CMST 21(2) 69-98 (2015)

DOI1:10.12921/cmst.2015.21.02.003

Monte Carlo Simulations of the Ising Model on GPU

Jacek Wojtkiewicz!", Krzysztof Kalinowski’

1Department for Mathematical Methods in Physics
Faculty of Physics, University of Warsaw
ul. Pasteura 5, 02-093 Warszawa, Poland
*E-mail: wjacek @fuw.edu.pl

’R.D.Labs, Sp. z o0.0.
ul. Hoza 43/49 m. 11, 00-681 Warszawa, Poland

Received: 18 June 2014; revised: 17 March 2015; accepted: 21 April 2015; published online: 15 June 2015

Abstract: Monte Carlo simulations of two- and three-dimensional Ising model on graphic cards (GPU) are described. The
standard Metropolis algorithm has been employed. In the framework of the implementation developed by us, simulations were
up to 100 times faster than their sequential CPU analogons. It is possible to perform simulations for systems containing up to
10° spins on Tesla C2050 GPU. As a physical application, higher cumulants for the 3d Ising model have been calculated.
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I. INTRODUCTION

Graphic cards (Graphic Processor Unit — GPU) are now
a very powerful tool in computational physics. Calculations
on them are performed by multitudes of relatively slow units,
each able only to perform a handful of operations. However,
those small workers were designed to work on large data sets.
Current games require millions of vectors to be transformed
and millions of pixels to be placed on the screen in a fraction
of a second. That kind of operation seems close to what we
really need in e.g. Monte Carlo simulations. Moreover, with
frameworks like CUDA (Computing Unified Device Archi-
tecture) developed in nVidia, anyone with a good knowledge
about C/C++ and spare time can obtain significant results as
programming GPUs is now relatively easy [1, 2].

However, in order to effectively utilize its potential one
must be aware of its architecture details and rethink the used
algorithms. First of all, problems of parallel computation
have to be taken into account when working on CUDA ker-
nels. Second, the optimal use of limited memory must also

be taken into account. Moreover, copying memory between
host and device is very expensive in terms of time — memory
transfers should be reduced to a minimum as they are often
the slowest part of a CUDA program.

In our paper, we describe some programming aspects of
the Monte Carlo simulations of two- and three-dimensional
Ising model on GPU’s. Similar efforts have been undertaken
so far [3, 4, 5] and our work is a certain extension to the
mentioned authors. We can improve their results in aspects
of more optimal usage of memory (so simulations of larger
systems are possible) and in speed of calculations. As an
application of our approach, we calculate higher cumulants
for the three-dimensional Ising model.

The outline of the paper is as follows. In Sec. II, we de-
scribe the Monte Carlo simulation with the use of GPU. Sec.
III contains our results, and Sec. IV a summary as well as re-
marks on some open problems. In Sec. V we list the program
for MC simulation of the three-dimensional Ising model on
GPUs with the use of CUDA software.
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II. DESCRIPTION OF THE SIMULATION

II. 1. Implementation of the simulation on GPU

In the paper, we consider the ferromagnetic Ising model.
It is the spin model defined on the simple cubic lattice in d
dimensions Z? by the Hamiltonian: H = J 37, s:5;. Here,
s; denote the value of the spin on the :—th site; every spin
s; can take values 1. The sum is taken over the nearest
neighbours (symbol ()). A more detailed discussion of the
motivations coming to this model follows in Sec. III.1.

We have used the standard Metropolis algorithm [6]. Its
implementation on CPU is also standard, so we describe
below only some important aspects of implementation on
graphic cards.

The main difference between CPU and GPU is that we
can do many operations simultaneously on GPU. We could
assign one thread to each spin on the lattice and use them
to perform large updates in a single iteration. However, this
comes with a drawback: spins that were used for determining
the flip cannot be flipped in the same cycle. If they were,
the result of such operation would be undetermined, as it
would not be possible to tell in what order those spins will
be updated. To tackle this problem there is a method called
Checkerboard decomposition [3], [4], [5]. The idea is as fol-
lows: The whole lattice of the nearest neighbours Ising model
is split into two parts (we call them “black” and “white” — like
the checkerboard). They are updated one after another. When
we update the “white” part of the lattice, 'black’ spins are
not changed, but only used to compute flip probability. One
drawback of this method is that only even sizes of the lattice
can be used, but since we want to work with sizes of around
10 spins, that should not make a significant difference. An
idea of this method is shown in Fig. 1.

Fig. 1. Example of checkerboard decomposition for the nearest

neighbours Ising model. Arrows indicate spins required for update

on the given position. Black spins depend only on the white ones,
and accordingly white spins depend only on the black ones.

The second problem we might encounter is assigning
spins to threads on GPU. In the case of nVidia CUDA, we ob-
tained threading system composed of three elements: threads,
blocks and a grid, and we need to fit our solution into that
system. The basic difference between them is explained in
Fig. 2. We have to take into account several new problems,

e.g. if the total number of threads that can be run in parallel
is 1536, while the maximum block size is 1024 threads. It
is best to create blocks of size 512 threads, as this allows
scheduler to run three blocks at once in parallel. We also have
to decide how we want to assign spin to our threads. There
are two common ways of doing this: each block represents a
rectangle or a line. In our simulations, we split our systems
into rectangles for 2d, and into lines for 3d. However, it seems
that properly used caching techniques, that is fetching large
memory chunks for whole block into the shared memory,
could yield better performance in case of rectangles, as most
of the spins needed for an update would be available in an
instant.

It is important to note that this particular decomposition
works only for some special interactions, like nearest neigh-
bours or chess knight. After understanding how this model
works, it is easy to create similar decompositions for other
interactions. Some interactions may split lattice into more
than two independent parts, but still provide a solution.

In the nearest neighbours problem, only the closest spins
are needed in calculation of energy. This is, however, not
the only split that has to be done when working on GPU.
Once we split the spins into those read-only and updated, we
need to divide the entire lattice for multiprocessors to handle.
There are multiple solutions to that problem. One is favouring
long lines of spins, the other one favours rectangles. In our
solution we used splitting into rectangles based on F. Wende
presentation and explanation [5] for two dimensions, and into
lines for three dimensions.

Another difference between CPU and GPU is the usage
of memory. While it is rather easy to use one bit per spin
on CPU, it is harder on GPU. Multiple threads would like
to access the same byte of memory only to flip one bit. The
solution we have chosen was to use one :nt8_t for each spin,
which is an 8-bit, platform independent, signed integer for
C/C++ and is defined in stdint.h. This is not an optimal, but
the easiest one from the programming point of view. The
optimal solution would make each GPU thread work not on
a single spin, but on groups of spins. This way there would
be no race condition to memory, and thus we would still be
able to keep the advantage of using the least possible amount
of space. However, usually the problem is not with memory
taken by lattice. The largest lattice we considered was of
size 5003. This grid would be using only around 600 MB of
device memory, which is less than available memory on a
standard graphical card (1 GB).

Another problem is with using conditional variables on
GPU. It is worth noting that some conditions can be replaced
with mathematical operations or completely omitted. We have
checked that in some cases replacing conditionals can yield
better performance (12% gain in speed by replacing two and
removing four conditions), yet are harder to understand and
thus to debug. Each of these operation requires the knowledge
of the structure of data used for storing numbers. An example
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Fig. 2. Comparison of nVidia CUDA thread, block and grid. Grid is composed from blocks, which in turn are made from threads. Image
taken from docs.nvidia.com

of replacing conditionals with mathematical calculations can
be used to obtain periodic boundary conditions. In our simu-
lations we are iterating over an entire lattice of spins and for
each spin we have to obtain values of spins of its neighbours.
However, inside computer memory there is no such thing as
periodic table and accessing memory of table index -1 would
result in a segmentation fault. To solve this problem we can
either use everyday conditional like:

if (tableIndex < 0) tablelIndex =

tableSize - 1;

or use simple mathematical calculations. With the code
below we map range [-N; 2N] into [0; N] with multiplications
and additions. Here we use here knowledge about how signed
numbers are stored in memory. In 32-bit signed integer the
most significant bit is understood as —23!, so it means that
when it is set, the entire number must be below zero. So, if
we can extract this value, it can be used to remap indexes.
The solution is presented below:

tableIndex += 1;
tableIndex +=
(((-tableIndex) >> 31) -
((tableIndex - tableSize)
* tableSize;
return tableIndex - 1;

>> 31))

It might seem as a lot of operation for a simple wrapping
index, but it is easier to perform for GPU than branching that
is used by CUDA when resolving a conditional.

Another example is much more sophisticated. Here we
are looking for a solution to the following problem: when
a floating point number is greater than 0, add some value
to another; otherwise do nothing. It looks like a common
problem with programming, so a natural solution would be
to use conditionals. However, if we know how floating point
numbers are encoded on our architecture, we can perform this
with only mathematics. This solution assumes that numbers
are encoded using the IEEE 754 convention in which the
most significant bit of a number is the sign. So, if a number
is greater than 0, it is set to 1, otherwise to 0. Going further,
if we can extract it then a simple multiplication would be
enough to solve our problem. The code below assumes that
we are using 32-bit floating point numbers, but it can also
be easily adapted to 64-bit floating point numbers. Again,
we use the stdint.h library with its int32_¢ (32-bit signed
integer, platform independent). As we cannot perform bitwise
operations on floating point numbers, we are using a simple
cast to integer, so that we can access single bits of our number.
The entire solution is presented below:

int8_t bit =
>> 31);
resultValue += bit
* addOnlyIfTestValueGreaterThanO;

(* ((Int32_t+*) & testValue)

As presented, with some additional knowledge about low
level number representations, we are able to replace / remove
the conditional code from our multi-threaded CUDA compu-
tations.
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Fig. 3. Comparison between CPU and GPU. In the figure we see effective time of flipping one spin compared for different lattice sizes for
different computational units. Results from a single core of a CPU are compared to a single GPU unit.

In our simulations we were using a single CUDA thread
for each spin. We also tried to perform an entire Ising simu-
lation in a single CUDA thread. In this test each thread was
maintaining its own lattice, and all of them were completely
independent. Not only this test has yielded poor performance,
it would also be impractical for large scale calculations be-
cause of the amount of used memory.

The second aim was to create as big lattice as possible
to count in finite time, and compare results across CPU and
GPU with exact solutions for critical temperature and various
cumulats.

II. 2. Monte Carlo simulations

For the generation of random numbers we used rand()
from stdlib.h on CPU and CURAND_RNG_PSEUDO_DE-
FAULT generator from curand.h library provided by nVidia
for GPU. It is worth noting that values returned from cu-
rand.h library are from O excluding to 1 including, so a single
subtraction was needed before we could use the numbers.

Each of those simulations was started with a warm-up
consisting of 2000 sweeps followed by 10000 steps, each
consisting of 500 sweeps and data gathering.

A single sweep on GPU was trying to perform a flip on
half of the spins from the whole system. It was possible due
to using Checkerboard Decomposition connected with high
level of parallelisation.

It is also important to note that below critical temperature
simulation was started as cold (all spins in one direction), and
above — as hot (all spins in randomly generated directions).

Each of those simulations was repeated 10 times and counted
averages and errors. A single simulation for system sizes
512 x 512 took around 20 hours on a single CPU core of
Intel Xeon X5650 and around 15 minutes on a Tesla 2050
GPU unit (this value refers to the total run, i.e. computation
on GPU and transfer of results to CPU).

Comparison of speed of several different computational
units were performed. A sample of results can be found in
Fig. 3. The hardware of the whole computer with graphic
cards for which we present results were: GeForce GTS 250
cooperating with Intel QuadCore 9550 CPU, and Tesla 2050
cooperating with AMD Phenom II X6 1090 T CPU. How-
ever, in both cases only one core of CPU was involved in
communication between GPU and CPU.

III. RESULTS

II1. 1. Definition of the model

We consider the ferromagnetic Ising model. It is defined
on the simple cubic lattice in d dimensions Z? by the Hamil-
tonian:

H=J SiSj (1)
(i5)

Here s; denote the value of the spin on the i—th site; s; can

take values 1. The sum is taken over the nearest neighbours;

it is denoted by the symbol (). We consider the ferromag-

netic model, for which J > 0. Without the lack of generality,
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Fig. 4. Intersection of V4 (L) for CPU. An analogous situation takes place in the case of GPU. There is no difference in the used scale;
differences are on the fourth decimal places

we take the coupling constant J = 1; eventual change of J
would correspond to rescaling of the (inverse) temperature.

The Ising model has been invented by Lenz in 1920 dur-
ing his attempts to understand the phenomenon of ferromag-
netism. It was solved in dimension one by Lenz’ Ph.D. student
E. Ising in 1925. It turned out that in one dimension it is no
phase transition, i.e. spontaneous magnetization in positive
temperature. The milestone in understanding the situation in
higher dimensions was an exact solution of the 2d model (in
zero magnetic field) by Onsager in 1944. It turned out that the
2d model exhibits the phase transition, i.e. spontaneous mag-
netization appears below certain positive critical temperature.
However, there are two important problems not solved so far:
the exact solution of the 2d model in the presence of magnetic
field, and the exact solution of the 3d model. But it is possible
to understand properties of the model by other means, both
rigorous and numerical. At present time, the Ising model is
employed in diverse areas of theoretical physics: the solid
state physics as model of magnetism, lattice gas or binary
fluid, in quantum field theory, in econophysics [6].

I1I. 2. Benchmarks: critical temperature and heat
capacity

We have begun our simulations with reproduction of
known results for the Ising model.

The first quantity was the critical temperature. In statisti-
cal mechanics it is defined as a value of temperature where

physical quantities (magnetization, specific heat, susceptibil-
ity...) are non-analytic in the thermodynamic limit [7, 8].

We have obtained it in a standard manner by looking at
the point where Binder cumulants for various lattice sizes are
crossing [6]. Instead of temperature itself, we consider (more
natural in statistical mechanics) the inverse temperature (3,
defined as

kp is the Boltzmann constant.
Our results are:
e Two-dimensional model:
Be = 0.4408(20) CPU, S, = 0.4408(20) GPU
@)
The exact value 3. = In(1 + v/2)/2 = 0.440687...
e Three-dimensional model:
B~ 0.2217(2) CPU, f.~0.2217(2) GPU
3)
The exact value is not known. Significant digits coming from
a whole variety of methods are: 5. ~ 0.22165 (see [9-21]).
We illustrate the method for the 3d model in Fig. 4.
We have also reproduced plots of specific heat for various
lattice sizes. Results of plots are consistent with numerous
ones existing in literature.
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II1. 3. Cumulants — motivation

In the simulations described above (calculating critical
temperature and specific heat) we also obtained values of
higher cumulants at the critical point.

The analysis of cumulants is an interesting theoretical
problem for many reasons. First, it touches the status of the
universality principle that has been postulated in the 1960s in
the aspect of critical exponents [6], and further extended to
amplitude ratios and scaling functions [22].

In the first case, the universality principle is well ex-
amined. In general, there is a consensus that statistical-
mechanical models can be divided into a small number of
universality classes. Every universality class is completely
characterized by such features as dimension of the system,
symmetry of the order parameter and the range of interactions.
For every model within the given universality class, values
of the critical exponents are the same and independent of
model details such as particular form of interactions [6, 8].
The situation is less clear for Universal Amplitude Ratios.
In general, one assumes that within every universality class
amplitude ratios are constant and independent of details of in-
teractions: however, they can depend on boundary conditions
[22]. This has been confirmed for a whole variety of models
[9, 10, 22], but quite a few counter-examples have been found
[23] and still there are controversies on this subject [24]. One
can suspect that breaking universality for amplitude ratios
is more transparent for higher cumulants. So we decided to
calculate them for the 3d Ising model as the first step towards
examination of (non?)universality.

Moreover, the cumulants also measure deviation of mag-
netization fluctuations at criticality from a Gaussian distribu-
tion, and to describe precisely such non-Gaussianness, one
should know their values.

One more motivation comes from the quantum field the-
ory. Known is certain conjecture about non-positivity of un-
truncated six-point vertex function in certain quantum field
theories [7]. They are expressible by sixth order cumulants.
So we hope that our results can be useful in testing this con-
jecture.

Finally, let us look at the two-dimensional Ising model
for which the values of cumulants in periodic boundary con-
ditions at critical temperature are predicted by the conformal
field theory. These predictions have been confirmed with high
precision by Monte Carlo simulations [25]. But for the 3d
Ising model, to our best knowledge, there are almost no such
predictions (the only exception we have found is a recent
paper [26]; however, the cumulants are defined there in a
different manner than we do, and it is hardly possible to make
comparisons). So we decided to calculate higher cumulants
by Monte Carlo simulations. Here we have no such predic-
tions as in two dimensions, where values of all cumulants
are exactly (although not rigorously) known. We consider
development of such predictions as a challenge for theory.

II1. 4. Cumulants — results

We take the following definitions of cumulants:

(M)
Von = ——. 4
o = a7y @)
We consider the following values of n: n = 2, 3,4, 5.
In the literature, the Binder cumulant:

Ve=1- %V4 5)

is often used instead of V.

IIL. 4. 1. Two-dimensional Ising model

Here, the benchmarks are results due to Salas and Sokal
[25] based on the conformal-field theory, high-precision
Monte Carlo simulations using Swendsen-Wang algorithm
and theory of finite-size scaling.

During our simulations, we encountered the problem of
large fluctuations in critical temperature. For smaller systems
(squares 642 and 1282) fluctuations of cumulants were rela-
tively small, while for squares 2562 and 5122 they were large.
We illustrate this situation in Table 1 (we reproduce the result
for the cumulant Vg only, but situation is similar for other
cumulants, too).

Tab. 1. Uncertainties in determination of V3 for 2d Ising model

size (L?) CPU GPU
642 1.888 (18) | 1.879 (11)
1282 1.894(28) | 1.883(27)
2562 1.926(63) | 1.933(46)
5122 1.922(98) | 1.923(89)

For this reason, our determination was not precise. We
have obtained it by extrapolation of finite-size data, described
in more details in the next Subsubsection. Within the error
bar, our results are consistent with those given in [25] (see
Table 2).

Tab. 2. Values of cumulants for 2d Ising model (extrapolated)

Cumulant | Salas&Sokal [25] CPU GPU
Va 1.167923(2) 1.169(4) | 1.170(5)
Ve 1.455649 (7) 1.47(4) 1.47 4)
Vs 1.8925 (2) 191 4) 1.92 (5)
Vio 2.5396 (3) 2.58 (5) | 2.59(6)

I1L. 4. 2. Three-dimensional Ising model

In simulation of the 3d model we observed much less
fluctuations than in two dimensions. The precision of deter-
mination of cumulants was roughly independent of the lattice
size. This opportunity allowed us to apply the extrapolation
procedure to obtain values of cumulants in the limit of lattice
size tending to infinity.
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Tab. 3. Values of cumulants for 3d Ising model: CPU results

size (L?) Vi Vs Vs Vio
203 1.580(5) | 2.995(24) | 6.38(9) | 14.8(3)
30° 1.594 (8) | 3.064 (35) | 6.63(13) | 15.7(4)
403 1.589(8) | 3.035(35) | 6.52(12) | 153 (4)
503 1.596 (7) | 3.064 (30) | 6.62 (10) | 15.6(4)
oo (extrapolation) | 1.608 (7) | 3.118 (31) | 6.82(11) 16.2(4)

In order to obtain the value of given quantity in the limit
of infinite lattice, one must perform some kind of extrapola-
tion. It is done with the aid of the finite-size scaling (FSS)
theory [27]. One assumes that in the neighborhood of critical
point, physical quantities have certain forms of expansion in
small parameters: T' — T¢, h — h,, % (T — temperature, h
— magnetic field, L — length of the system). A precise form
of such FSS expansion, as a rule, is not known rigorously,
but there are hints coming from the Renormalization Group
which allow to write down reliable forms of such expressions.

For cumulants at critical temperature there are some indi-
cations that the FSS expansion takes the form [9, 10, 12]

Von(L) = Vap(oo) + AL™2 + AiL™21 + ... (6)

However, there exist quite a few different expressions with
different exponents A; and amplitudes A;, coming from vari-
ous scenarios of the Renormalization Group action near the
critical point [25]. There are also various methods of fitting
experimental data to obtain values of V5, A;, A;. For this
reason we decided to take the simplest expression

Van(L) = Vap(o0) + AL™2 (7

where we took A = —0.83 [9, 12]. We fitted our data to
expression 7 in order to obtain values of V5, (c0) and A. We
present our results in Tables 3 and 4.

Here we have (almost) no reference to comparison. The
only exception are results for the Binder cuamulant V;: 1.604
[9], [10] (after conversion to the definition we used).

IV. SUMMARY, CONCLUSIONS, PERSPECTIVE
FOR FUTURE WORK

Our results show that GPU is as precise as CPU and much
faster than CPU for the Ising model when system sizes are
sufficiently large, namely 10° spins and bigger.

It takes time and effort to learn all important parts of
CUDA programming and be able to use it well. Graphical
cards are not the remedy to all of our computational problems.
If not used with proper planning, those methods would not
lead to performance increase. It should be understood as a
special tool for parallel computation, not as a magical device
that will speed up our program. Before trying to use it, it
is important to consider dividing the procedure into many
small, independent functions. Only if that can be done, and
the current speed using CPU is not satisfying, we should start
using CUDA for the problem. The results can be astonishing
as it is a powerful technology.

In the presented form the Ising model is not the most inter-
esting option, but it can still lead to some interesting models.
The following models are only examples of a whole family of
remarkable and interesting ones: the Falicov-Kimball model
[28], [29] in perturbative regime and ANNNI (Axial Next
Nearest Neighbour Ising) [30]. As it has been shown, results
can be obtained much faster for bigger lattices, so it would be
advisable to use for analysis of currently skipped system sizes
because of the time of execution of simulations. In particular
ANNNI models seems to need the power of graphical cards.
We encounter here very large periodic structures (elementary
cells up to few hundreds of sites). However, the higher the
period is, the bigger size the lattice must be, because the size
of the elementary cell grows. With GPUs we could simulate
systems of size 10° spins in matter of minutes, and 10® spins
in matter of days.

Tab. 4. Values of cumulants for 3d Ising model: GPU results

size (L%) Vi Ve Vs Vio
203 1.582(7) | 3.000 (33) | 6.38(12) | 14.8 (4)
30° 1.591 (11) | 3.045 47) | 6.55(17) | 15.4 (6)
403 1.592 (7) | 3.051(28) | 6.58 (10) | 154 (3)
503 1.594 (10) | 3.061 (46) | 6.61 (17) | 15.6 (6)
oo (extrapolation) 1.605(9) | 3.119(36) | 6.84 (14) | 16.4(6)
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The big challenge is development of clustering algorithms
on graphic cards. As it is well known, the Metropolis algo-
rithm is not the best tool to simulate the Ising model for
temperatures close to the critical one due to critical slowing
down. Much better results can be obtained by using cluster-
ing algorithms like Wolff or Swendsen-Wang. A single step,
near the critical point, is equivalent to hundreds of Metropolis
steps.

We were thinking about such problem. However, we have
found out that it is much harder than we expected. It remains
a big challenge for graphic card programmers. If successful,
development of such algorithms would give a deep insight
into the nature of critical point for a big family of lattice
models.
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V. APPENDIX - CODE FOR ISING 3D CUDA

Listing 1. config.h

#ifndef CONFIG_H
#define CONFIG_H

#include <stdint.h>

typedef float

extern
extern
extern
extern
extern
extern
extern

extern
extern

double

double

double

uint32_
uint32_
uint32_

uint64_
uint64_
uint64_

FLOAT;
beta;
I;

B;

t X_N;
t Y_N;
t Z_N;
t MCN;

t WARMUP;
t SKIP;

/xx \brief Parse command line arguments

*

* This function un—parses all needed arguments from command line , and, if needed
* fills the~default values.

* If no parameters are passed, this function just prints list of available

* options and returns —1I.

*

* Note: at the~very least, 2 parameters must be passed to program — vertical
* and horizontal size of the~lattice.

*

* \param[in] argc — amount of command line arguments, passed from main

* \param[in] argv — char table filled with arguments, passed from main

*

x \returns

* 0 on success

* I= 0 on failure (unable to parse some particular

* parameter, proper output is printed on stderr)

*/

int parse_args(int argc, char xxargv);

/¥x \brief Print current status

This function prints all current values of configuration parameters
* that will

*/

be used in upcoming simulation.

void hello_message ();

#endif

#include

Listing 2. config.cpp

"config.h"

#include <stdio.h>
#include <stdlib .h>
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#include <string.h>

double beta = 1.0;
double J = 1.0
double B = 0.0;
uint32_t X N =
uint32_t YN = 0;
uint32_t Z N = 0;
uint64_t MCN = 0;
uint64_t WARMUP =
uint64_t SKIP = 8;
void print_usage (char xmy_name)
{
fprintf (stderr, "Usage: %s [options] X N YN Z N\n"
"\tX_N — spin amount, X axis. X N >= 3\n"
"\tY_N — spin amount, Y axis. Y_N >= 3\n"
"\tZ_N — spin amount, Z axis. Z N >= 3\n"
"\t—J — value of interaction coupling, default — 1.0\n"
"\t—beta — value of inverse temperature, default — 1.0\n"
"\t—B — value of magnetic field, default — 0.0\n"
"\t—N — sweep count for Monte Carlo, default — 10000\n"

"\t-W — sweep count for warm—up, default — 100\n"
"\t—S — steps between data gathering, default — 8\n",
my_name ) ;

}

int read_argv_double (double xout, int current, int argc, char xxargv)
{

if (current >= argc) return 1;

xout = atof(argv[current]);

return 0;

}

int read_argv_uint64_t(uint64_t *out, int current, int argc, char xxargv)
{

if (current >= argc) return 1;

int i = atoi(argv[current]);

if (i < 0) return 2;

xout = (uint64_t) 1;

return 0;

}

int parse_args(int argc, char xxargv)
{
if (arge == 1) {
print_usage (argv[0]);
return —1;

/%
This all is done to obtain windows and linux compatibility.
If it was to be used with linux only, getopt library should
be used.

*/

int current_arg;
for (current_arg = 1; current_arg < argc; ++current_arg) {

5

if (argv[current_arg][0] == =) {
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65 if (strcmp(argv[current_arg], "-J") == 0) {

66 if (read_argv_double(& J, current_arg + 1, argc, argv)) {
67

68 fprintf (stderr , "Failed to parse value for —J\n");

69 return —2;

70 }

71 current_arg++;

72 } else if (strcmp(argv[current_arg], "—beta") == 0) {

73 if (read_argv_double(& beta, current_arg + 1, argc, argv)) {
74

75 fprintf (stderr, "Failed to parse value for —beta\n");
76 return —3;

77 }

78 current_arg++;

79 } else if (strcmp(argv[current_arg], "-B") == 0) {

80 if (read_argv_double(& B, current_arg + 1, argc, argv)) {
81

82 fprintf (stderr, "Failed to parse value for —B\n");

83 return —4;

84 }

85 current_arg++;

86 } else if (strcmp(argv[current_arg], "-N") == 0) {

87 if (read_argv_uint64_t(& MCN, current_arg + 1, argc, argv)) {
88

89 fprintf (stderr , "Failed to parse value for —N\n");

90 return —5;

91 }

92 current_arg++;

93 } else if (strcmp(argv[current_arg], "-W') == 0) {

94 if (read_argv_uint64_t(& WARMUP, current_arg + 1, argc, argv)) {
95

96 fprintf (stderr, "Failed to parse value for —N\n");

97 return —5;

98 }

99 current_arg++;

100 } else if (strcmp(argv[current_arg], "-S") == 0) {

101 if (read_argv_uint64_t(& SKIP, current_arg + 1, argc, argv)) {
102

103 fprintf (stderr, "Failed to parse value for —S\n");

104 return -5;

105 }

106 current_arg++;

107 } else {

108 fprintf (stderr , "Unknown command ’%s '\n", argv[current_arg]);
109 }

110 } else {

111

112 if (XN == 0) {

113 XN = (uint32_t) atoi(argv[current_arg]);

114 } else if (YN == 0) {

115 Y N = (uint32_t) atoi(argv[current_arg]);

116 } else if (Z_N == 0) {

117 Z N = (uint32_t) atoi(argv[current_arg]);

118 }

119 }

120 }

121

122 if (XN < 3) {
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fprintf (stderr , "Parameter X N less than 3\n");
return -5;

}

if (YN < 3) {
fprintf(stderr , "Parameter Y_N less than 3\n");
return —5;

}

if (ZN < 3) {
fprintf (stderr , "Parameter Z_N less than 3\n");
return -5;

}

if (MCN == 0) {
MCN = 10000;
}

if (WARMUP == 0) {
WARMUP = 100;
}

return 0;

}

void hello_message ()
{
fprintf(stderr , "Welcome!\n"
"Current parameters :\n"
"* X N = %u\n"
"x Y_N = %u\n"
"x Z_N = %u\n"

"x J = %f\n"
"% beta = %f\n"
"x B = %f\n"

"x MCN = %lu\n"

"% WARMUP = %lu\n"

"x SKIP = %lu\n"

"Performing calculations. Please wait...\n",
X N, YN, ZN,

J, beta, B,

(long unsigned int) MCN,

(long unsigned int) WARMUP,

(long unsigned int) SKIP);

Listing 3. SpinTable.cuh

#ifndef SPIN_TABLE CUDA_H
#define SPIN_TABLE CUDA_H

#include <cstdlib >

/xx "Interface" for table of spins

*

* This header presents a set of implementation—independent

* functions, that can be used to manipulate three—dimensional
% spin lattices. Thanks to this, we can easily replace

* internal representation in a way transparent for the

* rest of code.
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13 x/

14 struct SpinTable

15 {

16 unsigned int X N, YN, Z N;

17 char xtable;

18

19 /xx \brief Initializes spin table

20 *

21 * This function uses values from config and allocates
22 * memory for a new spin table.

23 * Allocated table CANNOT be used in calculations ,
24 * unless it is further prepared with either

25 * randomize_init or clear_init.

26 *

27 * \param[in] X — horizontal size of the~lattice
28 * \param[in] Y — vertical size of the~lattice

29 * \param[in] Z — depth of the~lattice

30 */

31 void host_init(int X, int Y, int Z)

32 {

33 XN =X;

34 YN-=Y;

35 ZN =17;

36

37 cudaMalloc ((void #*x) & table, sizeof(char) x XN x Y.N x Z N);
38 clear_table ();

39 }

40

41 /xx \brief Destroys spin table

42 *

43 * This function frees all resources used by given
44 * spin table. After this call, table becomes

45 * unusable, unless it is initialized again.

46 */

47 void host_destroy ()

48 {

49 cudaFree (table);

50 }

51

52 /¥%x \brief Retrieves value of a single spin from spin table
53 *

54 x DEVICE FUNCTION

55 *

56 * Returns value of a spin under given position, assuming
57 * periodic boundary conditions (hyper—torus).

58 *

59 * \param[in] x — horizontal index of desired spin
60 * \param[in] y — vertical index of desired spin
61 * \param[in] z — depth of desired spin

62 *

63 * \returns

64 * —1 or I, depending on pointed spin

65 x/

66 __device__ int get(int x, int y, int z)

67 {

68 if (x < 0) x += X N;

69 else if (x >= X N) x —= X N;

70 if (y < 0)y +=YN;

71 else if (y >= YN) y —= Y.N;
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}

if (z < 0) z += Z_N;
else if (z >= ZN) z —=

Z N;

return table[x + y * XN + z x X N % Y_NJ;

/¥x%x \brief Change value of a single spin from spin table

index of desired spin

*
x DEVICE FUNCTION
*
x* "Flips" single spin under given position, assuming
x periodic boundary conditions (hyper—torus ). By "flip" we
* understand operation that changes spin table, so
* the~following calls would yield given results:
x* get I —> flip —> get —I
* get —1 —> flip —> get 1
*
* \param[in] x — horizontal
* \param[in] y — vertical index of desired spin
* \param[in] z — depth of desired spin
*/
_device__ void flip(int x, int y, int z)
{
if (x < 0) x += X_N;
else if (x >= X N) x —= X_N;
if (y < 0) y += Y_N;
else if (y >= Y. N) y —= Y_N;
if (z < 0) z += Z_N;
else if (z >= Z N) z —=Z_N;

}

table[x + y * XN + z « XN x Y N] %= —1;

/¥%x \brief Change value of a single spin from spin table

*

* X ¥ X ¥ %

DEVICE FUNCTION

\param[in] x — horizontal

\param[in] y — vertical

index of desired spin

index of desired spin

\param[in] 7z — depth of desired spin
\param[in] bit — new value for spin, should be either 1 or

*/

{

}

device__ void set(int x,

if (x < 0) x += X_N;
else if (x >= X N) x —=
if (y < 0) y += Y_N;
else if (y > YN) y —=
if (z < 0) z += Z_N;
else if (z >= ZN) z —=

int

X N;

Y_N;

Z N;

y, int z, int bit)

table[x + y * XN + z * XN % Y_N]

= bit;

/x* \brief Fills entire table with spins randomly

*

*
*
*

Each spin on the~table
with equal probability
After this operation,

is assigned value either 1 or —I,

spin

table

is ready to use.
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* \param[in] seed — unused
*/
void generate_random (unsigned seed)

{
char xtmp_table = (char *) malloc(sizeof(char) * X N « Y. N x Z N);

for (unsigned int i = 0; i < (XN * Y.N %« ZN); ++i) {
tmp_table[i] = 2 % (rand() % 2) — 1;
}

cudaMemcpy (table , tmp_table, sizeof(char) « X N x Y N % Z N, cudaMemcpyHostToDevice);

free (tmp_table);
}

/%% DEPRECATED, use clear_table instead
*x/
void generate_clear ()

{
char xtmp_table = (char *) malloc(sizeof(char) * X N « Y. N x Z N);

for (unsigned int i = 0; i < (XN * Y.N x ZN); ++i) {
tmp_table[i] = 1;
}

cudaMemcpy (table , tmp_table, sizeof(char) « X N x Y N % Z N, cudaMemcpyHostToDevice);

free (tmp_table);
}

/xx \brief Fills entire table with spins of value 1
*
* Given table is set, so that get on any spin will return 1.
* After this operation, spin table is ready to use.
*/
void clear_table ()
{
cudaMemset(table , 1, sizeof(char) « X N x Y. N x Z N);
}
1

#endif

Listing 4. termodyna_struct.h

#ifndef TERMODYNA_STRUCT H
#define TERMODYNA_STRUCT H

/% %
* structure used to gather all physical quantities
* from simulation.
*/
typedef struct termodyna_struct_s
{
double U;
double U_S;

double M;
double M_S;
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double M_S2;
double M_6;
double M_8;
double M_10;

double V4, V6, V8, VI10;
} termodyna_struct_t;

/xx \brief Prints thermodynamical data from simulation

*
* This method calculates thermodynamic quantities and prints

* them on the~screen. Calculated values are:

* — specific heat

* — magnetic susceptibility

* — Binder cumulant

* — higher order cumulants (V4, V6, V8, VIO)

* Each value is presented "per spin" (value for entire lattice

* is divided by number of spins in the~system).

*

* \param[in] data — structure filled with information to be printed
*/

void print_structure_data(termodyna_struct_t xdata);
#endif

Listing 5. termodyna_struct.cpp
#include "termodyna_struct.h"
#include "config.h"

#include <stdio.h>
#include <math.h>

void print_structure_data(termodyna_struct_t =xdata)

{

fprintf(stderr, "\nValues per spin\n");
double num_spin = X N *x Y_N % Z_N;

fprintf(stderr, "M = %f\n", data—M / num_spin);
fprintf (stderr, "U = %f\n", data—>U / num_spin);
fprintf (stderr, "X = %f\n", beta % (data—>M_S — data—M x data—M) / num_spin);

fprintf(stderr, "c %f\n", beta * beta x (data—>U_S — data—>U x data—>U) / num_spin);
fprintf (stderr, "binder = %f\n", (1.0 — data—>M_S2 / (3.0 * data—>M_S x data—>M_S)));
fprintf (stderr, "V4 = %f\n", data—>V4);

fprintf (stderr, "V6 %f\n", data—>V6);

fprintf (stderr "V8 %f\n", data—>V8);

fprintf (stderr, "VIO = %f\n", data—>V10);

Listing 6. time_update.h

#ifndef TIME_UPDATE_H
#define TIME_UPDATE H

#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#include <stdint.h>
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/xx "Interface" for time measurement

*
*

* functions , that can be used
* of particular part of code.
*

*

*

* on given operation.

*/

/xx< Timer data xx/

typedef struct time_data_s

{
struct timeval min, max, avg,
uint32_t count;

} TimeData;

/x% \brief Initializes time data
*
x After this operation, timer
*
*  \param[in/out] td — TimeData
*/

This header presents a set of implementation—independent

to measure time of execution

Those timers are not only used to measure time, but also
to determine maximal, minimal and average time spent

current;

is ready to use.

to be initialized

void init_timedata (TimeData *td);

/x%x \brief Start measurement
*

* Starts given timer. Calling
*  while timer is running will
*
*
*  \param[in/out] td — timer to
*/

this function
"restart" it,

that is drop the~measurement and start it again.

be started

void start_measure (TimeData =td);

/¥x \brief Stops measurement
*

* Stops given timer and calculates time spent.

*
*  \param[in/out] td — timer to
*/

void end_measure (TimeData xtd);

/x%x \brief Prints measurements
*

be stopped

Prints minimal, maximal and average measurement

valid FILE objects,

and thus can be used to print output to the~screen.

to write results to

*
* performed by given timer.

* Note: stdout and stderr are

*

*

* \param[in] td — timer to be printed
* \param[out] f — FILE object

*/

void print_results (TimeData xtd,

#endif

FILE xf);

Listing 7. time_update.cpp
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#include "time_update.h"
#include <string.h>

void init_timedata (TimeData =td)

{
memset(td, 0, sizeof (TimeData));
td—>min.tv_sec = (uint32_t) —1;
td—>min.tv_usec = (uint32_t) —1;

}

void start_measure (TimeData *td)
{
gettimeofday(& (td—>current), NULL);

}

void end_measure (TimeData *td)
{
struct timeval end, diff;
gettimeofday(& end, NULL);
timersub(& end, & (td—>current), & diff);

if (timercmp(& diff, & (td—>min), <)) {
td—>min = diff;

}

if (timercmp(& diff, & (td—>max), >)) {
td —>max = diff;

}

timeradd(& (td—avg), & diff, & end);
td—>avg = end;
td —>count += 1;

}

void print_results (TimeData xtd, FILE xf)
{
struct timeval tmp;
tmp.tv_sec = td—>avg.tv_sec / td—>count;
tmp.tv_usec = ((td—avg.tv_sec % td—>count) x 1000000 + td—>avg.tv_usec) / td—>count;

fprintf (f, "min: %us %uus\n", (uint32_t) td—>min.tv_sec, (uint32_t) td—>min.tv_usec);
fprintf (f, "avg: %us %uus\n", (uint32_t) tmp.tv_sec, (uint32_t) tmp.tv_usec);
fprintf (f, "max: %us %uus\n", (uint32_t) td—>max.tv_sec, (uint32_t) td—>max.tv_usec);

}

Listing 8. main.cu
/3 K sk sk ok ok sk ok ok ok ok K ok koK R KoK K R KoK K sk ok K R sk ok K K ok sk K R R oK K K ok oK K KK KK ok ok KOk
Compilation:
make

Print usage:
/1sing3d

Example of invocation:
./Ising3d 100 100 100 —N 10000 —W 2000 —S 16 —beta 0.2201

this line will start Ising simulation on single core
with the following parameters:

* Kk X X KX X X X X ¥ ¥
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* size: 100x100x100
x inverse temperature: 0.2201
* magnetic field: 0
* interaction coupling value: 1
x warm up sweeps: 2000
* Monte Carlo sweeps: 10000
* between measurements sweeps: 16
Kok oK KoK K oK K KK K K K K oK K KK K oK K KK K oK K KK K K K K KR KK K K K KK K K KK K koK Rk ok %/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <sys/time.h>
#include <unistd.h>

#include "config.h"
#include "termodyna_struct.h"

#include <cuda.h>
#include <curand.h>
#include "SpinTable.cuh"
#include "time_update.h"

/xx \brief Checking for errors from CUDA

*
* CUDA Helper function.
* Prints given message on screen, whenever
* it uncovers Error in CUDA processing.
*
* \param[in] title — message to be printed,
* along with CUDA error
*
* \returns
* true on success
* false on CUDA error
*/
bool cuda_check_error(const char xtitle)
{
cudaError_t ce = cudaGetLastError ();
if (ce != cudaSuccess) {

printf ("%s: %s\n", title , cudaGetErrorString(ce));
return false;

}

return true,;

}

/xx \brief Wait until the~end of CUDA kernel
*

* CUDA Helper function.

* This function will wait for CUDA kernel to end,
*  without using 100% of CPU.

*

* \param[in/out] evt — reusable CUDA Event

*/

void sleep_till_end(cudaEvent_t &evt)

{
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cudaEventRecord(evt, 0);

while (cudaEventQuery(evt) == cudaErrorNotReady) {
usleep (1);

/x% simple macro that replaces variable name
with exactly the~same string
Example :
TO_STR(test_variable) = "test_variable"
*/
#define TO_STR(param) #param

/x%x Configuration structure

*

* Will be copied to CUDA constant memory
*/

struct Config

{
FLOAT J, B, beta;

uint32_t XN, Y.N, ZN;
uint32_t seed;

FLOAT Udelta[14];
FLOAT testers [14];

}s

/%< data for single CUDA thread (for device) xx/
struct ThreadData

{

FLOAT U;

FLOAT M;

1

/xx< data for single CUDA thread (for host) *x/
struct ThreadDataH

{

double U;

double M;

1

/xx< Structure for holding device and host tables xx/
struct Tables

{
SpinTable hostl , xdev;

/xx \brief Initializer
*

* Creates spin table and device pointer
* to it. Also initializes it into either
* hot or cold state, depending on beta
* read from configuration.

x/

void init ()
{
hostl . host_init (X N, YN, Z N);
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}s

/%
st
{

if (beta < 0.225) {

fprintf (stderr, "Hot start\n");

hostl . generate_random (time (0) + getpid ());
} else {

fprintf (stderr, "Cold start\n");

hostl . generate_clear ();

}

cudaMalloc ((void x*x) & dev, sizeof (SpinTable));

cudaMemcpy (dev, & hostl , sizeof(SpinTable), cudaMemcpyHostToDevice);
}

/¥%x \brief Destructor

*

* Frees allocated resources.
*/

void destroy ()

{

cudaFree (dev);

hostl . host_destroy ();
}

x< Holder for data for all thread and for random number generator xx*/
ruct Actors

ThreadData xh_td, =d_td;
FLOAT xd_random;
uint32_t N;
curandGenerator_t prng;
curandStatus_t rand_res;

/xx \brief Initializer
*
* Allocates host and device memory for all threads.
x Initializes random number generator.
*/
void init ()
{
N=XN=x*x YN =xZN / 2;

cudaMalloc ((void xx) & d_td, sizeof(ThreadData) x N);
cudaMalloc ((void #*x) & d_random, sizeof (FLOAT) * N);
h_td = (ThreadData %) malloc(sizeof (ThreadData) x N);

clear_device ();
curandCreateGenerator(&prng , CURAND_RNG_PSEUDO_DEFAULT ) ;

curandSetPseudoRandomGeneratorSeed (prng, time (0) + getpid ());
}

/x*x \brief Generates random numbers

*

* Generates ALL random number needed in the~next half—sweep
x (single pass of checkerboard decomposition)
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}s

/*

/*

*

¥ X K X X X X X ¥ ¥

*/
void generate_random ()

{
rand_res = curandGenerateUniform (prng, (FLOAT x) d_random, N);

(double x) d_random, sizeof (FLOAT) x N);
if (rand_res != CURAND_STATUS_SUCCESS) {

fprintf (stderr , "Unable to generate all numbers: %u\n",
(uint32_t) rand_res);
abort ();

}
}

/x% \brief Resets threads data on device
*x/
void clear_device ()
{
cudaMemset(d_td, O, sizeof(ThreadData) *x N);

}

/¥x \brief Copies data from threads from device to host
*
* Note: This operation is slow, should be used only
* when really needed.
*/
void copy_to_host()
{
cudaMemcpy (h_td, d_td, sizeof(ThreadData) = N,
cudaMemcpyDeviceToHost);

}

/xx \brief Destructor
*
* Frees allocated resources
x/
void destroy ()
{
cudaFree (d_random);
cudaFree (d_td);
free(h_td);
curandDestroyGenerator (prng);

}
*< CUDA Device configuration (constant memory) *x/
constant__ Config cfg;
* \brief Count interaction for a single spin (global version)
DEVICE FUNCTION
This assumes nearest neighbour interaction.

Note: given spin position will be understood with
periodic boundary conditions .

\param[out] data — structure to write result to
\param[in] spin_tl — spin table to get spins from
\param[in] x — horizontal position of desired spin

\param[in] y — vertical position of desired spin
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* \param[in] z — depth of desired spin
*/

__device__ void single_step_full (ThreadData =xdata,

}

SpinTable =xspin_t1 ,
int x, int y, int z)

if ((x >= cfg.XN) Il (y > cfg.YN) Il (z > cfg.Z N)) return;

int center, down, right, in;

center = spin_tl —>get(x, y, z);
down = spin_tl —>get(x, y + 1, z);
right = spin_tl —>get(x + 1, y, z);
in = spin_tl —>get(x, y, z + 1);

data—M += center;
data—>U += — cfg.J % (center x down +
center x right +
center * in)
— cfg.B % center;

/x%x \brief Counts magnetization and energy for entire lattice

{

*

* KERNEL

*

* Hamiltonian inside, nearest neighbour interaction and

* periodic boundary conditions are assumed.

*

* \param[out] data_t — structure to be filled with information

* about magnetization and energy of the~lattice
* \param[in] spin_tl — spin table to count values from

*/

_global__ void count_full_energy (ThreadData =data_t,
SpinTable xspin_t1)

uint32_t x, y, z;

x = blockldx .x;
blockldx .y;
z = threadldx .x *x 2;

«
Il

int add = (x + y) % 2;
z += add;

int idx = (x +y * cfg. XN+ z x cfg. XN x cfg. Y N) / 2;
ThreadData xdata = & data_t[idx];

single_step_full (data, spin_tl, x, y, z);

syncthreads ();

if (add) {
z —= 1;
} else {
z += 1;

}

single_step_full (data, spin_tl, x, y, z);
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309 /+x \brief Single spin update

310 *

311 * DEVICE FUNCTION

312 *

313 * This is the~realization of Metropolis algorithm.

314 * — delta energy for current configuration is calculated
315 * — using pre—calculated tables, we determine whether
316 * this configuration should change or not

317 * — if needed, flip is performed

318 *

319 * \param[out] data — structure to write result to

320 * \param[in] random — random number associated with this thread,
321 * used for determining spin flip.
322 *  \param[in/out] spin_tl — spin table to get spins from
323 * \param[in] x — horizontal position of desired spin
324 * \param[in] y — vertical position of desired spin

325 * \param[in] z — depth of desired spin

326 */

327 __device__ void single_step (ThreadData =xdata,

328 FLOAT xrandom ,

329 SpinTable *spin_tl ,

330 int x, int y, int z)

331 |

332 if ((x >= cfg.XN) Il

333 (y >= cfg. Y N) Il

334 (z >= c¢fg.Z N)) return;

335

336 int center, down, right, up, left, cross, in, out;

337 center = spin_tl —>get(x, y, z);

338 up = spin_tl —>get(x, y — 1, z);
339 down = spin_tl —>get(x, y + 1, z);
340 left = spin_tl —>get(x — 1, y, z);
341 right = spin_tl —>get(x + 1, y, z);
342 in = spin_tl —>get(x, y, z + 1);
343 out = spin_tl —>get(x, y, z — 1);

344

345 cross = center * down +
346 center * up +

347 center * right +
348 center * left +

349 center * in +

350 center * out;

351

352 int index = (cross + 6) / 2 + 7 x ((center + 1) / 2);
353 FLOAT Udelta = cfg.Udelta[index ];

354

355 FLOAT tester = cfg.testers[index];
356

357 FLOAT randed = (FLOAT) 1.0 — xrandom;
358

359 if ((Udelta < 0) Il (randed < tester)) {
360

361 spin_tl —>flip(x, y, z);

362

363 data—M += —2.0f x center;

364 data—>U += Udelta;

365 }

366}
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367

368 /+x \brief Checkerboard decomposition step

369«

370 * KERNEL

371 *

372 * This function updates half of the lattice using

373 * Metropolis algorithm.

374 * This one is very simple, thanks to splitting

375 * cube into lines.

376 x

371 * \param[out] data_t — data table for all threads

378 *  \param[in] random_t — table with random numbers for all threads
379 *  \param[in/out] spin_tl — spin table to be modified

380 * \param[in] adder — determines, whether we’re updating "white"
381 * or "black" part of the~checkerboard.
382 x/

383 __global__ void count_MC_step(ThreadData =xdata_t,

384 FLOAT xrandom_t ,

385 SpinTable *spin_t1l,

386 int adder)

387 {

388 uint32_t x, y, z;

389

390 X = blockldx .x;

391 y = blockldx.y;

392 z = threadldx.x * 2 + (x + y + adder) % 2;

393 int idx = (x +y * cfg. XN+ z x cfg. XN x cfg.Y.N) / 2;
394

395 ThreadData xdata = & data_t[idx];

396 FLOAT xrandom = & random_t[idx ];

397

398 single_step (data, random, spin_tl, X, y, z);

399 1}

400

401 /xx \brief Preparation of global tables for device
402 *

403 *  Main values from configuration are copied.

404 *

405 * FEnergy delta and probability tables are filled:
406 ¥ There are 14 possibilities (7 for center spin with
407 * value 1 and 7 with value —1). We assign to each of
408 * that configuration an integer from 0 (including) to
409 * 13 (including ). Then we calculate energy difference
410 * for virtual spin flip performed on that particular
411 * configuration , and probability of real spin flip.
412 */

413 void fill_and_export_cfg ()

414 |

415 cfg.J] = 171;

416 cfg.beta = beta;
417 cfg.B = B;

418

419 cfg . X N = X N;

420 cfg. Y N = YN;

421 cfg.ZN = ZN;

422

423 cfg.seed = time(0) + getpid ();
424

425 for (uint8_t i = 0; i < 14; ++i) {
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int ¢
int e

(i /7)) «2—1;
(i%7) 2 — 6;

FLOAT delta = 2.0 * (J * e + B % ¢);

cfg.Udelta[i] = delta;
cfg.testers[i] = exp(—beta *x delta);
}

cudaMemcpyToSymbol (TO_STR(cfg), & cfg, sizeof(cfg));
}

/x%x \brief Copies all data obtained on GPU
*

* Helper function.
* Copies all actors and sums up their magnetizations
* and energies obtained in simulation.
*
* \param[in] act — Actor structure, to take data from
* \param[in/out] ret — host data structure, to
* accumulate results in
*/
void sumup_actors(Actors &act, ThreadDataH &ret)
{

act.copy_to_host();

for (uint32_t i = 0; i < act.N; ++1i) {
ret M += act.h_td[1].M;
ret .U += act.h_td[i].U;

}

/x*x \brief Final set of calculations

*

This method divides given values by amount of
Monte Carlo steps taken. Also calculates
higher order cumulants.

* X ¥ ¥ ¥

\param|[in/out] final — set of values to be recalculated
*/

void divide_final(termodyna_struct_t xfinal)
{

final —>M /= MC.N;

final —>M_S /= MCN;

final —>M_S2 /= MC_N;

final —>M_6 /= MC.N;

final —>M_8 /= MC.N;

final —>M_10 /= MC_N;

final —>U /= MCN;

final —>U_S /= MCN;

final —>V4 = final —>M_S2 /
(final —>M_S % final —>M_S);
final —>V6 = final —>M_6 /
(final —>M_S * final —>M_S % final —>M_S);
final —>V8 = final >M_8 /
(final —>M_S x final —>M_S * final —>M_S % final —>M_S);
final —>V10 = final —>M_10 /

(final =>M_S * final —>M_S * final —>M_S * final —>M_S % final —>M_S);
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485 }

486

487 /xx \brief Program entry

488 *

489 * \param[in] argc — amount of command line arguments passed to program
490 * \param[in] argv — arguments passed to program
491 x/

492 int main(int argc, char =xxargv)

493 |

494 srand (time (0) + getpid ());

495

496 struct timeval tstart , tend, tdiff;

497 // start measuring total time used by algorithm
498 gettimeofday(& tstart , NULL);

499

500 // read configuration from command line

501 if (parse_args(argc, argv)) f{

502 return 1;

503 }

504

505 TimeData time_data;

506 init_timedata(& time_data);

507

508 // print current configuration

509 hello_message ();

510 // prepare spin configuration tables and copy them to device
511 fill_and_export_cfg ();

512

513 // prepare spin table
514 Tables tables;
515 tables.init ();

516

517 // prepare actor data

518 Actors actors;

519 actors .init ();

520

521 termodyna_struct_t full;

522 // prepare structure to keep data in

523 ThreadDataH base;

524 memset(& full , 0, sizeof(full));

525 memset(& base, 0, sizeof(base));

526

527 // pick block and grid sizes

528 dim3 block_size = dim3(ZN / 2, 1, 1);
529 dim3 grid_size = dim3(X_ N, YN, 1);

530

531 fprintf (stderr, "grid: (%u, %u, %u), block: (%u x2, %u, %u)\n",
532 grid_size.x, grid_size.y, grid_size.z,

533 block_size .x, block_size.y, block_size.z);

534 fprintf (stderr, "effective: grid: %u, block: %u\n",

535 grid_size .x x grid_size.y * grid_size.z,

536 block_size.x x block_size.y * block_size.z);

537

538 cudaEvent_t evt;

539 cudaEventCreate(& evt);

540

541 // count energy of the~system we start with

542 count_full_energy <<<grid_size , block_size >>>(actors.d_td, tables.dev);

543 sleep_till_end (evt);
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if (! cuda_check_error("count_full_energy")) return 1;
sumup_actors (actors , base);
actors .clear_device ();

// perform warm—up
for (uint32_t i = 0; i < WARMUP; ++i) {
start_measure(& time_data);

actors . generate_random ();

count_MC_step<<<grid_size , block_size >>>(actors.d_td,
actors .d_random, tables.dev, 0);

sleep_till_end (evt);

if (! cuda_check_error("warmup")) return 1;

actors . generate_random ();

count_MC_step<<<grid_size , block_size >>>(actors.d_td,
actors .d_random, tables.dev, 1);

sleep_till_end (evt);

if (! cuda_check_error("warmup")) return 1;

end_measure(& time_data);

}

// the simulation
for (uint32_t i = 0; i < MCN x SKIP; ++i) {
start_measure(& time_data);

actors .generate_random ();

count_MC_step<<<grid_size , block_size>>>(actors.d_td,
actors .d_random, tables.dev, 0);

sleep_till_end (evt);

if (! cuda_check_error("main sweep 0")) return 1;

actors .generate_random ();

count_MC_step<<<grid_size , block_size>>>(actors.d_td,
actors .d_random, tables.dev, 1);

sleep_till_end (evt);

if (! cuda_check_error("main sweep 1")) return 1;

end_measure(& time_data);

if ((i % SKIP) == 0) {
sumup_actors (actors , base);
actors .clear_device ();

full M += base .M;

full .M_S += pow(base.M, 2.0);
full .M_S2 += pow(base.M, 4.0);
full . M_6 += pow(base.M, 6.0);
full .M_8 += pow(base.M, 8.0);
full .M_10 += pow(base.M, 10.0);
full .U += base.U;

full .U_S += pow(base.U, 2.0);

}

print_results(& time_data, stderr);

divide_final(& full);
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// print output data
print_structure_data(& full);

// free memory and cleanup
cudaEventDestroy (evt);
actors .destroy ();

tables .destroy ();
cudaThreadExit ();

gettimeofday(& tend, NULL);
// check and print how long it took
timersub(& tend, & tstart , & tdiff);
fprintf(stderr, "Obliczenia zajely: %lu.%06lus\n",
(unsigned long int) tdiff.tv_sec,
(unsigned long int) tdiff.tv_usec);

return 0;

Listing 9. Makefile

CXXFLAGS=—Wall —Wextra —02
NVCCFLAGS=—02 —ptxas—options=—v —arch=sm_21

all: time_update.o config.o termodyna_struct.o main.o
g++ ${CXXFLAGS} —o Ising3d =*.0 —L/usr/local/cuda/lib64 —lcuda —lcudart —Icurand

debug:
nvcc —cubin —pxtas—options=—v main.cu

%.0: %.cu
nvce ${NVCCFLAGS} —c $<

clean:
rm —f x.o0 Ising3d



