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Topology of C20 Based Spongy Nanostructures
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Abstract: Spongy materials are encountered in nature in zeolites used as molecular sieves. There are also synthetic
compounds like spongy carbon, metal-organic frameworks MOFs, etc, with a hollow structure. The design and topological
study of some hypothetical spongy nanostructures is presented in terms of map operations and genus calculation on their
associated graphs. The design of nanostructures was performed by original software packages.
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I. INTRODUCTION

Spongy structures are hollow-containing materials en-
countered in natural or synthesized zeolites, in spongy car-
bon, etc., spongy polyhedra that can evolve with 1-periodicity
or radially to provide multi-shell cages. Spongy multi-shell
cages are also called multi-tori, because they consist of more
than one torus [1-4]. They include negatively curved sub-
structures [5-8] and are also termed schwarzites, in honor of
H.A. Schwarz [9,10] who firstly investigated the differential
geometry of such kind of surfaces. Multi-tori are supposed to
result by self-assembling of some repeating units/monomers
formed by opening of cages/fullerenes.

Graphs associated to schwarzites are assumed to be em-
bedded in triply periodic (intersection-free) minimal surfaces
thus forming labyrinth graphs. A surface S can be character-
ized by its genus [11,12], defined in terms of the integral Gaus-
sian curvature according to the Gauss-Bonnet relation [13]

χ(S) = (1/2π)

∫
S

KdS (1)

with χ(S) being the Euler-Poincaré characteristic. From this,
the surface genus g is calculated by the Euler-Poincaré for-
mula [12]:

χ(S) = n(1− g) = v − e+ f (2)

where n = 1 for non-orientable (Moebius) surfaces and
n = 2 for orientable surfaces while v = |V (G)| is the number
of vertices/atoms, e = |E(G)| is the number of edges/bonds
and f is the number of faces of the graph/molecule.

II. OPERATIONS ON MAPS

A map M is a combinatorial representation of a (closed) sur-
face. Operations on maps are topological-geometrical trans-
formations allowing to transform or to relate a given polygo-
nal structure. Several operations on maps are known and we
present herein only the most used ones [14-18].
Dualization Du of a map starts by locating a point in the
center of each face (Fig. 1, left). Next, two such points are
joined if their corresponding faces share a common edge
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(Fig. 1, right). It is the (Poincaré) dual Du(M). The vertices of
Du(M) represent the faces of M and vice-versa. Thus the fol-
lowing relations exist: Du(M); v = f0; e = e0; f = v0 [19].

Fig. 1. Dualization of a fullerene patch

Dual of the dual returns the original map:Du(Du(M)) =M .
Tetrahedron is self-dual while the other Platonic polyhedra
form pairs: Du (Cube (C)) = octahedron (Oct); Du (Dodeca-
hedron (Do)) = Icosahedron (Ico) (Fig. 2). Note that all the
operation parameters presented herein refer to regular maps
(e.g., the Platonic solids); a subscript zero indicates a parent
map parameter.

Fig. 2. The duals of the five Platonic polyhedra

Polygonal Pk mapping (k = 3, 4, 5) of a face is achieved
as follows [2, 3]: add a new vertex in the center of the face.
Put k − 3 points on the boundary edges (Fig. 3). Connect
the central point with one vertex (the end points included)
on each edge. In this way the parent face is covered by trian-
gles (k = 3), quadrilaterals (k = 4) and pentagons (k = 5).
The P3 operation is also called stellation or (centered) tri-
angulation. The resulting map shows the relations: Pk(M),
v = v0 + (s − 3)e0 + f0; e = se0; f = s0f0, so that the
Euler’s relation (2) holds. Fig. 4 gives examples of the P k

operations realization.

Fig. 3. Polygonal mapping of a fullerene patch; P3 (left); P4 (middle)
and P5 (right)

Fig. 4. Polygonal mapping of the Dodecahedron by P3(Do) (left);
P4(middle) and P5(Do) (right)

Medial Med of a map is achieved [2,19] by putting a new
vertex in the middle of each original edge. Join two vertices if
the original edges span an angle (and are consecutive within
a rotation path around their common vertex in M ) Fig 5.
Medial is a 4-valent graph and Med(M) =Med(Du(M)).
The transformed parameters are: Med(M); v = e0; e = 2e0;
f = f0 + v0.

Fig. 5. Medial of a fullerene patch

Medial operation rotates parent s-gonal faces by π/s. Points
in the medial represent original edges, thus this property can
be used in topological analysis of edges in the parent poly-
hedron. Similarly, the points in dual give information on the
topology of parent faces. Fig. 6 illustrates the medial opera-
tion performed on the five Platonic polyhedra.

Fig. 6. The medials of the five Platonic polyhedra

Truncation Tr is achieved [2, 19] by cutting off the neigh-
borhood of each vertex by a plane close to the vertex, such
that it intersects each edge incident to that vertex. Truncation
is similar to the medial, the transformed parameters being:
Tr(M); v = 2e0 = d0v0; e = 3e0; f = f0 + v0. This was
the main operation used by Archimedes in building up the
well-known 13 (Archimedean) solids. Fig. 7 illustrates the
realization of this operation on the Icosahedron.
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Tab. 1. Genus calculation in spongy structures Cn(Don) of Fig. 1

Structure v e f5 fw(s)
∗ f χ g gu u

C4(Do4)_50 50 90 42 4(3) 36 −4 3 1.5 4

C8(Do8)_100 100 180 84 6(4) 72 −8 5 1.5 8

C20(Do20)_250 250 450 222 12(5) 180 −20 11 1.5 20

∗fw stands for the window-faces

Fig. 7. Truncation of the Icosahedron

III. STRUCTURE CONSTRUCTION

Dodecahedron Do, as the molecule C20, can self-arrange
in spongy structures of general formula Cn(Don), with Cn be-
ing a tri-connected cage submitted to map operations (a map
is a discretized surface) as follows: (i) design the hollow core
by applying the polygonal P4 map operation on Cn (that
covers the map with square-like faces) followed by the se-
lective truncation “TRS” of the highest-connected vertices;
(ii) draw the envelope by S2(Cn) map operation [18]. Next,
the two cages: P4TRS(Cn) (inside) and S2(Cn) (outside) are
interconnected (by joining the closest pair atoms) to give
Cn(P4TRS@S2)(Don) or simply Cn(Don). The number of
atoms in such spongy double-shell cages [4] is nspongy =
12.5n and it is often written as a suffix: Cn(Don)_12.5n. For
the three cubic Platonic solids, the corresponding objects are
shown in Fig. 8.

Fig. 8. Spongy structures decorated by dodecahedron Do cages, de-
rived from the Platonic solids: dodecahedron (Do=C20, top); cube

(C=C8, middle) and tetrahedron (T=C4, bottom)

In spongy structures, built up from u tube junction units, of
genus gu, the genus is calculated by:

g = u(gu − 1) + 1 (3)

irrespective of the unit tessellation [20]. For the spongy struc-
tures of Fig. 8, the genus is calculated cf. (3), as shown in
Tab. 1.

The spongy structure C20(Do20)_250 (Fig. 8, right) is a 6-
nodal 3,4-c

{
(56)60

[
(55)30(5

5)60
][
(53)20(5

3)20(5
3)60

]}
spongy hyper-dodecahedron, made from 20 cells all do-
decahedral, a face-regular 5R5 map of genus g = 11,
its core being the 110-keplerate [4]. The packing fraction
φ = 20/33 ≈ 0.6060 is calculated with respect to the 33
dodecahedra needed for the radial space filling). Comparing
with the spheres maximum fraction (0.7405) clearly it is a
spongy, non-convex structure. Its pentagons, however, show
some distortion (and strain) to the regular pentagon. For the
general regular polytopes the reader is invited to consult refs.
[21-24].

IV. CONCLUSIONS

Spongy structures were designed in this paper by using map
operations, as implemented in our original software packages
CVNET and Nano Studio. The genus calculation of their
associated graphs revealed that these are structures of high
genera. Structures have been done by our original software
CVNET and Nano Studio [25,26].
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