
CMST 21(2) 99-102 (2015) DOI:10.12921/cmst.2015.21.02.c01

Comment on the paper “A New Method for Symbolic
Sequences Analysis. An Application to Long Sequences”

Marek Wolf

Cardinal Stefan Wyszynski University
Faculty of Mathematics and Natural Sciences. College of Sciences

ul. Wóycickiego 1/3, Auditorium Maximum, (room 113)
PL-01-938 Warsaw, Poland
e-mail: m.wolf@uksw.edu.pl

Received: 25 March 2015; accepted: 08 May 2015; published online: 06 June 2015

Abstract: We discuss several drawbacks in the recent paper [1] concerning some statements about the Champernowne
number.

In the recent issue of CMST there appeared an interesting
paper [1] by B. Kozarzewski on the new method for sym-
bolic sequences analysis. This method was tested on sev-
eral long sequences, in particular on the digits of the so
called “Champernowne number”, which we will denote be-
low as C10. Unfortunately, some of the statements about
this constant were not correct. The constant C10 was pro-
posed by 21-year old David Gawen Champernowne in 1933
in the paper [2] as a concatenation after the decimal point
of consecutive natural numbers expressed in the base of ten:
C10 = 0.12345678910111213 . . .. E. Borel had proved in
1909 [3] that almost all real numbers are normal and the
first explicite example of normal number was C10. On page
98 of [1], right column, it is written about C10 “The num-
ber is assumed to be transcendental”. In fact, the number is
transcendental as it follows from the more general theorem
proved by K. Mahler in [4]. Mahler has proved the following
theorem: Let f(k) be a nonconstant polynomial with integer
values for integer k, which is positive for k > 1 and tends
to ∞ with k → ∞. Then let σ denote the decimal fraction
that arises if behind the decimal comma in sequence one af-
ter one the natural numbers f(1), f(2), f(3), ... are written
down, e.g. f be the polynomial f(k) = 1

2 (k
2 + k) leads to

the fraction σ of the form in decimal base:

0.1 3 6 10 15 21 28 36 45 55 66 78 91 105 120

Then the theorem asserts that all σ constructed in this way
are transcendental. Taking as a polynomial the linear func-
tion f(x) = x gives the Champernowne constant.

The more serious mistake is the conclusion drawn from
the plot in Fig. 6 that C10 is not normal. The title “The
construction of decimals normal in the scale of ten” of pa-
per [2] itself claimed that C10 is normal. At the end of
[2] Champernowne formulated theorems about normality
of e.g. the number obtained by concatenating all consecu-
tive composite natural numbers and conjectured that con-
catenation of prime numbers is also normal in base of ten.
This last fact was later proved and generalized by A.H.
Copeland and P. Erdos in the paper [5] (freely available
at the BAMS website http://projecteuclid.org/
euclid.bams/1183509721) to the general numbers
0.a1a2a3 . . .which are normal provided the sequence an ful-
fills some growth condition. Presently the concatenation of
"0." with the base 10 representations of the prime numbers
in order 0.2357111317192329 . . . is called the Copeland–
Erdös constant.

The conclusion by B. Kozarzewski about non normality
ofC10 is based on Fig.6 showing frequency of digits 1, 4 and
8 in the first 2000000 digits of the Champernowne constant.
In fact, Fig. 6 does not show the whole subtlety of the plot of
digit frequency as there seems to be too large “coarse grain-
ing” used: the steps between two consecutive plotted points
are so long that the finer structure is lost. In Fig. 1 we repro-
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Fig. 1. The plot showing share of digits 1, 4 and 8 among the first 2000000 digits of C10. There is a half million plotted points: digit
frequency every 4-th position in C10 is plotted

duce the original plot from [1] this time with every 4-th point
plotted, i.e. for each digit 1, 4, 8 there are 500000 points on
the graphs. To see that the graphs of the digits frequency
tend to 0.1 we present Fig.2 where the plots are made for all
digits 0, 1, . . . , 9 up to 1011 position in the Champernowne
constant. The characteristic oscillating pattern is caused by
the mechanism creating C10. We will denote the Champer-
nowne number after concatenating the natural number n by
C10(n) and the running position in C10 will be denoted by
`, while the position of the last digit of concatenated number
n will be denoted by `(n). Because successive digits of C10

come from successive natural numbers, there are local ex-
cesses of consecutive 1’s, 2’s, ..., 9’s, resulting from runs of
natural numbers beginning with 1, 2, . . . , 9, respectively. For
example: when five-digit natural numbers are concatenated
first there are consecutive 10000 numbers beginning with
1: 10000, 10001, 10002, . . . , 19999, 20000, 20001, . . .. Next
there will be surplus of digits ‘2’, after which the following
digits will appear as the first digit of natural numbers. At the
end of such a run of five-digit natural numbers the number
99999 appears and at the position of C10 marked by the last
9 of 99999 all digits 1, 2, . . . , 9 will appear exactly the same
number of times. There is a deficiency of digit ‘0’ as no nat-
ural positive number has it as the first digit. There are 90
two-digit numbers in the base 10: 10, 11, . . . , 99, next 900
three-digit numbers 100, 101, . . . , 999 etc, in general there

are 9 × 10k−1 k-digit natural numbers in the base 10. After
concatenating all numbers from 1 to 999 . . . 99︸ ︷︷ ︸

n nines

(= 10n − 1)

the digits 1, 2, . . . , 9 will appear exactly the same number of
times (there is a dearth of zeroes). Each k-digits natural num-
ber increases the number of digits in C10 by k. Let us denote
the number of digits in C10 after concatenating all numbers
from 1 to 10n − 1 by `(10n − 1). The value of `(10n − 1) is
given by the formula:

`(10n − 1) =

n∑
k=1

9× k × 10k−1 =

=
1

9
(1− 10n + 9n · 10n)

(1)

There are nine zeroes in the run of 90 two-digit natural num-
bers 10, 11, . . . , 99, next in the run of 900 three-digit natu-
ral numbers 100, 101, . . . , 999 the zero can appear only on
the second and third positions, and as all digits appear on
these second and third positions the same number of times
the zero will appear 2 × 900/10 = 180 times. In general,
in the run 9 × 10n−1 of n digits natural numbers zero will
appear 9(n−1)10n−2 times. The number of zeroes n0(n) in
all numbers from 1 to 999 . . . 99 (n digits 9) hence is given
by the formula



Comment on the paper “A New Method for Symbolic Sequences Analysis. An Application to Long Sequences” 101

Fig. 2. The plot of the running frequency for digits 0, 1, . . . , 9 in C10 as a function of `. The data was collected at the points forming the
geometrical progression 10× (1.0002)k and there are over 115000 of them. Oviously not all points are distinguishable on this graph: for
resolution 600 dpi and the side of the x-axis say four inches only 4 · 600 = 2400 points can be theoretically discerned; however, by col-
lecting over 100000 data points we avoid a danger of dropping some abrupt change in the behavior of the functions for ` = 11, . . . , 1011.

For all ` the frequency of zero n0(`) is below 0.1

n0(10
n − 1)) =

n∑
k=2

9(k − 1)10k−2 =

=
1

9

(
1− 10n + 9n10n−1

)
At the position `(10n − 1) the number of digits 1, 2, . . . 9 is
the same and is given as 1/9 of the result of subtracting the
number of zeroes n0(10n − 1) from `(10n − 1):

nk(10
n − 1) = n10n−1 k = 1, 2, . . . , 9

The limit n → ∞ of the frequencies fk(10
n − 1) ≡

nk(10
n−1)

`(10n−1) is obviously 0.1.

Finally we would like to correct the definition of the al-
gebraic number given in the left column on page 97. It should
read “Some irrational numbers can be expressed as roots of
a polynomial with rational coefficients”.
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