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Computer Simulation of Cyclic Polymers in Disordered Media
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Abstract: In order to determine the structure and dynamical properties of cyclic polymers (rings) in a random environment
we developed and studied an idealized model. All atomic details were suppressed, chains were represented as a sequence
of identical beads and were embedded to a simple cubic lattice. A set of obstacles was also randomly introduced into the
system and it can be viewed as a model of porous media. A Monte Carlo sampling algorithm using local changes of chain
conformation was used to sample the conformational space. It was shown that the mean dimensions of the chain changed
with the concentration of obstacles but these changes were non-monotonic. The long-time (diffusion) dynamic properties
of the system were also studied. The differences in the mobility of chains depending on the obstacle density were shown
and discussed.
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I. INTRODUCTION

The structure and dynamic properties of polymer chains
in a random environment like porous media is an interest-
ing and challenging problem and it has recently been a sub-
ject of many experimental and theoretical studies [1-2]. This
is because of the practical importance of coating the sur-
faces, laminates, chromatography, colloidal stabilization etc.
[3]. Simple lattice models of linear and non-linear (cyclic,
star-branched) polymer chains confined in a slit were a sub-
ject of many computer simulation studies [4]. The introduc-
tion of obstacles into the slit containing a polymer chain was
treated as a crude model of macromolecules in porous me-
dia (quenched disorder) [1]. The scaling properties of chains,
changes of their shape and density distributions were de-
termined for such systems [1]. Theoretical considerations
and computer simulations concerning macromolecules in

a system containing impenetrable obstacles (rods, spheres)
in three- and two-dimensional space were also frequently
performed [5-20].

Cyclic chains are also of great interest especially due to
their different dynamic properties in dense melts when com-
pared to linear and branched macromolecules [21-23]. Rings
were studied in real experiments [23-28], theoretically [29-
31] and by means of computer simulation [32-44]. It was
shown that the scaling behavior of single (isolated) cyclic
polymers was very similar to linear ones. However, size of
the rings (squared radius of gyration S2) in the melt scaled
with their length as N0.83 instead of N1 while the dynam-
ics was similar: the self-diffusion coefficientD~N−1.59 [41,
43]. Moreover, very long cyclic chains in melt are collapsed
and the scaling of their size was asN2/3 [42, 44]. The forma-
tion of catenated structures and its influence on the properties
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of the macromolecular system was also studied [45]. Cyclic
chains in the system of obstacles (a model of disordered me-
dia) were studied by computer simulations [46-48] and the-
oretical deliberations [29-30]. The behavior of rings in dis-
ordered media was predicted to be different than those of
linear and star-branched chains: long macromolecules con-
sisted of N elements, the squared radius of gyration scaled
as N1 while the self-diffusion coefficient as N−2.

In this paper we studied the influence of small obstacles
on the structure and dynamic properties of a single cyclic
polymer chains. For this purpose we used a coarse grained
model of chains embedded in a simple cubic lattice. This lat-
tice approximation should not affect the results as we are not
interested in the local structure but we studied parameters
describing the chain as a whole. The polymers were mod-
eled at good solvent conditions and the excluded volume was
the only polymer-polymer potential that was used. Proper-
ties of the model polymer system were determined by means
of the Monte Carlo simulations with the sampling algorithm
of a Verdier-Stockmayer type using local modifications of
chain conformation.

II. THE MODEL AND THE SIMULATION
ALGORITHM

The coarse-grained model of macromolecules was re-
alized by the construction of cyclic sequences of N iden-
tical beads, where a single bead represented some chemi-
cal mers. This idealized model was found to be sufficient
for the studies of properties of a chain as a whole. In or-
der to make the calculations more efficient we also intro-
duced a lattice approximation: the positions of these poly-
mer beads in space were limited to vertices of a simple cubic
lattice. The excluded volume was the only potential intro-
duced into the model and the chains could not cross them-
selves. Other long-distance interactions were assumed to be
zero, the system was athermal and the polymer chains were
studied at good solvent conditions. Obstacles that were im-
penetrable for polymer beads were randomly introduced into
the system. The size of an obstacle was the same as that of
a polymer bead. The excluded volume was the only potential
between obstacles and polymers. The model system consist-
ing of one cyclic macromolecule and m obstacles was put
into a large Monte Carlo box - the edge of the box was cho-
sen to be large enough when compared to the chain‘s diam-
eter in order to avoid the chain interacting with its image:
L� 2〈S2〉.

The properties of the systems under consideration were
determined by means of a computer simulation employing
a Monte Carlo algorithm based on local changes of chain
conformation. The set of these local moves consisted of:
1-bead motion, 2-bead motion and 2-bead crankshaft mo-
tion [49]. A polymer bead was picked at random and an at-
tempt of a local motion was performed and accepted/rejected

due to geometrical constraints. The above set of micromod-
ification was found insufficient for dense polymer systems.
Usually, the possibility of reptation was introduced into the
model in such a case, but cyclic chains do not have ends
and thus we have to use a different move. Thus, we decided
to introduce wave motions where one bond is replaced by
a sequence of three bonds forming U-shape. This modifica-
tion of the chain conformation is not local as it shifts a frag-
ment of chain along the chain contour for distances compa-
rable with the number of beads [50]. All types of elementary
moves were employed with the same frequency because such
a procedure was efficient and provided the correct time scale
in the simulation [49, 51]. The time unit was defined as one
attempt of each type of local motions per polymer bead on
average.

An initial polymer conformation was constructed in
a process of the simultaneous growing and equilibration
procedure starting from the shortest possible chain, i.e. the
square consisting of N = 4 beads [49]. Then, the obstacles
were added randomly. For each system under consideration
30-40 independent Monte Carlo simulation runs were per-
formed for a different set of obstacles. Each Monte Carlo
run consisted of 109 – 1010 time units and it started from
a different initial configuration of chains and different sets
of obstacles. At the start of the each simulation run the equi-
libration run was performed, which lasted 107 – 108 time
units. The criterion of the system equilibration was the sta-
bility of some parameters of the system, such as radius of
gyration and the center-of-mass autocorrelation function.

III. RESULTS AND DISCUSSION

The simulations were performed for cyclic chains con-
sisting of N = 50, 100, 200, 400 and 800. This range of
chain lengths allows studying the long-time behavior of such
systems, i.e. the self-diffusion of macromolecules. These
lengths are also sufficient to avoid the influence of lattice
approximation. The density of obstacles ρobs was defined as
a fraction of sites in the Monte Carlo box occupied by these
impenetrable objects, i.e.:

ρobs =
ml3

L3
, (1)

where m is the number of obstacles, L is the size of the
Monte Carlo box and l = 1 is the lattice unit. The density
of obstacles was changed between ρobs = 0 and 0.25, i.e.
in the range where the sampling algorithm is still efficient.
The size of the box was chosen L = 100 lattice units.

The size of a model chain is usually described by means
of the mean-squared radius of gyration 〈S2〉 calculated as

〈
S2
〉
=

1

N

N∑
i=1

〈
(ri − rcm)2

〉
, (2)



Computer Simulation of Cyclic Polymers in Disordered Media 23

where ri is a vector denoting a position of a i-th bead and
rcm denotes the position of the chain‘s center-of-mass po-
sition. Fig. 1 presents the mean-squared radius of gyration
〈S2〉 as a function of the chain length N for three different
obstacle densities. One can observe that the size of the chain
is not affected by the presence of a small number of obstacles
(ρobs = 0.1). Introduction of the further amount of obstacles
leads eventually to the chain contraction.

Fig. 1. The mean-squared radius of gyration 〈S2〉 of the ring poly-
mer as a function of the chain length N . The densities of obstacles

ρobs are given in the inset

In all cases the size of the chain scales with its length like
Nγ , and the scaling exponent was found γ = 1.187± 0.002
for ρobs = 0 (a chain without obstacles), 1.185 ± 0.003 for
ρobs = 0.1 and 1.155± 0.009 for ρobs = 0.25, respectively.
Other simulation models (long chains on face-centered cu-
bic lattice) estimated the exponent as 1.186 [37]. Recent ex-
perimental studies concerning polystyrenes in benzene-d6
gave this exponent 1.20±0.04 [52] while theoretical predic-
tions varied between 1.11 and 1.176 [53-54]. The decrease
of the scaling exponent with the increase of the density of
obstacles was rather small when compared to the behavior
a cyclic polymers in melt where S2~N0.83 [42] On the other
hand, it was considerably higher than that predicted theo-
retically from scaling considerations for rings in gel, where
S2~N1 [29-30]. This difference can be explained by the fact
that gel contains chemical crosslinks and topological entan-
glements that significantly reduce available conformational
space. Moreover, small obstacles introduced to our model
system are apparently at lower densities than polymer gel
and below the percolation threshold (this threshold is 0.3116
for a simple cubic lattice).

The long-time dynamic properties of the polymer are
usually studied by the analysis of the mean-squared displace-
ment. We studied the center-of-mass autocorrelation func-
tion gcm(t) defined as:

gcm(t) =
〈
[rcm(t)− rcm(t = 0)]

2
〉
, (3)

where rcm stands for the center-of-mass position. This func-
tion is more statistically stable than the mean-squared dis-
placement. In normal (Fickian) diffusion the mean-squared
displacement scales as t1 but in disordered systems the
anomalous diffusion appears, i.e. gcm(t) scales as ta with
a < 1. This relation is valid below the percolation thresh-
old and the exponent for longer times approaches the value
1 again [6]. Fig. 2 presents the autocorrelation function for
the chain N = 50 for various densities of obstacles. One
can observe that the upper curve (no obstacles) scales a t1

in the entire ranges of time. Introduction of the small num-
ber of obstacles (ρobs = 0.01 and 0.05) does not change the
scaling behavior or the region with the subdiffusion is very
narrow. For higher obstacles densities (ρobs = 0.05) one can
observe regions with the exponent a < 1. This subdiffusive
behavior is apparently caused by caging the chains and thus
hindering them.

Fig. 2. The center-of-mass autocorrelation function for the chain
N = 50. The densities of obstacles ρobs are given in the inset

The diffusion coefficient D was calculated according to
the Einstein relation:

D =
gcm(t)

6t
(4)

where t is time. The diffusion coefficient was determined
for longer displacements of the chain where the gcm func-
tion scales as t1 [55]. In Fig. 3 the diffusion coefficient D
was plotted against the chain length N . One can observe the
scaling behavior in all obstacle densities. The diffusion coef-
ficient scales as N−1.00±0.01, N−1.21±0.03, N−1.25±0.07 for
the density ρobs = 0, 0.1 and 0.25, respectively. The same
influence of the chain length and the density of the con-
centration was found experimentally for circular DNA [28].
In a cyclic polymer melt the scaling of the diffusion coef-
ficient was found D~N−1.59 [41] while theoretical predic-
tions for a ring in gel (obstacles) gave stronger dependency:
D ~N−2 [29-30].
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Fig. 3. The polymer self-diffusion coefficientD of the ring polymer
as a function of the chain length N . The densities of obstacles ρobs

are given in the inset

Besides the above scaling behavior of size and dynamic
parameters we studied the influence of the obstacles density
on the chain properties. In Fig. 4 we present the reduced
mean-squared radius of gyration 〈S2〉/N1.2 as a function of
the obstacles density ρobs for different lengths (this parame-
ter was divided byN1.2 in order to make the results obtained
for all chains under consideration comparable. Exponent 1.2
was chosen because the size of a free chain scales as N1.2.

Fig. 4. The reduced mean-squared radius of gyration 〈S2〉/N1.2 as
a function of the density of obstacles ρobs. The chain lengths are

given in the inset

One can observe that in a wide range of obstacle den-
sities the size of chains is almost constant (ρobs < 0.15).
Further increase of the obstacle density led to the increase of
the chain size. This behavior was rather expected as recently
theoretical deliberations (PRISM/polymer reference interac-
tion site model theory) and computer simulations of linear
chains in a similar environment revealed non-monotonic de-
pendency of the radius of gyration on the density of obsta-

cles: the size of the linear chain decreased for very low ob-
stacle densities and increased moderately (PRISM theory) or
rapidly (Monte Carlo simulations): the size of linear chains
was stable for low densities of obstacles and above density
0.05 the size of the polymer increased [19]. The only differ-
ences in the behavior of linear and cyclic chains in random
media were that the increase for rings began at higher den-
sities, i.e. for ρobs > 0.15. The increase of the size of cyclic
chains is smaller than the linear ones. This can be explained
by the fact that linear polymers have free ends and thus they
can much easier expand and their expansion is mainly origi-
nated from the ends. The expansion of rings can be realized
by cooperative extension of parts of chains but this motion is
considerably hindered because of constraints. The behavior
of linear, branched and branched chains was found different
in systems containing larger obstacles like rods where the
chain size decreased for obstacle densities [4].

Fig. 5 presents the dependency of the diffusion coeffi-
cient D on the density of obstacles ρobs for all chain lengths
under consideration. One can observe that the decrease of
the chain mobility with the increase of the obstacle density
is similar for all chains. Two regimes can be distinguished
in the behavior of the self-diffusion coefficient. At lower
densities of obstacles the dependence is exponential, i.e. D
~exp(−aρobs) and a is roughly equal to 2. For the density
of obstacles above 0.2 the decrease of the chain mobility be-
comes more rapid but it is impossible to clearly identify the
scaling behavior as the simulation algorithm becomes ineffi-
cient.

Fig. 5. The polymer self-diffusion coefficientD as a function of the
density of obstacles ρobs. The chain lengths are given in the inset

Visualization of the studied systems is presented in
Fig. 6. Typical conformations of a short chain (N = 50)
at low and high density of obstacles look similar although
we know that for higher obstacle density the size of the
macromolecule is higher for short chains (see Figure 3 and
the discussion above). The chain at higher obstacle density
has more extended fragments (trans conformations) but, on
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Fig. 6. Typical conformations of chain:N = 50 and ρobs = 0.1 (a),N = 50 and ρobs = 0.25 (b),N = 800 and ρobs = 0.1 (c),N = 800
and ρobs = 0.25 (d)

the other hand, it contains more locally coiled sequences.
The snapshots of a long chain (N = 800) at low and high
obstacle densities look similar to those of the short chain.

IV. CONCLUSIONS

In this paper we studied the behavior of cyclic polymer
chains in porous media by means of dynamic Monte Carlo
simulations. The model chains were built without atomic
details as sequences of identical segments whose positions
were restricted to vertices of a simple cubic lattice. The pres-
ence of small impenetrable obstacles simulated the presence
of porous media. The mean size of chains depended on the
concentration of obstacles: the longer the chain, the stronger
the impact of obstacles. The size of the chain did not change
monotonically with the obstacle density, which confirmed
that it was a universal behavior when the size of obstacles
was comparable with polymer segments. The mobility of the
chain decreased with the increase of obstacle density regard-
less of the polymer length. It was found that the polymer
self-diffusion coefficient scaled with the chain length as N b

and the value of the exponent b changed from −1 to −1.25
when going from a free chain to porous media with higher
obstacle density but still below the percolation threshold.
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