and common classes of problems.
It was proven that Python can successfully replace Matlab, C
or Fortran environments allowing for faster and more conve-
nient software development whilst preserving performance
in the final product. This general purpose programming lan-
guage with a vast number of ready to use packages, often on
a liberal open source license, is a great choice for scientists
and engineers [13]. A powerful interactive interpreter reveals
its scientific nature, it is ready for live experimentations and
fast idea validations.

In the future work we are planning to extend the presented
software to implement functionality of transformation into
a matrix for any hamiltonian provided in the second quantiza-
tion notation. We will also work on increasing performance to
prepare software for analyzing larger models: over ten-sites.
It will be done by implementing most time-consuming op-
erations in Cython and finding places where the algorithm
could be simplified by finding symmetric problems. We will
also consider another approach to decrease computation time,
scattering calculations on multiple client machines by imple-
menting the MPI – Message Passing Interface [14, 15].

References

[1] T.E. Oliphant, Python for Scientific Computing, Computing in
Science & Engineering 9, 10-20 (2007).

[2] D.M. Beazley, P.S. Lomdahl, Extensible Message Passing
Application Development and Debugging with Python, Pro-
ceedings 11th International Parallel Processing Symposium,
650-655 (1997).

[3] J. Spałek, Wstęp do fizyki materii skondensowanej, Wydaw-
nictwo Naukowe PWN, Warszawa 2015.

[4] H. Fangohr, Python for Computational Science and Engineer-
ing, Faculty of Engineering and the Environment University
of Southampton, Southampton 2014.

[5] Python Software Foundation, Python Documentation,
https://docs.python.org, 2015.

Developing of Scientific Software Applications in Python 189

[6] D.M. Beazley, Scientific Computing with Python, Astronomi-
cal Data Analysis Software and Systems IX ASP Conference
Series 216, San Francisco 2000.

[7] D.M. Beazley, P.S. Lomdahl, Building Flexible Large-Scale
Scientific Computing Applications with Scripting Languages,
8th SIAM Conference on Parallel Processing for Scientific
Computing, Minnesota 1997.

[8] X. Cai, H. P. Langtangen, H. Moe, On the Performance of
the Python Programming Language for Serial and Parallel
Scientific Computations, Scientific Programming 13, 31-56
(2005).

[9] R.B. Lehoucq, D.C. Sorensen, C.Yang, ARPACK Users’
Guide: Solution of Large-Scale Eigenvalue Problems with
Implicitly Restarted Arnoldi Methods, University of Leeds,
1997.

[10] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn,
K. Smith, Cython: The Best of Both Worlds, Computing in
Science and Engineering 13, 31-39 (2011).

[11] A. S. Szalay, J. A. Blakeley, Gray’s laws: database-centric
computing in science, [in:] T. Hey (ed.), S. Tansley (ed.), K.
Tolle (ed.), The Fourth Paradigm: Data-Intensive Scientific
Discovery, Redmond, p. 5-11, 2009.

[12] P. Buneman, Why Don’t Scientists Use Databases?, Microsoft
PowerPoint Presentation to National e-Science Centre, (2002).

[13] A. Noreen, K. Olaussen, A Python Class for Higher-Di-
mensional Schroedinger Equations, arXiv:1503.04607
[physics.comp-ph], (2015).

[14] M.R B. Kristensen, B. Vinter, Numerical Python for scalable
architectures, Proceedings of the Fourth Conference on Parti-
tioned Global Address Space Programming Model, New York,
art. 15 2010.

[15] J.K. Nilsen, X. Cai, B. Høyland, H. P. Langtangen, Simplify-
ing the parallelization of scientific codes by a function-centric
approach in Python, Computational Science & Discovery 3,
(2010).

Łukasz Herok is a PhD candidate at the Jan Dlugosz University in Czȩstochowa, Faculty of Theoretical
Physics. He received a master degree in Computer Science at Silesian University of Technology. His research
focus on generalization Eliashberg functions for more precise superconductivity exploration. His long-term
interest is developing software for quantum computers. He is also a professional software architect and business
analyst who designs and implements dedicated software solutions for manufacturing companies.

Radosław Szczęśniak is a Professor at the Częstochowa University of Technology and the Jan Dlugosz
University in Częstochowa (Institute of Physics). His subject of interest is theoretical physics, particularly the
theory of the superconducting state and the transport phenomena.

Artur Durajski is an Assistant Professor at the Institute of Physics, Częstochowa University of Technology
and a vice-president of Częstochowa Department of Polish Physical Society. In 2011, he received his MSc
Eng. degree in Physics at the Częstochowa University of Technology and in 2014 he received his PhD degree
(cum maxima laude) in Physics at the University of Zielona Góra. His research interests concern high-pressure
thermodynamic properties of phonon-mediated superconductors, the strongly correlated systems and modified
electron-phonon pairing mechanism applied to cuprates.

CMST 21(4) 181-189 (2015) DOI:10.12921/cmst.2015.21.04.002

