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Poznan University of Technology
Department of Computing, Division of Signal Processing and Electronic Systems

Piotrowo 3, 60-965 Poznań, Poland
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Abstract: In this paper a video processing procedure for automatic detection of pedestrians is presented. It is planned
to use it as a part of the automotive night vision system. Generally, such systems are either passive (i.e. those based on
thermal vision) or active (i.e. equipped with illuminators and near infrared cameras). Passive systems provide a large range of
detection, while their active counterparts, operating in a somehow smaller range, offer more readable images for car drivers.
However, all images produced with both kinds of these systems are quite specific and special image processing procedures
are needed for them. For this purpose the authors used modified and adapted algorithms, such as dual-threshold locally
adaptive classification, connected component labeling, histogram of oriented gradients, and the support vector machine with
a radial basic function kernel or with a linear kernel. Tests performed on the real night vision recordings show very high
efficiency of the proposed solution with accuracy equal to 99.2% for the linear kernel and even to 99.36% for the radial basic
function kernel.
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I. INTRODUCTION

Thanks to new achievements in the technological sciences
it is possible to offer tools that can aid transportation safety.
In the automotive-related areas we can find such mechanisms
as roads planning, roads security, assisting of drivers and
their capabilities, protection of drivers and passengers, pro-
tection of pedestrians, and many others [1]. The growth of
motorization and increased traffic volume help to develop
our civilization, but at the same time increase the risk of
accidents. According to [2] 38% of fatal accidents in the Eu-
ropean Union (EU) occur in darkness, despite the fact that in
general the traffic at night is several times lighter than during
the day. About 20% of traffic accident victims are pedestri-
ans [3], while more than half of pedestrian deaths take place
at night (51%) [3]. Pedestrian fatalities that occur at night
mainly result from such factors as poor visibility, drunken
pedestrians, and drunken drivers.

In view of the above problems, many organizations set
up preventive measures. With the efforts undertaken by the
EU (e.g. the “Road Safety Program” [1]), the total number of
fatalities in car accidents is falling rapidly. It changed from
54,000 in 2001 to 31,000 in 2010 [4]. If we count accidents
related to pedestrians, we get 9,100 in 2001 and 5,500 in
2010. This means a global downward trend in the average
pedestrian fatalities across the EU, but we also notice some
exceptions [3]. In some countries, especially those of rapid
economic growth, e.g. in Poland and Romania, this trend is
somehow weaker, i.e. in Poland there were 1,866 pedestrian
fatalities in 2001 vs. 1,236 in 2010 [3].

Automotive companies offer more and more solutions
that increase safety of the night traffic, including adaptive
(intelligent) front lights, detection of the driver’s weariness or
intoxication, warning of lane departure, recognition of traffic
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signs [5], information of a vehicle blind spot, automatic brak-
ing (typically working under limited speed thus dedicated to
the city limits and traffic jams).

Despite the importance explained above, up to now only
few manufacturers have been offering advanced systems for
night vision although they can substantially improve the
driver perception, offer more time to take a decision, and
protect against accidents with pedestrians, who are practi-
cally defenseless in contact with vehicles.

Herein we present the video processing algorithms which
realize a pedestrian detection facility and are dedicated to the
automotive night vision systems [6]. The video processing
is divided into three main steps: preprocessing, object detec-
tion, and object classification. Proper and reliable detection
of pedestrians depends not only on a selection of procedures,
but also on their fine tuning. A crucial part of the tuning is
adaptation of procedures to quite specific night vision data.

The paper is organized as follows: after an introduction
we compare basic night vision systems that are typically used
in the modern automotive systems. Then we describe in detail
the video processing algorithms that have been used in our
solution. Finally, we present results of experiments on the
night vision video databases and formulate conclusions.

II. NIGHT VISION SYSTEMS

Taking image acqusition methods into account, the auto-
motive night vision (thermo-vision) systems can be classified
twofold: as passive or active systems. The passive systems
capture infrared (IR) radiation which is naturally emitted by
objects, while the active systems are equiped with infrared
illuminators and capture the light reflected from the objects.
The videos obtained by these two types of systems differ con-
siderably and thus the video processing algorithms should be
optimized separately for each of these two types of systems.

A. Passive systems
In passive systems the thermal imaging camera captures

infrared radiation (heat) emitted by objects. Each object with
a temperature higher than 0 K emits radiation, but in practice
only the objects with temperature other than the surroundings
become distinctive. The passive systems detect the electro-
magnetic radiation with wavelengths in the range of 3-30 µm
(far infrared or FIR for short), but the cameras that are used
for people detection most commonly use a narrower range,
i.e. 8-14 µm [7]. The human body with the temperature of
about 300 K has in this band the highest energy emission [8].
As a result, the internally heated objects such as pedestrians
and cars in motion (with engines, radiators, heated reflectors)
are clearly visible.

A high contrast between living beings and the surround-
ings is one of the major advantages of passive systems.
A range of detection distances is much larger than in ac-
tive systems, and for high-quality cameras it can even reach

300 m. Thermal imaging cameras are also not blinded by
the lights of other vehicles. This feature is very important,
because it does not distract a driver.

The main disadvantage of the passive thermo-vision
comes from the physical basis of this type of imaging: the
measured emission of an object strongly depends on the
source material and the covering of the object. It makes
the calibration of the system difficult and strongly context-
dependent. Fortunately, the absolute calibration of the camera
in the automotive night-vision applications is not as impor-
tant as, for example, for the typical thermal imaging in the
construction industry.

Among other disadvantages of passive thermal cameras
are lower resolution and higher costs than for the cameras
used in the active systems. Because of a specific way of im-
age capture, they are characterized by weak representation
of the textures and by low signal dynamics [8]. Addition-
ally, the infrared spectrum is more difficult to interpret for
a driver, e.g. tires are white (hot), and the rest of the car is
black (cold). Other, typically high-contrast objects like hori-
zontal lane markings, cool headlamps (LED or rear lights) are
not visible in the passive thermal images. Another important
disadvantage of passive thermal systems is their sensitivity to
changes of thermal contrast: with season, weather, humidity,
etc. Sometimes, especially in warm nights, this may lead to
even practically zero contrast.

B. Active systems
Active systems use vision feedback of infrared light close

to the visible range (near infrared or NIR for short), emitted
by infrared illuminators and captured by cameras. In this case,
the typical wavelength range is 0.8-1.1 µm [8].

The main advantage of the active systems is high reso-
lution. The image is easy to interpret for the driver because
of the proximity of NIR to the visible light. We can, for in-
stance, see the lanes and the headlights of oncoming vehicles.
A relatively low cost of the cameras and their small size
make them attractive and widely available. The cameras of
this type can also be used in other systems and successfully
work in daylight conditions (e.g. the CCTV cameras are often
equipped with the mechanically switched IR filters used as
a day/night switch). The NIR cameras also have a greater
development potential than their passive counterparts, mainly
due to rapid technological progress in the area of automatic
video processing.

The active systems have shorter detection range than the
passive ones and reach about 150 m. This distance strongly
depends on the power of illuminators. However, this disad-
vantage is typically compensated by a higher resolution of
image sensors. The NIR detectors can also be dazzled by
the headlights (or illuminators) of oncoming vehicles, and
operate significantly worse than the FIR cameras in the fog.

Concluding, both active and passive systems used in the
automotive applications, like e.g. pedestrian detection, reach
a typical range of about 90-100 m [7]. Active systems are
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cheaper and have better resolution than the passive ones, but
for the pedestrian detection they need more complicated al-
gorithms.

III. VIDEO PROCESSING ALGORITHMS

Automatic pedestrian detection is a relatively new area of
digital video processing but, as it is very important, it grows
rapidly. Both passive [9] and active [10-13] systems are used
for night vision solutions. Most of them use trainable algo-
rithms, like artificial neural networks (ANNs) [13], support
vector machines (SVMs) [9, 11], etc.

A general video processing procedure for the pedestrian
detection is presented in Fig. 1. The first stage is the image
acquisition. The respective signal processing procedures are
typically built in hardware, i.e. in the camera, and do not
require additional resources.

Fig. 1. Video processing for detection of pedestrians

After the image acquisition the image preprocessing stage
is performed. This stage reduces noise of the image sensor
and removes the interlaced scanning effect [10].

The next step shown in Fig. 1 prepares the so called region
of interest (ROI), which is a selected part of the image for
further processing. The properly selected ROI should consist
of all objects which even potentially are in scope of the in-
terest (the pedestrian candidates), and cannot miss important
regions. In the presented case, the well generated ROI covers
pedestrians to be detected, but at the same time significantly
reduces the size of the analyzed image part, i.e. the amount
of data which is transferred to the next stages. By this means
we can substantially speed-up the data processing.

The first step of the ROI generation is image segmentation
(Fig. 1). As we work with 2D images, we decided to use the
threshold technique [13]. The algorithm translates the input

gray scale image to the binary image, while white objects are
the potential candidates to be detected as pedestrians and the
background is black (cf. Fig. 3).

In order to produce uniform areas with clear edges, the
actual thresholding algorithm must smoothly pass through
neighboring pixels with values close to the threshold. For this
purpose the hysteresis threshold technique with TL (i, j) –
lower threshold and TH (i, j) – upper threshold, is used [9].

The segmentation process is defined as follows

S (i, j) =


0, if I (i, j) < TL (i, j) or I (i, j) ∈
∈
(
TL (i, j) , TH (i, j)

)
∩ S (i− 1, j) = 0

1, if I (i, j) > TH (i, j) or I (i, j) ∈
∈
(
TL (i, j) , TH (i, j)

)
∩ S (i− 1, j) = 1

(1)
where S (i, j) is the segmented binary image after

thresholding. For the pixel values greater than TH (i, j)
or lower than TL (i, j) values 1 (white) and 0 (black) are
assigned, respectively. If the pixel value is in the range
(TL (i, j) , TH (i, j)), the output value depends on the pre-
vious sample S (i− 1,j).

The decision thresholds TL (i, j) and TH (i, j)should be
calculated for individual pixels with some knowledge of the
neighborhood. Basing on our experience we decided to use
a 1D horizontal neighborhood. Indeed, in the passive systems
the intensity of a pedestrian object depends on the clothes (ma-
terial thickness and texture). In consequence, the object is not
homogeneous in the vertical axis. For this reason, a horizontal
neighborhood is enough (cf. Fig. 2). Denoting the scanning
width as w the analyzed neighborhood equals 2w + 1.

Fig. 2. Pedestrian and horizontal scanning line

Both thresholds should be defined locally and adaptively
under various lighting conditions and resulting contrasts in
the image. This technique guarantees reliable extraction of
pedestrians. The lower threshold value TL (i, j) should be the
mean of the neighborhood pixels

TL (i, j) =
1

2w + 1

k=i+w∑
k=i−w

I (k, j) . (2a)
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A proper value of the upper threshold TH (i, j) should be de-
fined as the lower threshold corrected by a value proportional
to the standard deviation δ(i, j) of the neighborhood pixels

TH (i, j) = TL (i, j) + λ · δ (i, j) . (2b)

The standard deviation is calculated as follows:

δ (i, j) =

√√√√ 1

2w+1

k=i+w∑
k=i−w

(I (k, j)− µ)
2 (2c)

where: I (k, j) is the gray-level input image (k, j)-th pixel
value, w is the scanning width and µ is the mean value of the
horizontal neighborhood. To control the impact of the stan-
dard deviation on the upper threshold TH (i, j) the weight λ
is added.

The segmented image obtained with the above procedure
is shown in the middle of Fig. 3. This result is far from being
satisfactory because of many unwanted artifacts. In order to
get rid of them a special offset β is introduced. The respective
formula for the lower threshold changes to

TL (i, j) =
1

2w + 1

k=i+w∑
k=i−w

I (k, j) + β (3)

The offset β should generally be a function of the standard
deviation δ (i, j)

β = f
(
δ (i, j)

)
(4)

but in reality it is chosen experimentally as a constant value
(Section IV). The final segmentation results are shown on the
right hand side of Fig. 3.

Fig. 3. Thresholding process: (from the left) original image, adaptive
thresholding, the proposed adaptive thresholding with offset

After the image is segmented (cf. upper part of Fig. 5),
the morphological opening removes small artifacts (bottom
left of Fig. 5).

The last step in the ROI generation process is selection of
candidates based on statistical features of the candidate ob-
jects. At the beginning of the analysis the algorithm looks for
connected pixels which constitute objects, then these objects
are separated and labeled. For this procedure the connected
component labeling (CCL) [14] was adopted. Our implemen-
tation of the CCL algorithm is a one-pass linear-time version

with a contour tracing technique [15] which is fast and ac-
curate. This algorithm analyses the image line-by-line from
the left to the right and from the top to the bottom starting
with the upper-left image corner and ending in the lower-right
corner. The procedure labels adjacent white pixels (those
equal to 1) giving them the same label according to their
8-connectivity, if at least one of adjacent pixels has the same
label. This main procedure is supplemented by two additional
exceptions. The first one occurs if the scanning line reaches
a new object, i.e. an external contour (see point A and gray
area in the left part of Fig. 4). From this point the algorithm
leaves the scanning line, traces the contour of the object
and labels boundary pixels until it reaches the starting point
A again. The second exception occurs when the scanning line
finds an internal contour (see point B and the white area in the
right part of Fig. 4). The contour is traced and the boundary
pixels are labeled with the same label. After any of the above
exceptions, the standard line scanning procedure is continued
[15].

Fig. 4. Two special tracing cases in the connected component label-
ing: external contour (left), internal contour (right)

After the labeling is done, the objects are processed to calcu-
late their characteristic features: width, height, area, and posi-
tion. These features are inputs to the elimination algorithm
which selects the most probable candidates for pedestrians
and by this means constitutes the final ROI. According to
[10], the object aspect ratio (height to width) is distributed
for pedestrians in the range from 1:1.3 to 1:4. Thus only such
objects are accepted (cf. the bottom right part of Fig. 5).

The next step after the ROI generation is the object classi-
fication (cf. Fig. 1). This stage is crucial and strongly affects
quality of the pedestrian recognition [16]. The first step is
the feature extraction which makes it possible to reduce the
amount of data that describes the object. For the feature ex-
traction we can use a histogram of oriented gradients (HOG)
[13], shape context, and 1D/2D Haar transform. In the pre-
sented system the HOG was used. This method calculates
gradients and forms histograms of gradients orientation. To
improve reliability of the HOG the local normalization is
used. Finally the ROI is represented by a locally normalized
feature vector constructed from the histograms of orientation.



Video Processing Algorithms for Detection of Pedestrians 145

Fig. 5. Stages of processing: input picture (upper left), segmenta-
tion (upper right), morfological operations (bottom left), candidates

selection (bottom right)

The first step of HOG algorithm consists in calculation
of gradients Gi and Gj in the horizontal and vertical axes,
respectively, with i and j treated for a moment as continuous
variables

∇I (i, j) =

(
Gi

Gj

)
=


∂I

∂i

∂I

∂j

 , (5)

where

∂I

∂i
≈ I (i+∆i, j)− I (i−∆i, j)

2∆i
,

∂I

∂j
≈ I (i, j + ∆j)− I (i, j −∆j)

2∆j
,

∆i,∆j = 1.

The above formula is equivalent with a convolution operation
on the image with the filter kernels 1

2 [−1 0 1] and 1
2 [−1 0 1]

T

(but the factor 1
2 can in fact be omitted). It is possible to use

larger kernels, but for shape description it is not efficient
(the proof is in [13]). After the gradients are computed, the
magnitude and orientation of gradients can be obtained as

|∇I| =
√
G2

i +G2
j (6)

θ = arctan

(
Gi

Gj

)
. (7)

The next step groups the pixels into cells (Fig. 6, left hand
side), which usually have a square shape. In these cells, the
orientation histograms (Fig. 6, the right hand side) are created
with the use of orientation and magnitude. The histograms
are divided into nine bins in the range from 0 to 360 degrees

or 0 to 180 degrees. The authors of [13] claim that for nine
bins the algorithm works best.

After the histograms are calculated, the four adjacent cells
are grouped and create a block (Fig. 6, the left hand side).
In this block a non-normalized vector v is created, which
contains all histograms in a given block (here in four cells).
Then, the vector v is normalized to get vector vn with a for-
mula

vn =
v√

‖v‖22 + e2
, (8)

where e is a small constant. Finally, after normalization all
these vectors in all blocks are combined into a single feature
vector vf

vf =
[
vn[1 1], vn[1 2], . . . , vn[1 (m−1)], vn[1 m], . . . ,

vn[2 1], vn[2 2], . . . ,vn[2 (m−1)], vn[2 m], . . .

. . .

vn[(l−1)1], vn[(l−1) 2], . . . ,vn[(l−1) (m−1)], vn[(l−1) m], . . . ,

. . . ,vn[l 1], vn[l 2], . . . , vn[l (m−1)], vn[l m]

]
(9)

say vn[i j] for all blocks [i j], where 1 ≤ i ≤ l, 1 ≤ j ≤ m
(l,m are block indices in the analyzed image in the vertical
and horizontal directions, respectively).

The last stage that finally validates the object is a classi-
fier. The most common classifiers are: support vector machine
(SVM) as an example of the supervised learning method, ar-
tificial neural networks, self-organizing maps (SOMs), and
matrices of neurons [12]. A very helpful algorithm during
classification is the boosting algorithm. By intensification of
the most important samples it can produce one better classifier
from several weaker classifiers. It also has good generaliza-
tion properties. The best known implementation is AdaBoost
[10].

For our application the kernel type SVM classifier has
been selected. It is operating well with the antecedent stage,
i.e. the HOG algorithm, and offers very good quality of detec-
tion. It is also very effective and commonly used in similar
applications. The SVM is a supervised learning classification
method. The goal of the SVM classifier is to separate ob-
jects x ∈ RD being vectors in a multidimensional linear (in
our case real valued) decision space RD (D being the space
dimension) into two classes labeled as y ∈ {−1, 1}.

We assume that these two classes are linearly separable
in a new space of higher dimensionality than D. This space is
referred to as the feature space. It is composed of new vectors
Φ (x), i.e., vectors x mapped with a mapping function Φ (x).
The separation is done by the optimal hyperplane H in the
feature space, obtained with the SVM learning process. For
learning, L training samples xi together with the correspond-
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Fig. 6. Histograms of oriented gradients (HOG): image with highlighted block of four cells (left) and histograms of orientation for each cell
(right)

ing labels yi ∈ {−1, 1}, i = 1, . . . , L, are used. The resulting
hyperplane is described with the following equation

H = {Φ (x) : g (x) = 0} with g (x) = aTΦ (x) + b,
(10a)

where a is a vector of directional coefficients of the hyper-
plane and b is the appropriate offset value. The hyperplane
parameters a and b are selected to maximize the shortest de-
cision margin, i.e. the distance to the nearest vectors Φ (xi)
of both classes, referred to as the support vectors [17]. The
optimal parameters a and b are normalized in such a way that
the support vectors Φ (xi) fulfill the following condition

aTΦ (xi)+b = yi or equivalently yi
(
aTΦ (xi) + b

)
= 1.

(10b)
The optimal hyperplane is obtained with the training pro-

cedure using L training pairs {xi, yi}, i = 1, . . . , L. In order
to find the optimal hyperplane, the so-called primary La-
grange function

LP =
1

2
‖a‖2 −

L∑
i=1

αi

[
yi
(
aTΦ (xi) + b

)
− 1
]

(11a)

should be minimized or equivalently the so-called dual La-
grange function

LD =

L∑
i=1

αi −
1

2

L∑
i,j=1

αiαjyiyjK(xi,xj) (11b)

should be maximized with constraints

0 ≤ αi ≤ C,
L∑

i=1

αiyi = 0 (12)

where: αi are the Lagrange multipliers and K
(
xi,xj

)
is the

so-called kernel function which is related to Φ(x) by im-
posing: K

(
xi,xj

)
=Φ (xi)

T
Φ (xj), and C is the penalty

parameter which determines importance of the misclassifica-
tion [18].

We have considered the following most popular kernel
functions:

1. linear: in the simplest case Φ (x) =x, then

K(xi,xj) = Φ (xi)
T
Φ (xj) =xT

i xj (13)

2. polynomial:

K(xi,xj) =
(
γ xT

i xj+r
)d
, γ>0 (14)

3. radial basis function (RBF):

K(xi,xj) = exp
(
−γ ‖xi − xj‖2

)
, γ>0 (15)

4. sigmoid:

K(xi,xj) = tanh (γ xT
i xj+r) , (16)

where: xi and xj are the training samples and γ, r, d are
appropriate parameters [18].

We proved experimentally that the best kernel functions
for our purpose are: the linear kernel (inner product) and RBF.
The results are presented and discussed in Section IV.

The next step is to define a set S which contains indices
of the support vectors. Then, parameters a and b have to
be determined. Vector a can be calculated taking condition
(∂LP)/(∂a) = 0 into account while offset b could directly
be computed from expression (10b). However, for accuracy it
is better to compute an average over all support vectors. Thus

a =

L∑
i=1

αiyiΦ (xi) (17a)

b =
1

NS

∑
i∈S

(
yi− aTΦ (xi)

)
, (17b)
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where NS is the number of the support vectors. Finally, the
trained classifier can analyze new samples x by evaluating
for them

y = sgn
(
aTΦ (x) + b

)
. (18)

For the RFB kernel the two parameters: γ (see (15))
and C (see (12)) should be tuned in order to find the op-
timal solution. The authors used a procedure described in
[15], known as cross-validation. In this procedure the training
set is divided into v subsets, then the SVM is trained for v−1
subsets and tested, each time with different parameters. Next,
the search process can be repeated in a smaller set of the most
efficient parameters. This method is very effective, as it is
proven in the next section.

Some papers [10, 18] propose additional object tracking,
e.g. with the use of the Kalman filter. It can improve the object
detection quality and reduce false alarms, but it is a very com-
putational intensive algorithm which is actually not necessary
in our application.

To summarize, in the presented system the following com-
putational techniques have been applied:

1. modified adaptive dual-threshold for the image segmen-
tation,

2. connected component labeling(CCL) for selection of
candidates,

3. histogram of oriented gradients (HOG) for feature ex-
traction,

4. support vector machine (SVM) for training of the clas-
sifier.

IV. RESULTS OF EXPERIMENTS

In order to test the above presented video processing al-
gorithm for the night vision system, the authors used two
night vision video databases, i.e. the NTPD – “Night-time
Pedestrian Dataset” [11] and the “USArmy Tetravision” [19].

The NTPD contains a set of images of pedestrians
recorded by the active night vision system with the reso-
lution of 64×128 (Fig. 7) and is divided into two sub-bases:
for training and testing.

Fig. 7. Pedestrian samples

The “USArmy Tetravision” database has been prepared
with the use of the passive system and it is in fact a movie
recorded simultaneously with two stereo pairs of thermal

cameras and NIR cameras (four video streams in total). Un-
fortunately, this database consists of several isolated pedes-
trians only. Using this database it is not possible to prepare
data appropriate for both training and testing of the prepared
algorithms. Thus this database was used for testing only.

A. Detector training with the NTPD
The above introduced NTPD was used to tune and test the

proposed video processing algorithms for the pedestrian de-
tection. All images used for training and testing were prepared
to the feature extraction by scaling to the size of 64×128
pixels. For this size, the following values of HOG feature ex-
tractor were used: 15 blocks horizontally, 7 blocks vertically
with four cells in each block. Those give 15 · 7 · 9 · 4 = 3780
features for each image. These features were isolated from
the NTPD. After that appropriate matrices for training and
testing in the classification stage were prepared. The entire
set of the training data is presented in Tab. 1.

As a set of negative samples randomly selected parts of
the background (with no visible pedestrians) were used (see
Fig. 8).

Fig. 8. Examples of negative samples

The proposed classifier uses the radial basis function
(RBF) kernel and alternatively the linear classifier. The opti-
mal classifier was trained using the “cross-search” and “grid-
search” methods using the NTPD database.

Tab. 1. Training and test samples in NTPD database

No. of training
samples

No. of test samples

positive samples 1998 2370
negative samples 8730 9000

In order to describe the effects of the classification, the
following measures were used:

DR =
correctly classified positive samples

total number of the positive samples
(19)

FAR =
falsely classified negative samples

total number of the negative samples
(20)

CA =

correctly classified positive samples+
+ falsely classified negative samples

total number of all samples
. (21)

A special software for the tuning and testing of the pro-
posed algorithm was prepared. It was written in the Microsoft
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Visual Studio 2012 environment with the use of C# language
as a part of .NET framework. For the video processing the
EmguCV v. 2.4.2 library was used. This is a multi-platform
library that is compatible with many programming languages
and offers all functions from the commonly used OpenCV
library [20].

Fig. 9. Correctly detected pedestrians

The best results obtained after the optimization of the
classifier, compared to the source papers, are presented in
Tab. 2. As it can be seen, the classifier effectiveness is very
high. The classifier with the RBF kernel is slightly better than
that with the linear classifier. For comparison, the authors of
the source database [11] reached DR = 94.39% only, in the
same resolution and the linear SVM kernel. In another paper
[13] ever worse DR = 82.9%, FAR = 6.5% are reported but
they were obtained for a smaller resolution of 24×64 pixels.
The algorithm presented in [9] is quite fast and works with
35 fps (frames per second). This confirms high efficiency of
the linear solution for that kernel but the detection quality is
worse.

Tab. 2. Classification results on a testing database for linear
and RBF kernels

System
(kernel)

Output
parameters

(γ; C)

DR
[%]

FAR
[%]

CA
[%]

RBF 0.03375; 0.1 96.96 0.01 99.36

linear not relevant 96.67 0.13 99.2

[9] not relevant 82.90 6.50 88.2

[11] not relevant 94.39 N.N. N.N

where γ and C are parameters of the RBF kernel (see (12), (15)).

Fig. 10. False accepted objects

B. Pedestrian detecion with the USArmy Tetravision
database

Global testing of the whole pedestrian detection algorithm
(especially the ROI generation) with the use of the NTPD
database only is not possible, because this database does
not have separate testing data, i.e. the full resolution video
frames assigned to training and testing. The second men-
tioned database, i.e. the “USArmy Tetravision”, has the full
resolution frames (320×240 pixels) although it is recorded
in the passive system, as opposed ot the previous one. De-
spite basic differences in the characteristics of the image the
authors performed trial tests. The classifier was trained with
the NTPD database but tested with the “USArmyTetravision”
movies. The DR efficiency was worse and the FAR classifier
gave increased values, but for the majority of cases it was
still working properly. This comes from the fact that the used
HOG feature extractor is quite universal. Comparison to very
low FAR in the first experiment (equal to 0.01) brings new
conclusions: negative samples in the NTPD database were
selected randomly and are quite far in the classification space
from the positive ones. If the negative samples are more simi-
lar to the real pedestrians, e.g. telephone poles, free standing
mailboxes, traffic signs, etc., the results in both cases may be
closer.

Fig. 11. Proportions of the computation time of particular image
processing operations
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After trial tests, the best (experimentally obtained) thresh-
old values for the segmentation process have been set to:
β = 16, w = 20, and λ = 0.3 (see (1),(2)). Figs. 9 and 10
present correctly detected pedestrians and cases with false
classifications, respectively. The source images were taken
from the “USArmy Tetravision” database, while the detection
was performed by the proposed algorithm.

The computations were performed with the following
hardware: CPU Intel Core 2 Duo 2.4 GHz, GPU GeForce
9600M GT, 6 GB of RAM (with no GPGPU usage).The total
time of processing of one frame by the proposed algorithm
implemented in C# environment (without optimization of
data processing)is about 500 ms and this gives 2 fps in real
time only. The biggest part of this time was consumed by the
image segmentation process (see Fig. 11).

It should be mentioned that the algorithms were opti-
mized to be as exact as possible, without any optimization of
the processing speed. The processing speed optimization is
planned for the final implementation on the DSP platform.

V. CONCLUSIONS

This paper presents an advanced video processing algo-
rithm for automatic detection of pedestrians. It is thought
to be a part of an automotive night vision system. Thanks
to carefully selected, modified, and tuned advanced video
and data processing techniques the proposed solution reaches
a very good quality of detection. It was tested and proved
with real night vision recordings. In the future it is planned to
prepare our own night vision database with pedestrians and
improve the speed of processing with the use of the GPGPU
technique [20] and/or the digital signal processors [21].
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