
CMST 21(4) 169-179 (2015) DOI:10.12921/cmst.2015.21.04.001

The Lennard-Jones Fluid
in the Liquid-Vapour Critical Region

D.M. Heyes

Department of Physics, Royal Holloway
University of London, Egham, Surrey TW20 0EX, UK

E-mail: david.heyes@rhul.ac.uk

Received: 01 June 2015; accepted: 12 June 2015; published online: 23 August 2015

Abstract: The equation of state of the Lennard-Jones (LJ) fluid in the liquid-vapour (LV) critical region is investigated by
Molecular Dynamics simulation (MD). The calculated pressure (P ) and chemical potential (µ) are, within the simulation
statistics, flat at the critical temperature between LJ reduced densities of ca. 0.26 to 0.34. The critical temperature, Tc,
determined for an isotherm where (∂P/∂ρ)T = 0 and (∂µ/∂ρ)T = 0, is shown to decrease with increasing system size
and pure LJ potential interaction range, rc, using a tapering function going to zero beyond rc. The value of Tc obtained
by extrapolating the system size and rc to∞ is 1.316± 0.001, which is statistically within the uncertainties of previous
literature values. The percolation threshold separation, rp, along the critical isotherm decreases monotonically with increasing
density, ρ, and is for intermediate densities lower than that of the nearest equivalent hard-sphere system. The lines of constant
percolation distance on the density-temperature projection of the phase diagram reveal a difference in qualitative behaviour,
indicative of underlying structural differences on either side of the critical envelope. The mean square force in the critical
region near to Tc is linear in ρ. Probability distributions of the nearest neighbour distance, absolute particle force and
potential energy per molecule are presented.
Key words: Lennard-Jones criticality, Molecular Dynamics simulation, percolation

I. INTRODUCTION

Many aspects of the fluid part of the phase diagram are
still poorly understood, which includes the phase behaviour
and equation of state in the liquid-vapour (LV) critical region.
Andrews showed experimentally in 1869 that a coexisting
liquid and vapour become a homogeneous supercritical fluid
above a ‘critical’ temperature [1], and the ‘supercritical fluid’
state, (SCF) exists at all densities at temperatures above the
critical temperature, [2]. In 1873 van der Waals proposed
his now well-known cubic equation of state whose solution
predicts that the liquid-vapour transition at the critical temper-
ature, Tc, takes place at a point on the phase diagram specified
by critical values, ρc, and, Pc, of density and pressure, respec-
tively [3].

The existence of the liquid-vapour critical point is firmly
established and taken as an accepted fact in the liquid state

physical science and engineering literature. However, the
liquid-vapour critical point has never been measured or
achieved directly by experiment or molecular simulation
but only inferred by extrapolation of coexistence data, even
though very close to Tc where there are no data points there is
still a large density difference between the liquid and vapour
densities (about 30 % of ρc, [4]). It is already known that
there is a weak pressure-density dependence in this region
(e.g., |P − Pc| ∝ |ρ− ρc|4, [5, 6]) and it has been proposed
a number of times over the last century that it is indeed flat
(i.e., with zero slope), (e.g., see Refs. [7-10] and references
quoted therein). This has been disputed (see for example,
Refs. [11, 12]), and to date it appears that either of these two
propositions could be correct. The ‘flat top’ proposal is that at
Tc there is a horizontal line joining the two coexisting phase
properties, in which case ∆ρ > 0 and the surface tension,
γ > 0 at Tc. Indeed the experimental P − ρ values along
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the critical isotherm are statistically flat in a density range on
either side of the extrapolated critical density [13-15].

This work follows on from Ref. [10] in exploring the equa-
tion of state of the Lennard-Jones (LJ) fluid in the critical
region using Molecular Dynamics (MD) simulation. The new
features discussed here are a more systematic study of system
size and interaction truncation distance effects. Further analy-
sis of the structure of the fluid based on the Stillinger cluster
construction procedure using a fixed neighbour distance for
defining connectivity is made. The percolation properties of
these clusters are analysed. The behaviour of other proper-
ties with density along the critical isotherm or neighbouring
isotherms are also explored.

Molecular Dynamics (MD) has well-known limitations,
including the small system size compared to typical macro-
scopic dimensions and short exploratory times compared with
experiment. Despite these drawbacks, MD does have several
advantages compared to experiment which are particularly
useful in the present context. Because it can probe very short
time scales, on the molecular scale, isotherms arbitrarily close
above and even below Tc can be mapped out by MD before
any phase separation has time to occur, [16]. The isotherms
in the critical region at a temperature below Tc are of course
metastable. In Ref. [10] a new procedure was proposed to
determine the critical temperature Tc (which I emphasise is
not in dispute) as the temperature at which the slope of P (ρ)
is zero in the critical region of the phase diagram. The slope
goes from being negative to positive on increasing tempera-
ture upwards through Tc. Another advantage of simulation
compared to experiment is that the chemical potential can
be computed directly, using for example, Widom’s particle
insertion method, [17] whereas this quantity has to be de-
termined from experiment by integration of the measured
density-pressure data (thereby introducing further statistical
error). The flat top region at Tc would be where at T = Tc
both (∂P/∂ρ)T = 0 and (∂µ/∂ρ)T = 0 at all points within
a certain density region in the neighbourhood of the assumed
critical density.

The present study does not prove one way or the other if
the critical point exists but it does provide further data and
insights which may help ultimately to resolve this longstand-
ing dispute. Inter alia some other aspects of the behaviour
of the system in the region of criticality are brought out. It is
emphasised that none of the figures which are discussed in the
next section rely on the premise that a critical liquid-vapour
critical point exists or not. They are totally independent and
supplementary to this debate.

II. SIMULATION DETAILS

Molecular Dynamics (MD) simulations were carried
out using the isotropic Lennard-Jones potential, φ(r) =
4ε[(σ/r)12 − (σ/r)6], where r is the distance between the
centers of the two molecules. The quantities presented are

given in the usual LJ reduced units, where σ, ε and the mass
of the molecule are set to unity. The Lennard-Jones pair po-
tential was used for the potential energy and force up to a
distance of rc which ranges in various simulations between
2.5 − 4.5. For larger distances than rc the interaction was
gradually reduced to zero over a further 0.2 distance units
using the Morris - Song tapering function [18]. This removes
the discontinuity in the force and associated jump in potential
energy which would occur if the LJ potential were simply
truncated at rc. This procedure ensures that the potential en-
ergy of the pairs for r < rc is the full Lennard-Jones potential,
and not shifted downwards. There is no discontinuity in the
potential or force experienced by the molecule as it crosses rc
in this procedure. The usual long range correction formulas
for the energy and pressure were applied, and based on the
value of rc as the lower limit of the integral [19]. The critical
temperature of the LJ system is known to be sensitive to trun-
cation and various tapered modifications, [20, 21], an issue
which is studied further here.

The reduced number density is ρ, the reduced time step
was 0.005/

√
T and post-equilibration simulations were typi-

cally conducted for 106 time steps for each state point. The
number of particles in the simulation cell ranged between
500 to 10, 976. The Lennard-Jones critical point parameters
are, Tc = 1.3120(7), [22, 23], ρc = 0.316(1), [24] and
Pc = 0.141(1), [25] respectively, where the number in brack-
ets is the estimated uncertainty in the last digit. The triple
point temperature and density are ca. 0.69 and 0.85, respec-
tively [26].

Fig. 1. Phase boundary between the LJ vapour and liquid phases
obtained in various literature molecular simulation studies. The hor-
izontal red line at the top of the coexistence envelope highlights
where there are no data points. The central almost linear set of data
points is the average of the vapour and liquid densities, with slope
−5.45± 0.09 and intercept 2.99± 0.03 which gives a critical den-
sity of 0.309± 0.006 taking a critical temperature of 1.312. based
on linear regression of all of the data. The key on the figure refers to
the following references, [27] (B), [28] (F), [29] (K), [24] (M), [22]

(P), [30] (A), and [31, 32] (O).
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III. RESULTS AND DISCUSSION

Fig. 1 traces out the LJ vapour and liquid coexisting densi-
ties as a function of temperature using data points taken from
a number of molecular simulation studies, [22, 24, 27-32].
Note that there is a gap of almost 0.2 Lennard-Jones units
between the co-existing vapour and liquid phases in the vicin-
ity of Tc. The central almost linear set of data points is the
average of the vapour and liquid densities, which can be seen
to follow the law of rectilinear diameters, [33] quite well.

Fig. 2. The density difference between the coexisting Lennard-Jones
liquid and vapour phases, ∆ρ = ρl−ρv as a function of (Tc−T )β .
Fitting to all of the data, the linear regression slope is 0.985±0.006,
the intercept is 0.016± 0.008, and β = 0.360± 0.006 (the mean
field and non-classical values of β are 1/2 and 0.326± 0.002, re-
spectively). The key on the figure identifying the reference sources

is the same as for Fig. 1.

Fig. 2 presents the density difference between the coex-
isting liquid and vapour phases, ∆ρ = ρl − ρv as a function
of (Tc − T )β , using literature data. A least squares fit value
for β from these data is 0.360± 0.006, which is closer to the
non-classical crossover value of 0.326± 0.002 than the van
der Waals or mean field value of β = 1/2. This is surprising
as most of the data in the figure should comply with the van
der Waals or mean field value of β, with the crossover to non-
classical behaviour taking place at temperatures very much
closer to Tc. The wide temperature range where the exponent,
β is closer to the non-classical value rather than the mean
field value might be considered contrary to expectations.

Fig. 3 presents the density difference between the coexist-
ing liquid and vapour phases, ∆ρ = (ρl − ρv)α as a function
of the surface tension, γS using data taken from, [20, 22, 30].
A log-log plot based on all the data has a slope of α ≡ β/µ =
0.260± 0.005, which is close to the non-mean field value of
0.250. This body of simulation data (at least) within statistics
and on extrapolation, supports the existence of a critical point
in predicting that there is no density difference between the
liquid and vapour phases at Tc and that the surface tension is

zero in that limit too. As noted above, however, the data used
for extrapolation terminates some distance from the Tc limit,
and its qualitative behaviour could change closer to Tc.

Fig. 3. The density difference between the coexisting Lennard-Jones
liquid and vapour phases, ∆ρ = ρl− ρv as a function of the surface
tension, γS . A log-log plot gives a slope of β/µ = 0.260± 0.005,
compared with the non-classical value of 0.326/1.303 = 0.250.
Key: References: [20] (W) (using a tapered LJ potential with a lower

critical temperature than standard LJ), [22] (P), and [30] (A).

Fig. 4. Pressure, P against ρ for four isotherms, T =
1.3265, 1.3365, 1.3380 and 1.3465 (bottom to top curve, respec-
tively) using N = 4000 and rc = 2.5. The symbols are the Molec-
ular Dynamics (MD) simulation data points and the lines are linear
regression fits in the linear parts of P − ρ for each temperature.
The slopes are,−0.028±0.001, 0.0007±0.0001, 0.0003±0.001,
and 0.025 ± 0.001, respectively, for the lines in ascending order.
Therefore the critical temperature is ca. 1.337 which is where the
slope is statistically zero in the density range, ρ = 0.28 − 0.35.
The pressure is equal to 0.1406(2) at this temperature and along the

density line.
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Fig. 4 shows a plot of P (ρ) in the critical density region
from this work’s simulations for four temperatures, using
N = 4000 molecules in the simulation cell, and rc = 2.5.
The pressure is a linear function of density in the critical
‘gap’ for temperatures just above and below Tc. The critical
temperature is defined as the temperature at which this slope
is equal to zero in this density range. The value, Tc = 1.3365
was determined in Ref. [10] by this route, which is some-
what higher than the usual literature values. The figure shows
that the T = 1.3365 isotherm is flat within statistics over
the density range 0.28 and 0.34 and therefore very close
to the critical value for the system parameters, N = 4000
and rc = 2.5. Tab. 1 lists the pressure along the critical
isotherm for T = 1.3365, which is 0.1406 ± 0.0002 for
densities between 0.28 and 0.34. The chemical potential is
−4.136± 0.001 in the same density range along the critical
isotherm, as revealed in the table.

Fig. 5. As for Fig. 4 except that the total chemical potential,
µ, obtained by Widom’s method against ρ for four isotherms,
T = 1.3265, 1.3365, 1.3380 and 1.3465 (top to bottom curves,
respectively) using the full Lennard-Jones potential is shown. The
symbols are the Molecular Dynamics (MD) simulation data points
and the lines are linear regression fits, with slopes,−0.079± 0.005,
0.006± 0.005, 0.025± 0.005, and 0.094± 0.004, respectively, for
the data curves from top to bottom. The statistically zero slope again

occurs at a temperature of ca. 1.3365.

Fig. 5 shows the corresponding plot for the chemi-
cal potential, µ, determined by Widom’s particle insertion
method, [17]. The two sets of curves in Figs. 4 and 5 look
remarkably similar except that for the chemical potential the
temperature decreases from the bottom to top curve. The
chemical potential is a linear function of density for tempera-
tures just above and below Tc in the critical data ‘gap’. The
critical temperature is defined by the temperature at which this
slope is equal to zero in this density range. The calculated crit-
ical temperature for N = 4000 and rc = 2.5 is statistically
the same as for the P data. Therefore both figures and Tab. 1
are consistent with a ‘gap’ in physical state of the two co-
existing phases at Tc, rather than a critical point description.
The advantage of, in addition, plotting the chemical potential,
µ, against density is that the pressure is derived from µ so this
function (which cannot be measured directly by experiment)
is a more fundamental one. As (∂µ/∂P )T = 1/ρ then if
P (ρ) is a constant in a region of density along the critical
isotherm, so must be µ(ρ).

Fig. 6. The critical temperature as a function of the number of par-
ticles in the simulation cell, N . The sets of data are for the three
values of rc and whether the pressure, P or the chemical potential,

CP , were used to calculate Tc.

ρ P µ ρ P µ ρ P µ
0.22 0.1366 -4.152 0.28 0.1405 -4.137 0.34 0.1408 -4.136
0.23 0.1377 -4.147 0.29 0.1406 -4.136 0.35 0.1408 -4.135
0.24 0.1387 -4.144 0.30 0.1406 -4.136 0.36 0.1408 -4.135
0.25 0.1393 -4.141 0.31 0.1407 -4.136 0.37 0.1411 -4.133
0.26 0.1399 -4.139 0.32 0.1406 -4.136
0.27 0.1403 -4.138 0.33 0.1406 -4.136

Tab. 1. Density dependence of the pressure, P and chemical potential, µ, obtained by Widom’s particle insertion method for N = 4000
Lennard-Jones particles at the critical temperature, T = 1.3365 for the rc = 2.5 system. Each density state point was conducted for 4

million time steps. The standard errors in the pressure and chemical potential are ±1 in the last digit.
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Fig. 7. The liquid-vapour coexistence envelope obtained from molec-
ular simulation (see the references listed in Fig.1) compared with
that of argon scaled by the LJ parameters, σ = 0.3405 nm and
ε/kB = 119.8), [34, 35]. Both sets of data are in LJ reduced
units. The simulation data were fitted to, ρl = al + bl(Tcl − T )cl ,
where al = 0.431241, bl = 0.566753, cl = 0.614399 and Tcl =
1.291639 for the liquid side of the binodal, and ρv(x) = bvT

cv ,
where bv = 0.0251177 and cv = 7.880728 for the vapour side of
the binodal. These are the continuous lines going through the data on
the figure. For the liquid part of the binodal the intercept value was
calculated based on random close packing of spheres, ρf = 0.948
and ρRCP = 1.218, and the triple point density of argon of 1417
kg m−3 [34], which is shown as the solid symbol on the ordinate
axis at ca. 1.1. The vertical lines on the right side of the figure mark
out the regions of absence of data for the model and real systems.
The symbols, ‘l’ and ‘v’ on the figure refer to liquid and vapour,

respectively.

The results in Figs. 4 and 5 are for a specific value of
N and rc. The critical temperature was determined for each
value of rc and N by carrying out many simulations over the
relevant density range at various temperatures. The tempera-
ture at which the slope of P against ρ is zero was obtained
by linear interpolation of the slopes found for the different
temperatures. The values of these rc- and N -dependent Tc

are plotted as a function of 1/N in Fig. 6. For each value
of rc these sets of data were fitted by linear regression and
the value of Tc in the N →∞ or thermodynamic limit was
thereby determined. These are indicated by the intercepts
or N−1 = 0 value of Tc on this figure, whose values are
given in Tab. 2. Lacking any definitive extrapolation proce-
dure, the value of Tc in the rc →∞ or thermodynamic limit
was obtained by fitting these intercept data to the formula,
Tc(rc) = Tc(∞) +A/rmc for the cases m = 1, 2 and 3. This
is a generalisation of the formula used by Dunikov et al. [21].
The value of Tc(∞) for each value of m is given in the bot-
tom three rows of Tab. 2, i.e. P1, P2 and P3, respectively. The
above procedure was also carried out for the chemical poten-
tial data. The critical temperature decreases with increasing
rc, and taking the m = 2 or middle exponent value gives a
value of the Tc of 1.316±0.002 in the N →∞ and rc →∞
limits using the pressure data, and Tc = 1.316± 0.001 using
the chemical potential data. Within statistics this is almost
the same as typical values found in the literature for example,
Tc = 1.3120(7), [22, 23]. It may be concluded therefore that
the critical temperature is sensitive to the direct LJ force trun-
cation distance, even when the Morris-Song additional taper
is patched on to the LJ potential at r = rc. The range of Tc
values is however much smaller and closer to the thermody-
namic limit value of Tc for each rc used than that found by
straightforward truncation of the potential at rc in Ref. [21].

To summarize, these data and trends explain the relatively
high value of Tc found in Ref. [10]. The simulation data from
each value of rc is a bona fide physical system in its own right
nevertheless, to which all the phase behaviour associated with
liquid-vapour criticality should apply.

Also shown in Tab. 2 is the value of the LJ critical point
for various rc values taken from the work of Dunikov et
al. [21] who truncated the pair potential at rc. They found
that Tc increased with rc whereas the opposite trend is found
using the present method of potential long range treatment.
Their value of Tc for infinite rc is 1.34 (see Eq. (21) in
Ref. [21]), which is rather large compared to other litera-
ture values. These two works, combined, show that Tc can
either decrease or increase with rc depending on how the

rc Property Tc Property Tc T ′c
2.5 P 1.334(1) µ 1.333(1) 1.085(5)
3.5 P 1.324(1) µ 1.324(1) 1.213(2)
4.5 P 1.322(1) µ 1.322(1) -
∞ P1 1.306(5) µ1 1.307(4) 1.34
∞ P2 1.316(2) µ2 1.316(1) 1.34
∞ P3 1.319(1) µ3 1.319(1) 1.34

Tab. 2. The critical temperature, Tc as a function of the LJ interaction termination distance, rc, obtained from the data of this work. This
procedure patches on a tapered decay of the potential to zero for r > rc from rc to rc + 0.2. Also shown is the prediction from Ref. [21],
which is denoted by, T ′c, and is based on a truncation of the interaction at rc. The number in brackets is the statistical uncertainty in the
last digit. The extrapolated infinite rc truncation value based on data in the first three rows using, T c(rc) = Tc(∞) +A/rmc are given for
m = 1, 2 and 3 in the last three rows, i.e. P1, P2 and P3, respectively. The corresponding quantities for the chemical potential are, µ1, µ2

and µ3.
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‘missing’ interactions beyond rc are dealt with.
Fig. 7 shows the liquid-vapour coexistence line obtained

from molecular simulation (see the references listed in Fig. 1)
compared with that of argon using the LJ parameters, σ =
0.3405 nm and ε/kB = 119.8 K), [34, 35]. Both sets of data
are plotted in LJ reduced units. Argon is the small molecule
which is thought to be best represented by the LJ potential.
Least square fits to the liquid and vapour sides of the simu-
lation data separately are shown on the figure as continuous
lines with functional forms given in the figure caption. The
vertical lines on the right side of the figure mark out where
there is a gap in data for model and real systems, which are
seen to be of similar length. At low density both the simula-
tion and argon data agree well, but on approaching the critical
region the experimental data terminate at a lower value for
the critical temperature (using the above conversion factors),
which may be a consequence of the three body and higher
order terms present in the real system. A decrease in Tc by
ca. 95% on inclusion of three body forces compared to that
of the two-body LJ potential has been observed in previous
simulation studies, [36-38]. The value of Tc obtained with the
three-body terms in those simulations agrees well with the Tc
of experimental argon. This trend can also be inferred from
recent simulations of Goujon et al. [39-41], which showed
that the surface tension systematically decreases at all tem-
peratures on adding the three body potential to the two-body
potential term.

Fig. 8. Mean square force, < F 2 > as a function of number density,
ρ, for N = 4000 and rc = 4.5 using isotherms close to Tc. A
least squares fit to the data of the T = 1.320 isotherm to the form,
< F 2 >= a + bρ gives, a = 3.57 and b = 348. The direct pair
interaction termination distance, rc is denoted by ‘rc’ on this and

subsequent figures

The liquid part of coexistence in the low temperature limit
shows another noteworthy feature. Does the finite value of
ρl by extrapolating the liquid side of the binodal to T → 0

have any significance for our understanding of the liquid
state, even though it is in the metastable liquid part of the
phase diagram? For the liquid part of the binodal the intercept
value was calculated based on random close packing (RCP)
of spheres, which is shown as a symbol on the ordinate axis.
The maximum equilibrium fluid density of hard spheres is,
ρf = 0.948 and the RCP density, ρRCP = 1.218. If the
triple point density of argon, 1417 kg m−3 [34] is taken to
correspond to ρf , the following conclusion can be drawn. The
extrapolated value of both the simulation and experimental
argon data in the zero temperature limit (i.e. ρ = 1.0945 in
LJ units) coincides remarkably well with the corresponding
(estimated) RCP value of argon for the LJ system. This result
is consistent with the conclusions of Finney and Woodcock
in Ref. [43] who argued that the random close packing point
of hard spheres should be considered to be the statistical
mechanical foundation of the liquid state.

Fig. 9. The lines of equal percolation threshold distance, rp, given
on the temperature-density phase diagram. Note the lin-log plot

The variations of other properties in the critical density
range and along isotherms close to the critical temperature
are now considered. Fig. 8 shows the mean square force,
< F 2 >, on a molecule as a function of density along sev-
eral isotherms close to the critical temperature for systems
with N = 4000 and rc = 2.5. A near linear dependence is
apparent in the figure. The mean square force increases by
ca. 50% on going from ρ = 0.24 to 0.36, which is the largest
change of all the properties in this density range near Tc (see
below for the variation of other properties in this ρ range).
A least squares fit to the data of the T = 1.320 isotherm to
the form, < F 2 >= a + bρ gives, a = 3.57 and b = 348.
It is not obvious what the origin of this linear behaviour is.
It might reflect a progressive shift from a vapour/gas-like to
a liquid-like phase in a mixed phase region with increasing
density, as argued in Ref. [10]. A transition between two dif-
ferent regimes of the density-dependence of the maximum
single particle force of soft-sphere systems has been observed
(see Fig. 3 in Ref. [42]), which may be related to this trend.
The single particle or pair interaction force distribution could
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be a useful (largely unexploited) probe of the presence of
physically meaningful percolating networks of relevance to
liquid-vapour criticality. Indeed the importance of percolat-
ing force networks is already well-established in the granular
materials community.

Fig. 10. The percolation distance for T = 1.3365 and rc = 2.5.
The square symbols are the MD data for hard spheres (HS) of
Ref. [44]. For the HS calculations the effective hard-sphere diameter
was obtained from Eq. (9) in Ref. [49], and Eqs. (6), (9) and (10) of

Ref. [44] were used to produce the continuous line on the figure

The microstructure of simple fluids is usually charac-
terised in terms of the radial distribution function, g(r). This
function is however insensitive to clustering behaviour which
may be important in providing a better understanding of the
critical region. Percolation is an interparticle connectivity
transition of the state of particle clusters which can have phys-
ical consequences (e.g. conduction and rigidity transitions)
for real systems such as colloidal liquids and composites.
The determination of the percolation statistics for various pair
potential forms has already been performed by molecular sim-
ulation. In one such study, [44], the percolation distance, rp,
was calculated for hard-sphere fluids of sphere diameter, σHS ,
in the range between the so-called soft-core (rp >> σHS) to
hard-core (rp → σHS) limits, both of which are of relevance
to this work. The same procedure for determining rp was used
in the present study. The number density at which percolation
occurs for a given value of rp is here referred to as, ρp.

Fig. 9 shows the temperature dependence of ρp for a set of
rp which span the soft-core to hard-core limits. These iso-rp
percolation lines on the figure at low density curve to the left
on decreasing temperature. For smaller values of rp on the
right side of the critical region, the percolation lines curve
to the right as temperature decreases, and some even cross
into the solid region of the phase diagram as is evident on

the figure by the sharp horizontal jump of the rp = 1.025
line. In the range, rp ' 1.11− 1.125 the percolation line is
essentially independent of temperature, which therefore acts
as a boundary between two qualitatively different types of
behaviour. One may speculate that this is associated with the
shift outwards in the first peak in g(r) (in particular the r
value where the first non-zero value appear) on going from
fluid to co-existing solid.

Fig. 11. The average coordination number, Bc as a function of
density, ρ for the same systems as in Fig. 10

The Monte Carlo simulations by Bug et al. [45] on square
wells revealed that at low density (or equivalently large rp)
the effect of attraction with decreasing temperature is to cause
the clusters to become more compact, presumably for ener-
getic reasons to maximise the overlap of the soft shells. This
initially produces an increase in ρp, but at state points close
to the liquid-vapour binodal the value of ρp starts to decrease
as T decreases. The square wells also show on the right side
of the coexistence region a decrease in ρp with decrease in
temperature, [46-48]. Therefore the behaviour of the LJ sys-
tem is qualitatively different to the square wells in certain
aspects, in that the LJ ρp always decreases with decrease
in temperature on the left-side of the critical region and it
always increases on the right side. This suggests that for the
LJ fluid state, on the left side of coexistence the effect of the
attraction is to enhance the connectivity of the particles by
reorganizing to a more elongated clusters which more readily
percolate at a given particle number density. On the right side
of the critical region there is a decrease in the average number
of neighbours in a percolating cluster for excluded volume
reasons, which also may make percolation less likely, with a
percolating cluster which is more ‘tenuous’ than that found at
low densities. One cannot rule out that this shift to the right
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Fig. 12. Cluster number distribution function at percolation,
P (n), where n is the number of atoms in the cluster for the
LJ state point T = 1.3365, ρ = 0.40, N = 4000, rc = 2.5 and

rp = 1.15. The log is log10

Fig. 13. The self-diffusion coefficient, D, as a function of ρ for
several temperatures close to Tc, which are given on the figure

Fig. 14. The top curve is the radial distribution function, g(r)
for T = 1.3365, N = 4000, rc = 2.5 and ρ = 0.220. The
lower four curves are ∆g(ρ, r) = g(ρ, r)− g(ρ = 0.220, r) to
highlight how g(r) changes with density along the flat part of

the critical isotherm

Fig. 15. Histogram of the nearest neighbour distance, rn for
ρ = 0.310 in the flat part of the critical isotherm. The other

parameters are: T = 1.3365, N = 4000 and rc = 2.5

of ρ(rp) at high densities in the liquid region for the states
bordering on the fluid-solid boundary contains an aspect of
‘pre-transitional anticipation’ of the impending solid phase in
the inherent structures.

Fig. 10 shows the percolation distance along the critical
isotherm, T = 1.3365 and rc = 2.5. The square symbols
are the MD data for hard spheres (HS) taken from Ref. [44].
For the HS calculations the effective hard-sphere diameter
was obtained from Eq. (9) in Ref. [49], and Eqs. (6), (9) and
(10) of Ref. [44] were used to produce the continuous line

on Fig. 10. It is evident that the LJ data agree with the MD
curves at high and low density, but at intermediate densities
the LJ percolation distance falls below that of the HS case as
previously commented on in relation to Fig. 9.

Fig. 11 shows the average coordination number per parti-
cle, Bc, (or average number of neighbours within rp about an
arbitrary particle) as a function of the density, ρ, for the same
state points as in Fig. 10. This quantity decreases from 2.8
to 1.6 from ρ→ 0 to the dense fluid limit, respectively. The
same quantitative behaviour is found for hard-spheres [44].
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Fig. 16. As for Fig. 15 except the probability distribution of the
absolute or net force on a particle, F is shown. Note the log-lin

scale

Fig. 17. As for Fig. 15 except that the probability distribution of
the potential energy of a particle, u, of the critical isotherm is

shown

Fig. 12 presents a representative cluster distribution func-
tion at percolation, P (n), where n is the number of atoms
in the cluster. At percolation P (n) ∼ n−τ , [50, 51] and
the exponent determined by least squares fitting is τ =
2.200± 0.006 which is in excellent agreement with the 3D
lattice value of 2.2 [50, 51].

Fig. 13 shows the density dependent self-diffusion coeffi-
cient,D, obtained by linear regression of the mean square dis-
placements of molecules for near critical temperature states at
densities in the critical region. As with the mean square force,
it is nearly linear but this quantity decreases with increasing
density. Fig. 14 shows the radial distribution function, g(r),
for T = 1.3365 and ρ = 0.220 at the top of the figure. The
difference between this and g(r) at higher densities in the
critical region (the lower set of curves) is also shown in the
figure. It can be seen that with increasing density there is an
increase in the average number of neighbours at very short
range but a decrease at longer range.

Figures 15-17 present probability distribution functions of
the nearest neighbour separation, rn, the total absolute force
on a molecule, F and the potential energy of a molecule, u,
respectively. They are quite similar in shape, except that the
force distribution function shows a slowly decaying tail at the
high force end. A more complete description of the critical
region should include the average effects of the fluctuations
in certain quantities.

IV. CONCLUSIONS

This work continues a study started in Ref. [10] in pro-
viding an analysis of various properties of the Lennard-Jones
fluid in the liquid-vapour critical region. It has been shown
that the origin of the relatively high critical point temper-
ature determined previously compared to previous studies
is attributable to the value of the maximum range used to

calculate the pair interactions directly with the original LJ
potential. The range of the ‘cut-off’ distance on Tc is sig-
nificant, and even for rc = 4.5 reasonable convergence to
the infinite rc limit is still not achieved. Of relevance to this
conclusion are Molecular Dynamics results, [52] which show
that only for truncation distances in excess of 5.5σ do the
thermodynamic properties converge to the value obtained by
an Ewald method route (which formally includes the inter-
actions from all molecules in the periodic system, but has
system size limitations in practice). It has also been found
that the solid-liquid coexistence properties for truncated, and
truncated and shifted potentials vary systematically and only
with a truncation distance of 6.5σ is consistency obtained
between the different treatments, [53].

A more detailed analysis of the percolation properties has
been made. Whether the critical point or ‘flat top’ descriptions
of criticality is correct is not going to change the fact that the
density dependence of the pressure along the critical isotherm
is extremely flat, [15]. In fact, for most practical applications
it can be taken to be flat to a very good approximation. The
precise shape of this region will however have major implica-
tions for what the phase diagram in the supercritical region
is, and whether or not it is divided into a gas-like, mesophase,
and liquid-like domains. If the flat-top description is correct
it would also change our understanding of what is meant by
a ‘liquid’, [43]. To date, neither simulation nor experiment
has conclusively demonstrated which picture is correct. One
feature of small molecule phase diagrams found in many text-
books is the appearance of a continuous path between liquid
and vapour phases via the supercritical region without any
apparent phase boundaries separating these three phases. This
alone would suggest a reconsideration of the widely accepted
theory of a criticality in fluid phase equilibria is timely. The
critical point also does not satisfy Gibbs’ phase rule as it is
not the intersection of two two-phase coexistence lines, as is
the case for the triple point.
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