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Abstract: Time-reversible symplectic methods, which are precisely compatible with Liouville’s phase-volume-conservation
theorem, are often recommended for computational simulations of Hamiltonian mechanics. Lack of energy drift is an
apparent advantage of such methods. But all numerical methods are susceptible to Lyapunov instability, which severely
limits the maximum time for which chaotic solutions can be “accurate”. The “advantages” of higher-order methods are
lost rapidly for typical chaotic Hamiltonians. We illustrate these difficulties for a useful reproducible test case, the two-
dimensional one-particle cell model with specially smooth forces. This Hamiltonian problem is chaotic and occurs on
a three-dimensional constant-energy shell, the minimum dimension for chaos. We benchmark the problem with quadruple-
precision trajectories using the fourth-order Candy-Rozmus, fifth-order Runge-Kutta, and eighth-order Schlier-Seiter-Teloy
integrators. We compare the last, most-accurate particle trajectories to those from six double-precision algorithms, four
symplectic and two Runge-Kutta.
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I. INTRODUCTION

The ongoing computational revolution in physics relies
on accurate solutions of fundamental equations, Newton’s
(or Lagrange’s or Hamilton’s) Laws of Motion, in the case of
classical mechanics. The determinism of these ordinary dif-
ferential equations is illusory in many cases, as typically the
equations are “Lyapunov unstable”. Such instabilities grow
exponentially fast, ' eλt, where λ is the largest Lyapunov
exponent of the solution.

Particle mechanics, our own research interest, pro-
vides many examples ranging from one-particle chaos to
biomolecule simulations using models with many thousands
of atomic degrees of freedom [1]. We consider here the sim-
plest particle model for chaos, a one-body “cell model” with
the periodic four-body cell boundaries shown in Fig. 1. The re-
sulting motion, approximated with the simplest possible

“leapfrog” integrator, described below, is generally Lyapunov
unstable. [2, 3] We simplify the initial conditions by starting
the particle trajectory in the field-free cell interior. We bench-
mark this problem with three quadruple-precision integra-
tors using timesteps chosen to maximize accuracy. We com-
pare the resulting benchmark trajectory to six other trajec-
tories from self-starting double-precision algorithms typical
of molecular dynamics simulations. Five of these algorithms
are “symplectic”, including the justifiably-popular Leapfrog
Algorithm. The two others are Runge-Kutta algorithms.

In the following Sections we describe the specially-
smooth differential equations governing the motion of the
wandering cell-model particle, and then quantify the algorith-
mic accuracy with which Leapfrog and the six more sophisti-
cated integrators “solve” this same problem. Our conclusions
make up the final Summary section.
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II. THE CELL MODEL TRAJECTORY IN TWO
SPACE DIMENSIONS

Cell models played a role in models of the liquid state
long before the development of molecular dynamics [4].
The geometry treated here is shown at the left in Fig. 1.
A mass point, the “wanderer” particle, moves in a periodic
square cell with a motionless fixed particle at each of the four
vertices. Using periodic boundary conditions the equations of
motion are:

ẋ = (px/m); ẏ = (py/m); ṗx = Fx; ṗy = Fy.

The force on the wanderer is the gradient of the potential
function Φ, a sum over the contributions of the four corner
scatterers located at {ri}:

Φ =

4∑
1

[1− (r − ri)2]4 for |r − ri| < 1.

After advancing the coordinates one timestep dt it is conve-
nient to localize the motion to the cell centered on the origin.
Whenever the wanderer moves “out”, we replace it “in” the
basic 2× 2 unit cell as follows:

x < −1→ x = x+ 2; x > +1→ x = x− 2 ;

y < −1→ y = y + 2; y > +1→ y = y − 2.

Fig. 1. The periodic 2× 2 unit cell is shown at the left. The black
regions, with potential energy greater than one half, are inacessible
to the wanderer particle. Initially the wanderer is at the origin with
velocity (0.6, 0.8). Outside the central diamond-shaped region the
fixed scatterers at the cell corners exert repulsive forces on the
wanderer particle. A visually-accurate trajectory, calculated with a
quadruple-precision fifth-order Runge-Kutta integrator, using five
million timesteps and dt = 0.00001, is shown at the right with filled
circles marking the configurations at times 10, 20, 30, and 40. The

open circle corresponds to the maximum time t = 50

We choose initial conditions

{x, y, px, py} = {0.0, 0.0, 0.6, 0.8}

and show an accurate benchmark solution of the motion equa-
tions for a time of 50 at the righthandside of Fig. 1. At times
of 10, 20, 30, 40, and 50 the benchmark values of (x, y) are:

10: +0.321356333887505, +0.585921713605895

20: +0.81481797353866, -0.572042192203162

30: -0.040449409487, +0.38290501902

40: +0.3742439, -0.842854

50: +0.4696, -0.3568

Fig. 1 shows a unit cell of a periodic two-dimensional
lattice in which a single particle moves in the field of scatter-
ing particles arranged in a fixed square lattice with nearest-
neighbor spacing of 2. The potential energy maximum of
unity is twice the energy of the initial condition, shown at
the center of the cell. The benchmark solution of the mo-
tion equations { q̇ = p ; ṗ = F (q) } is shown at the right.
This same accurate trajectory was obtained with both the
Candy-Rozmus fourth-order and a Runge-Kutta fifth-order
integrator using 50 million and 500 million timesteps, respec-
tively. The two trajectories agree throughout within visual
accuracy. At a time of 50 (x, y, px, py) are:

(x, y, px, py) =

=(+0.46961,−0.35683,+0.11945,+0.98408) [CR4] ;

(x, y, px, py) =

=(+0.46962,−0.35682,+0.11948,+0.98408) [RK5].

III. SEVEN TYPICAL INTEGRATORS AND THEIR
TRAJECTORIES

We consider seven solution algorithms for the wanderer
particle trajectory, [1] Leapfrog (symplectic), [2] Fourth-
Order Candy-Rozmus Symplectic, [3] Monte Carlo Sym-
plectic, [4] Sixth-Order Symplectic, [5] Fourth-Order Runge-
Kutta, [6] Fifth-Order Runge-Kutta, and [7] Eighth-Order
Schlier-Seiter-Teloy Symplectic. For the first six of these we
use a fixed timestep typical of “accurate” molecular dynamics
simulations dt = 0.001. Solutions for those six integrators
appear in Figs. 2-7. The particle mass is unity and the energy
Φ + K is one half. For the last integrator, which has a tra-
jectory visually identical to that of Fig. 1 we have chosen
timesteps as small as 0.00000001 in order to obtain ten-digit
accuracy in the wanderer trajectory up to a time of 50. Let us
consider the details of all the integrators next.

III. 1. Second-Order Time-Reversible Leapfrog
“Symplectic” integrators [5-9] automatically obey Liou-

ville’s Theorem by advancing the solution of Hamiltonian
problems in time according to a series of phase-volume-
conserving shears. Symplectic algorithms alternate steps ad-
vancing the coordinates and momenta in time. The simplest
example is equivalent to the Störmer-Verlet “leapfrog algo-
rithm” [8-10]:
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{q = q + (p ∗ dt/2) ; p = p+ (F/m) ∗ dt ;

q = q + (p ∗ dt/2) } ←→
{ qn+1 − 2qn + qn−1 ≡ (F/m)n }.

This algorithm is said to be “second order” [10], with a fixed-
time coordinate error of order tdt2 for t << 2π/dt2 when
applied to the simple harmonic oscillator. It is time reversible
in that changing +dt→ −dt gives the same trajectory points
either forward or backward in time.

How does the simulation begin? Starting out at the origin,
with the wanderer speed equal to unity and a fixed timestep
dt = 0.001, the first 420 steps leave the momenta unchanged
and r2 becomes 1.0004. During the 421st step the upper
right scatterer is contacted and begins to repel the wandering
particle with a force:

Fx = 8(x− 1)(1− r2)3; Fy = 8(y − 1)(1− r2)3;

r = (1− x, 1− y),

where x and y are the wanderer coordinates.
After an elapsed time t we reverse the sign of the time

so as to integrate backward to see how closely the wanderer
returns to its initial location. So long as t < 47 we find that
the trajectory reverses to within a distance 0.01 of the origin.
We will see that this retracing of steps does not guarantee
a match with the accurate trajectory shown at the right in
Fig. 1. Both the trajectory reversal and the conservation of
energy are poor diagnostics for trajectory accuracy, where
accuracy means reproducing correct values of the coordinates
x(t), y(t).

Fig. 2. The Leapfrog integrator reproduces the accurate x and y
coordinates within 0.01 for an integration time of 18. The energy at
that point (where the trajectory color changes, indicated by a star) is
in error in the seventh decimal place. Here and elsewhere the cited
double-precision times are truncated to integers because different
implementations, such as varying the order of the operations, could

change these numbers

III. 2. Fourth-Order Time-Reversible Symplectic
Higher-order algorithms, with fixed-time integration er-

rors of order dt3, dt4, dt5 . . . can be developed from Taylor’s
series about t giving small increments in the coordinates and
momenta as three-, four-, five- . . . term series in dt. Candy and
Rozmus’ fourth-order integrator (with an error of order dt4 at
a fixed not-too-large, time) is a simple example, cited in the
very useful summary paper by Gray, Noid, and Sumpter [7]:

q = q + 0.6756036p ∗ dt; p = p + 1.3512072(F/m) ∗ dt;

q = q− 0.1756036p ∗ dt;

p = p− 1.7024144(F/m) ∗ dt;

q = q− 0.1756036p ∗ dt;

p = p + 1.3512072(F/m) ∗ dt; q = q + 0.6756036p ∗ dt.

Reference 7 gives the analytic forms of all of the coefficients.
Notice that the coefficients incrementing the coordinates sum
to unity as do also those incrementing the momenta. Each
timestep requires three separate evaluations of the forces.

Fig. 3. The Candy-Rozmus fourth-order symplectic trajectory ex-
hibits a color change at a time of 34, the maximum for which the
coordinate errors are less than 0.01. The energy error at that time is
in the twelfth decimal place. The maximum time at which a reversed

trajectory returns to the origin within 0.01 is t = 42

III. 3. Monte-Carlo Time-Reversible Symplectic
Although it is usual to provide coefficients in integra-

tion algorithms to many significant figures, in most cases
an approximate rendition is sufficient. It is quite possible to
develop algorithms with a Monte Carlo method, adjusting the
coefficients to minimize the trajectory error for the simple har-
monic oscillator problem. An integrator requiring five force
evaluations per timestep was developed by Monte Carlo sam-
pling [6] adjusting the coefficients subject to the constraints
of time reversibility and normalization so that the Monte
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Carlo trajectory optimization occurs in a four-dimensional
space. The resulting integrator was successful in modelling
many-body dynamics but is here applied to the cell-model
problem of Fig. 1:

q = q + 0.005904p ∗ dt; p = p + 0.171669(F/m) ∗ dt;

q = q + 0.515669p ∗ dt; p = p− 0.516595(F/m) ∗ dt;

q = q− 0.021573p ∗ dt;

p = p + 1.689852(F/m) ∗ dt;

q = q− 0.021573p ∗ dt;

p = p− 0.516595(F/m) ∗ dt; q = q + 0.515669p ∗ dt;

p = p + 0.171669(F/m) ∗ dt; q = q + 0.005904p ∗ dt.

The cell model trajectory using this Monte Carlo integrator is
illustrated in Fig. 4.

Fig. 4. The color change in the trajectory from the Monte Carlo sym-
plectic integrator occurs at a time of 31, after which the coordinate
errors exceed 0.01. The energy error there is in the thirteenth digit.
For this integrator a trajectory reversed at a time of 43 will return to

the origin with coordinates recurring within 0.01

III. 4. Yoshida’s Sixth-Order Time-Reversible
Yoshida developed and applied a general technique for

finding a variety of higher-order symplectic integrators. [11]
His sixth-order time-reversible integrator advances the co-
ordinates (∆q ∝ pdt) eight times per timestep, using the
symmetric (so as to guarantee time-reversibility) set of eight
coefficients which sum to unity:

+ 0.39225680523878,+0.51004341191846,

− 0.47105338540976,+0.06875316825252,

+ 0.06875316825252,−0.47105338540976,

+ 0.51004341191846,+0.39225680523878.

Between the successive coordinate updates there is a force
calculation and an update of the momenta (∆p ∝ Fdt), using
seven coefficients, which likewise sum to unity:

+0.78451361047756,+0.23557321335936,

−1.1776799841789,

+1.3151863206839,

−1.1776799841789,

+0.23557321335936,+0.78451361047756.

Fig. 5. This double-precision trajectory is based on Yoshida’s time-
reversible sixth-order integrator with a timestep dt = 0.001. There
is a color change at t = 36, indicating the degradation of trajectory
accuracy to ±0.01 despite the negligible energy error in the four-
teenth decimal place. Trajectory reversal at a time of 42 returns to

the origin within coordinate errors of 0.01

III. 5. Fourth-Order and Fifth-Order Runge-Kutta
Runge-Kutta integrators (circa 1900, as described in Wiki-

pedia) advance both coordinates and momenta simultaneously
in a series of stages within each timestep dt. As in the sym-
plectic case the variables at time t+dt are expressed as series
in dt, putting conditions on the summed-up coefficients for
each power of dt to be treated correctly by the algorithm.

The main advantage of Runge-Kutta methods is that they
can be applied to arbitrary sets of ordinary differential equa-
tions, not just those from Hamiltonian mechanics. The fourth-
order “classic” Runge-Kutta method has been a standard
workhorse model for solving sets of coupled ordinary dif-
ferential equations for 100 years. Applied to the harmonic
oscillator the fourth-order algorithm suffers a loss in energy
proportional to the fifth power of the timestep. The fifth-order
Runge-Kutta integrator behaves in the opposite manner with
the energy increasing rather than decreasing.



Comparison of Very Smooth Cell-Model Trajectories Using Four Symplectic and Two Runge-Kutta Integrators 113

Fig. 6. The fourth-order Runge-Kutta trajectory using double preci-
sion and a timestep dt = 0.001 provides coordinates accurate within
0.01 through a time of 35, indicated by the color change at the star.
The energy error at that point, 10−13, is negligible. Changing the
sign of the timestep at t = 42, +dt → −dt, returns the trajectory

to the origin within a precision of 0.01

Fig. 7. The fifth-order Runge-Kutta trajectory using double precision
and a timestep dt = 0.001 provides coordinates accurate within 0.01
through a time of 37, indicated by the color change at the star. The
energy error at that point is 10−14. For times less than 42 reversing
the trajectory, by setting +dt→ −dt, returns the trajectory to the
origin with precision 0.01. This integrator is the best of the double-
precision integrators tested here. Any one of the five higher-order
integrators is accurate for about twice the time of the second-order

Leapfrog integrator

Hybrid “adaptive” models, incorporating both fourth- and
fifth-order algorithms, provide a simple means for the auto-
matic control of integration errors. The harmonic oscillator
is an excellent test case of integrator accuracy where Lya-
punov instability is absent. [10] Fig. 6 illustrates the same

cell-model orbit for the classic fourth-order Runge-Kutta in-
tegrator. Fig. 7 shows a fifth-order Runge-Kutta integrator:

yp1 =yp[y]

yp2 =yp[y + (dt/2) ∗ yp1]

yp3 =yp[y + (dt/16) ∗ (3yp1 + yp2)]

yp4 =yp[y + (dt/2) ∗ yp3]

yp5 =yp[y + (dt/16) ∗ (−3yp2 + 6yp3 + 9yp4)]

yp6 =yp[y + (dt/7)∗
(yp1 + 4yp2 + 6yp3− 12yp4 + 8yp5)]

y =y + (dt/90)∗
(7yp1 + 32yp3 + 12yp4 + 32yp5 + 7yp6)

Here yp[...] represents the righthandside of the vector
differential equation ẏ = y′ where the six force evaluations
in each timestep are indicated by {yp1, yp2, . . . yp6}.

Both Runge-Kutta integrators return to the origin with
errors no more than 0.01 with reversal at time 42. Forward in
time their trajectories are accurate through times of 35 and
37, the last being the best of the double-precision integrators.
The energy errors for the two Runge-Kutta integerators are in
the thirteenth and fourteenth decimal places.

III. 6. An Eighth-Order Time-Reversible Symplectic
Ernst Teloy, Christoph Schlier, and Ansgar Seiter deve-

loped and implemented a useful eighth-order time-reversible
symplectic integrator with 17 force evaluations per step. Ap-
plied to the harmonic oscillator the rms coordinate error in-
creases by about eight orders of magnitude when the timestep
is increased by a factor of ten, consistent with an eighth-order
method.

For the reader’s convenience we reproduce here the 18
coefficients required to implement the method. They can
be found quoted to 35 decimal places at Christoph Schlier’s
Freiburg website or in Reference 12. This precision is steadily
reduced, digit by digit, through Lyapunov instability, de-
scribed in more detail in Section IV. In the cell-model case
the rate of precision loss is 0.7, one binary bit per unit time.
Accordingly, for the eighth-order integrator in quadruple pre-
cision at time 50 we would expect an exponentially amplified
error of order 10−32 × 250 ' 10−17. In fact, we find a tra-
jectory error of order 10−10 using a timestep of 10−8, as is
shown below.

Even so the eighth-order integrator with dt = 0.001 loses
only seven of the original 35 digits in energy along with
twenty digits in position when run forward and backward for
50,000 steps to match the time illustrated in all the Figures.
As was illustrated and emphasized in References 12 and 13
energy conservation and trajectory reversibility are both of
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them misleading diagnostics of trajectory accuracy. It is only
through a study of convergence that trajectories can be vali-
dated. For the eighth-order symplectic integrator the timestep
dependence of the (x, y) coordinates at time 50 is as follows:

dt = 0.00100000→ (0.48704 51729, +0.13435 10401)

dt = 0.00010000→ (0.48185 80396, −0.32559 07485)

dt = 0.00001000→ (0.46961 32018, −0.35683 11339)

dt = 0.00000100→ (0.46961 40145, −0.35682 95856)

dt = 0.00000010→ (0.46961 40143, −0.35682 95861)

dt = 0.00000001→ (0.46961 40142, −0.35682 95862)

For the convenience of the reader we reproduce the integrator
coefficients here from Reference 12, together with a short
harmonic-oscillator program to demonstrate their use.

III. 7. Schlier-Seiter-Teloy Integrator Coefficients
c( 1) = +0.04463 79505 23590 22755 91399 96257 33590 d00
c( 2) = +0.13593 25807 16909 59145 54326 42134 95574 d00
c( 3) = +0.21988 44042 71470 72254 44553 50696 06167 d00
c( 4) = +0.13024 94678 05238 28601 62119 37781 96846 d00
c( 5) = +0.10250 36569 39750 69608 26124 10077 79814 d00
c( 6) = +0.43234 52186 93585 47487 98325 78848 77035 d00
c( 7) = -0.00477 48291 69168 81658 02248 90639 62934 d00
c( 8) = -0.58253 47690 40408 45493 11283 79308 61212 d00
c( 9) = -0.03886 26428 21118 17697 73742 08751 89743 d00
c(10) = +0.31548 72853 79404 79698 27360 37972 74199 d00
c(11) = +0.18681 58374 32971 55471 52615 35039 72746 d00
c(12) = +0.26500 27549 90620 83398 34600 29630 79872 d00
c(13) = -0.02405 08473 57473 61993 57358 79824 07554 d00
c(14) = -0.45040 49249 97722 51180 92289 67121 51891 d00
c(15) = -0.05897 43301 55923 86914 57532 39267 66330 d00
c(16) = -0.02168 47617 18613 35324 93438 86847 07580 d00
c(17) = +0.07282 08003 35901 28173 76189 26412 34244 d00
c(18) = +0.55121 42963 41970 67334 40560 13815 94315 d00

Oscillator program with q,p,dt and 18 c(i):
do i = 1,17,2
q = q + c(i)*p*dt
p = p - c(i+1)*q*dt
enddo
do i = 17,1,-2
q = q + c(i)*p*dt
if(i.gt.1) p = p - c(i-1)*q*dt
enddo

IV. CELL-MODEL LYAPUNOV INSTABILITY

For chaotic systems the algorithmic accuracy of numeri-
cal integrators deteriorates exponentially rather than linearly
in the time [3]. The underlying exponential Lyapunov insta-
bility of dynamical systems is easily measured by following
the motion of a “reference” trajectory in the usual way, for
instance with any one of the seven algorithms discussed here.
An additional “satellite” trajectory, separated from the referen-
ce by a small length δ0, is also followed using the same algo-

rithm. At the end of each timestep the separation is rescaled,
maintaining the length of the offset between the trajectories
constant, but allowing the direction to vary:

δ(t+ dt) ≡ [rs(t+ dt)− rr(t+ dt)];

rs −→ rr(t+ dt) + δ(t+ dt)[δ0/| δ(t+ dt) |].

The largest Lyapunov exponent is simply the average value
of the growth rates measured at the ends of every timestep
prior to rescaling:

λ1 = 〈(1/dt) ln[| δ(t+ dt) |/δ0] 〉.

Previous studies of this cell model, [3] with the same initial
condition, have shown that the largest Lyapunov exponent is
about 0.7. This means that an error of the order 10−16 at the
initiation of a run of length 50 will increase by a factor of
eλt = e0.7×50 = e35 ' 1015.

This exponential growth rate explains why it is that all
of the double-precision integrators fail, from the standpoint
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of reproducing a reversible trajectory, at about the same time,
at about half the time where quadruple-precision trajectories
fail. It is because these trajectories are just approximations
that the most sophisticated biomolecule simulations are based
on the rudimentary leapfrog algorithm rather than more so-
phisticated algorithms.

Of course, even the slightest difference in the error prior
to amplification will yield a different history. Just summing
the particle interactions in a different order leads to qualita-
tively different histories once the Lyapunov instability rises
to the level of visibility, an increase of 16 digits for routine
double-precision simulations. The phase-shift errors in all of
the algorithms discussed here can be measured by choosing
the initial velocity (

√
1/2,

√
1/2) for which the roundoff

errors in the x and y directions are identical.
If high accuracy is required, as in astronomical simula-

tions, multiple precision can be employed, as demonstrated by
Lorenz Attractor simulations using a precision of thousands
of decimal digits. But, as Joseph Ford was fond of pointing
out, Lyapunov instability is incompatible with high accuracy.
Doubling the number of significant figures in the integration
algorithm only doubles the time for which the simulation is
accurate.

Recently Hanno Rein and David Siegel [14] developed
and implemented a relatively complicated fifteenth-order in-
tegrator for gravitational problems with the provocative title
“A Fast, Adaptive, High-Order Integrator for Gravitational Dy-
namics, Accurate to Machine Precision Over a Billion Orbits”.
Evidently this integrator is not at all intended for long-time
applications to chaotic problems, where errors grow expo-
nentially with time. Conversations with Ben Leimkuhler and
Mark Tuckerman, both of whom summarily dismiss the use
of Runge-Kutta techniques, due to their monotonic energy
drift, plus the appearance of Rein and Siegel’s high-order
long-time work led to the present article.

V. RECENT DEVELOPMENTS AND SUMMARY

To summarize, for simple chaotic simulations (such as
classical fluids) symplectic integrators attain accuracies sim-
ilar to those obtained with Runge-Kutta integration and are
primarily limited by Lyapunov instability. Although energy
conservation and trajectory reversibility characterize sym-
plectic integrators, those properties do not ensure trajectory
accuracy. The reversibility of the double-precision leapfrog
integrator, to a time of 47 and back, exceeds that of all the
more accurate double-precision integrators.

For us it was illuminating to find that the humble Leapfrog
integrator, presumably nearing its 330th anniversary [8], is
nearly as useful as are its more complex relatives, and is cer-
tainly far more economical. For higher accuracy there is little
distinction between the symplectic and the Runge-Kutta inte-
grators for chaotic problems, because both types lose accuracy

at the very same rate, determined by the maximum Lyapunov
exponent.

It is significant that all of the integrators used here con-
serve energy almost perfectly for the benchmark problem.
They also reverse back to the initial conditions even when
their trajectories are inaccurate. One takeaway message from
these simulations is the one to which Joseph Ford devoted
much thought and many thought-provoking words, among
them these taken from Reference 16:

“Newtonian determinism assures us that chaotic
orbits exist and are unique, but they are never-
theless so complex that they are humanly indis-
tinguishable from realisations of truly random
processes.”

Liao has confronted the Lyapunov instability problem
headon for the Lorenz Attractor. [17] By using 3500-term
series expansions coupled with 4180-digit arithmetic he fol-
lowed the evolution of the Lorenz Model to a time of 10,000.
Like the continuing discovery of the digits of π this activity
will last as long as mankind.

Lyapunov instability often shows up in peculiar places.
Simply changing the order of operations in adding up forces
or in computing the weights of contributions to differential
equations’ righthandsides can provide the seeds from which
macroscopic change develops. We learned this lesson in sim-
ulating the collisions of mirror-image manybody drops and
crystals. To retain accurate mirror symmetry it was necessary
to symmetrize the force calculations at every timestep [18].
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