
CMST 20(4) 139-150 (2014) DOI:10.12921/cmst.2014.20.04.139-150

Extracting Use Case Scenarios and Domain Models
from Legacy Software

M. Śmiałek, K. Rybiński, N. Jarzębowski, W. Nowakowski, S. Blatkiewicz

Warsaw University of Technology
Warsaw, Poland

E-mail: smialek@iem.pw.edu.pl

Received: 22 May 2014; revised: 01 October 2014; accepted: 7 November 2014; published online: 11 January 2015

Abstract: Developing a new software system based on legacy software is a labor-intensive process. The main problem
lies in preserving the application and domain (business) logic. This paper presents an approach to automate the process of
extracting this logic, together with accompanying domain definitions. The approach is based on recording and processing
the legacy system behaviour, observable through its user interface. The recovered application logic is represented with
use case scenarios having precise sentences describing user-system interactions. These scenarios are tightly linked with
domain models which are also created. The presented approach is supported by a tool chain. The central idea is to use
a standard test automation system to capture test scripts. These scripts are then processed by a dedicated translation tool
and translated into constrained natural language models. These models are machine processable, which allows for further
automatic transformations even down to code. The paper presents the results of a case study where the approach and tools
were used to migrate an old desktop system to a modern web technology application.
Key words: legacy system recovery, application logic recovery, model-driven requirements engineering

I. INTRODUCTION AND RELATED WORK

Many modern software systems use old, obsolete tech-
nologies. It is thus necessary to move them to new, efficient
technologies that would allow for their further development.
This includes the rising trend to substitute classical desktop
systems with their web-based versions. Unfortunately, reco-
very of logic from such legacy software is very hard. This is
usually caused by inability to comprehend and analyse the
code which became tangled and twisted throughout the years
of development. Thus, it is often much easier to write a new
system from scratch instead of attempting to understand and
modify the existing system.

This paper proposes a method for recovering important
elements of legacy software independently of their code struc-
ture and details. Instead of analysing and reverse-engineering
the code, we propose to reverse-engineer the system’s user
interface. Our method is accompanied by a tool for extracting

application logic information from legacy systems to facili-
tate further easy migration into new system design. Applica-
tion logic carries information about the user-system dialogue
in relation to domain-specific data processing and platform-
specific user interface appearance. In our solution, such in-
formation can be extracted from any legacy system by deter-
mining its observable behaviour. This information can then be
stored in the form of requirements-level models written in the
Requirements Specification Language (RSL) [1] which has
precise formal specification of its syntax [2]. These models
can be then transformed into architectural and design-level
models or even into code [3].

The recovery process is illustrated in Fig. 1. It consists
of three major steps: 1) recording test scripts, 2) transform-
ing scripts to RSL, 3) manually correcting RSL models. In
the first step, the legacy system is subject to “UI ripping”
(recording the observable behaviour) as available in standard
commercial test automation tools. The legacy system users



140 M. Śmiałek, K. Rybiński, N. Jarzębowski, W. Nowakowski, S. Blatkiewicz

Fig. 1. Overview of the recovery process

work with it as normal but also record their activity using
the test tool that integrates with the user interface. This pro-
duces processable test scripts (e.g., in the XML format). The
scripts are then processed by a dedicated tool, called TALE
(Tool for Application Logic Extraction), developed within
the REMICS project [4]. The tool can process test scripts
and turn them automatically into RSL models, consisting of
use case scenarios and domain notions. These models can be
further edited manually by merging scenarios and grouping
them into use cases. The final step is to update the extracted
RSL models in an RSL editor, called ReDSeeDS [5, 6]. This
allows for correcting the domain model (naming, etc.), ex-
tending the models with new functionality, and changing the
existing functionality.

This process is a part of a wider process to migrate to new
architectures. Presenting the details of this wider process is
out of scope of this paper and we refer the reader to work
by Nowakowski et al. [7]. The proposed recovery process
can also be compared to that proposed by Hungar et al. [8].
However, this solution generates low-level state models and
is limited to recovery of telecommunication systems and con-
centrated on generating test cases. Here we present the details
of the TALE tooling environment that is suitable for a wide
range of business systems which exhibit high intensity of
user-system interactions. The models generated by TALE are
suitable for further transformation into modern technology
code, at the same time preserving the application logic of the
legacy system.

It can be noted that most solutions to knowledge reco-
very from legacy systems concentrate on retrieving code or

detailed design artifacts. This was formalised through the
introduction of the Knowledge Discovery Metamodel (KDM)
[9], with MoDisco [10] and Netfective Blu Age [11] being
one of its first implementations. Recently, KDM has been
extended to cover also the application logic [12], which is
relevant in the context of this paper. Other approaches in-
clude data analysis solutions like Data Reverse Engineering
[13] or Database Reverse Engineering [14]. According to
our best knowledge there are no similar solutions where ap-
plication logic is recovered based on observable behaviour.
Most work regarding reverse engineering of (graphical) user
interfaces concentrate on testing purposes (see e.g., work
by Memon et al. [15]) and direct migration into new user
interface technology (see e.g., Stroulia et al. [16]). In the
presented solution, the application logic is recovered in the
form of requirements-level scenarios that facilitate discussion
on the possible changes in functionality. By contrast, there
seem to be no other advanced tools that focus on requirements
recovery. Sparse examples include work by Fahmi and Choi
[17] and the RETR initiative [18]. However, there seems to
be no toolkit that supports these ideas. Recently, an approach
by Repond et al. [19] proposes to formulate the recovered sys-
tem knowledge in the form of use cases. Though, in contrast
to the TALE tool, it does not offer any means to automate
the recovery of scenarios. Some approaches, like the one by
Bertolino et al. [20] propose synthesizing behaviour protocols
that contain similar information to that of use case scenarios.
However, this is based on using the existing implementation
artifacts or design models, while our approach is independent
on any “internals” of the legacy system.



Extracting Use Case Scenarios and Domain Models from Legacy Software 141

Fig. 2. Recording a GUI interaction scenario

II. TOOL CHAIN REQUIREMENTS

To capture legacy application logic we need to process
and store information on all the significant paths through the
user interface, including exceptional behavior (e.g., entering
invalid data, operation cancellation). Thus, the important re-
quirement of the new tool suite is to be able to record the
various possible user-system interaction paths of a legacy
system. One of such paths is illustrated in Fig. 2. Here we
can see a short scenario for entering a new book entry using
the JabRef reference manager [21]. We would thus want to
“play-out” many such scenarios through normal usage of the
system and record their steps and data exchanged with the
user (cf. UI ripping). It can be noted that such recording is
present in typical test automation tools.

The above requirements resulted in to choosing Rational
Functional Tester (RFT) [22]. Its main purpose is the au-
tomation of functional and regression testing. Capturing and
simulation of user actions can be performed for various user
interface styles and technologies. The captured functionality
(“test scripts”) is editable and presented together with the
UI screens. RFT uses an object map that maps between the
script and the application under test, thus providing detailed
information about the data objects engaged in the interactions.
The test scripts and objects can be exported into machine
processable scripts in XML. This is illustrated in Fig. 3 where
the XML file contents reflect some elements of the scenario
(“Book” button, “New Book” window) and the data (“Title”
for books) from Fig. 2.

There were also attempts to utilise other test automation
tools, but none of them met the presented requirements as
fully as RFT. They capture only some details of the user-
system interaction or store the captured information in a form
difficult to process. HP Unified Functional Testing software
[23] and SmartBear TestComplete [24] are some examples
of the analysed tools. Unfortunately, the extent and form in
which the captured objects are stored by these tools were
not satisfactory for the recovery process. There were also
additional problems with the range of supported languages
and technologies. For example, we could not use tools such
as Selenium [25] because they only support browser-based
applications.

Test scripts recorded by RFT need further processing.
Their purpose is not to capture application logic units but
to capture linear paths through the system behaviour for fur-
ther repeated automatic test execution. Thus, the new tools
should be able to translate and merge such scripts into coher-
ent human-readable high-level models representing units of
application logic. It can be noted that this can be very well
packaged into familiar use cases with their potential to be
processed by the techniques of Model Driven Engineering
(see e.g., work by Astudillo et al. [26]).

What is also needed is means to store the use case sce-
narios as models. This is offered by the RSL which is unique
through its metamodel [2] that provides requirements repre-
sentation details. It contains detailed constructs for scenario
sentences and their parts (subjects, verbs, object). Moreover,
its constructs greatly facilitate linking of the scenario ele-
ments with the domain elements. Such capabilities of the
notation are not present in popular modelling languages like
UML [27].

RSL has a comprehensive and mature tool suite – the
ReDSeeDS Engine [6]. Using this suite we can store and
process (edit) RSL models. The new tools should thus be able
to create RSL models based on the recorded test automation
scripts. This is illustrated in Fig. 4. The scenario from Fig. 3
is now translated from an XML file into a use case with a sce-
nario containing 5 simple subject-verb-object sentences. This
is supplemented by a domain model containing information
on windows (e.g., “New Book window”) and associated data
(e.g., “New Book” with “Title”).

Such translation should be done automatically. Moreover,
it should be possible to merge several similar scenarios into
use cases. The tool should also support modification and cor-
rection of the translation results (e.g., to improve the applica-
tion’s functionality). This is particularly helpful in situations
where the person recording the scripts did not properly per-
form recording actions (e.g., made the wrong choice for the
script beginning and end points). It can thus save time on
repeating the script collection and transformation. Therefore,
the tool should provide features for dividing and merging
scripts to properly reflect the use case goals.

In summary, the analysis resulted in selecting RFT and
ReDSeeDS Engine as the first and last component in the



142 M. Śmiałek, K. Rybiński, N. Jarzębowski, W. Nowakowski, S. Blatkiewicz

recovery path. What was still necessary to develop was the
tool to transform test-related scripts into application logic
units (use cases with scenarios). This resulted in constructing
TALE - Tool for Application Logic Extraction, as presented in
further sections. It should be noted that RFT and (especially)
ReDSeeDS were developed within the Eclipse framework
[28], and thus it was a natural choice also for TALE.

III. TRANSFORMATION FROM RFT SCRIPTS
TO RSL

III. 1. Source and target of transformation
Understanding the RFT script structure is fundamental to

proper extraction of information. Each script is an XML file
(see Fig. 3) containing activities grouped by the UI elements
in which they have occurred. To understand its structure and
prepare for transformation into RSL, the RFT script “lan-
guage” has been reverse engineered into a metamodel1. Its
simplified structure is presented in Fig. 5. The scripts are
composed of test element groups (cf. TestElements). Every
recorded window has its xsl:type set to TopLevelWindow-
Group. Each element of this kind holds a reference to its
description stored separately in a list of all windows (cf.
TopLevelWindow). A window contains elements that the
user has interacted with, typed as ProxyMethods. Each such
method has an Action – a click, a text input or key press.
Actions have Arguments which refer to TestElements that
specify action attributes and values (e.g., entered text or
pressed keys). At the window group or window element
representation level, there can exist test elements typed as
ScriptMethods which represent calls to other scripts.

Test script recording also results in creating special struc-
tures containing objects with information on data elements
and its types exchanged with the user. They are placed in
separate XML files, called Object Maps. For brevity we will
not present their structure here.

The above structure has to be transformed into RSL mod-
els which are also defined through a metamodel. Fig. 6 shows
a small (and simplified) fragment of the metamodel for use
cases scenarios (compare with the upper part of Fig. 4), which
is relevant for the transformation. Any RSLUseCase can
have many ConstrainedLanguageScenarios. Scenarios are
composed of ordered sequences of ConstrainedLanguage-
Sentences, and particularly SVOSentences. Such sentences
contain a ‘subject’ which is a NounPhrase and a ‘predicate’
which is a VerbPhrase. Verb phrases contain sentence ‘ob-
jects’ which are also NounPhrases.

The scenario metamodel is strictly associated with the
metamodel for domain elements (compare with the lower
part of Fig. 4), presented in a significantly simplified form in
Fig. 7. The domain models consist of Notions which refer to
NounPhrases as their names. Notions can contain many Do-
mainStatements which have VerbPhrases as their names.
Notions can be linked through DomainElementRelation-
ships.

III. 2. RFT script to RSL transformation algorithm
The recorded RFT scripts in XML format are parsed and

transformed into a model compliant with the RSL metamodel.
This model is stored within the ReDSeeDS repository (model
storage) that is based on the JGraLab [30] technology. Since
this repository is graph-based, this step involves creating a
graph structure. From the user point of view, the translation
results in a series of simple RSL constrained language sen-
tences, user interface element notions and domain notions
reflecting the contents of the XML file. In abstract syntax,
this means parsing and translating linear scripts conforming
to the metamodel in Fig. 5 into graphs conforming to the
metamodel in Fig. 6 and 7. In concrete syntax, this means
translating a script like in Fig. 3 into a model like in Fig. 4.

The transformation algorithm was coded in plain Java
using a standard XML parser library (see Sec. III. 3.) and
the JGraLab API. Its overview is presented in Fig. 8. The

1 All the metamodels presented in this paper are written in MOF [29] which uses simplified class diagrams. Colouring of the diagrams is for
aesthetics only.

Fig. 3. Example RFT script file



Extracting Use Case Scenarios and Domain Models from Legacy Software 143

Fig. 4. Example RSL model

Fig. 5. Overview of the RFT script structure

algorithm is based on gathering information from consecutive
TopLevelWindow groups. For each of such groups, a win-
dow presentation sentence is generated (cf. sentences 2 and
4 in Fig. 4). Furthermore, each element under the current
top level window is processed. The recorded user actions
referenced by these elements result in generating either UI
element selection sentences (cf. sentences 1 and 3), or data
input sentences (cf. sentence 5). For the latter situation, the
associated Object Map file is parsed and sought for associated
data objects. Based on this, appropriate RSL domain notions
are generated.

It can be noted that the target sentences observe a simple
subject-verb-object format (sometimes with two objects). The
rule is that the subject is set to system for the window display
sentences. In other cases the subject is set to user. The verb
is set to select for the selection or button pressing sentences;
enter is used for the data input sentences and show is used
for the window display sentences. The sentence objects are
set to either “window”, “button” or “domain” notions. The
object name is taken from the source script and an appropriate
postfix is added (cf. “New Book window” vs. “New Book
data”).

As mentioned above, before any data input sentence (cf.
sentence 5) is added, a domain notion, representing this data,
is created. All the input data element types are identified in-
side the proper Object Map file and marked with appropriate
data types. They are then added to the domain specification

(cf. “New Book data” element). All the associated primitive
values from the map are set as the domain notion’s attributes
(cf. “Title” attribute).

The full transformation results in creating a scenario for
each of the RFT scripts. For all the scenarios, a single do-
main model is created and contains all the notions, (windows,
buttons, domain elements) linked through appropriate rela-
tionships (cf. Fig. 4, bottom).

III. 3. TALE functionality and architecture
The transformation presented in the previous section can

be executed as part of the functionality of the TALE tool. The
user is prompted to select RFT script files and the tool creates
appropriate scenarios and domain notions. The recovered sce-
narios are displayed in the so-called Detached scenario list.
They are now subject to manual merging and combination
into use cases. This allows for constructing complete and
coherent models that fully reflect the observable functionality
of the legacy system.

The TALE use case editor is illustrated in Fig. 9. Any
“detached scenario” can be attached to an existing use case.
New use cases can be created and freely edited. When attach-
ing a scenario to a use case, the user can choose a reference
scenario and point to a correct joining place. This also adds
special condition sentences to both scenarios2. The previou-
sly (possibly erroneously) attached scenarios can also be
detached back to the unassigned scenario list. The user can

2 Detailed discussion on condition sentences is out of scope of this paper



144 M. Śmiałek, K. Rybiński, N. Jarzębowski, W. Nowakowski, S. Blatkiewicz

Fig. 6. Fragment of RSL metamodel for use case scenarios

Fig. 7. Fragment of RSL metamodel for domain notions

Fig. 8. Overview of the RFT to RSL translation algorithm

also delete scenarios from the list, join them or split them.
It is also possible to move scenarios between use cases, merge
use cases or notions and automatically find common scenario
fragments. This last feature uses in its implementation the
Rabin-Karp algorithm [31] for detecting same scenario frag-
ments. Single sentences act as string patterns.

Fig. 9 illustrates the package structure of the edited model,
maintained within the tool. Some packages contain the cre-
ated use cases, some contain the domain notions (see left).
The scenarios and domain notions can be further edited and
extended according to newly emerging requirements (see
top-right).

TALE was implemented as an extension for the ReD-
SeeDS tool, within the framework of Eclipse Rich Client
Platform (RCP). The test script parsing algorithm implemen-
tation uses the Xerces Java Parser – an XML parser from
Apache Xerces [32]. Worth noting is the possibility to switch
between TALE and ReDSeeDS (arranged as perspectives)
seamlessly since both tools are integrated within a single
framework and they share the common RSL data model. Ad-
ditionally, TALE uses GMF plug-ins for handling graphical
diagrams with the underlying EMF model [33] modified to
serve as a proxy layer for the JGraLab model.



Extracting Use Case Scenarios and Domain Models from Legacy Software 145

Fig. 9. Sample window of the TALE tool

The general structure of the tool components (Java plug-
ins) is shown in Fig. 10. The relevant ReDSeeDS com-
ponents are marked red (darker) and the TALE plug-ins
are marked green (lighter). Generally, the system is func-
tionally divided into domain logic and application logic
(combined with the UI). The domain logic is handled
by two components: redseeds.scl.model implements the
original RSL metamodel (part of a broader SCL meta-
model); remics.recovery.model implements script process-
ing and transformation, communicating frequently with red-
seeds.scl.model. The main TALE observable functionality,
as presented in this and previous section, is contained in
two application logic components: remics.script. loader and
remics.recovery.manager. These two components are sup-

ported by the RSL editor (redseeds.editor.rsl) and the project
tree manager (cf. redseeds.engine and remics.engine). The
navigator.listener component supplements this functional-
ity by reacting to changes in UI elements and updating the
current model.

IV. CASE STUDY EXAMPLE

The presented toolkit has been validated through recov-
ering a non-trivial commercial system in the bank loan man-
agement domain. The system, called “SZOK” (in Polish: Sys-
tem Zarządzania Obsługą Kredytów), has been developed by

Fig. 10. TALE main architectural components



146 M. Śmiałek, K. Rybiński, N. Jarzębowski, W. Nowakowski, S. Blatkiewicz

Fig. 11. Example UI behaviour recording for the case study

a Polish major software provider Infovide-Matrix. It was dis-
continued from further development in 2009, after nearly 10
years of development and commercial usage. The system be-
came obsolete, although it was developed using technologies
that are still in use: Java 1.5, SWING for the user interface,
WebSphere Application Server and JDBC with Hibernate for
database access. The main problem with the system is its use
of SWING that is no longer treated as an ergonomic solution.
Also, the architectural structure of the system and related
code became obsolete and impossible to evolve.

For this reason, the only justified way to recover logic
from SZOK was to reverse engineer its observable behaviour.
This has led to using the TALE approach. The case study
covered a significant part of the system’s functionality and
resulted in a model consisting of 50 full use cases, each with
2 or more scenarios. The study started with recording test
scripts using RFT. This is illustrated in Fig. 11 for one exam-
ple piece of functionality. This simple example shows two
alternative scenarios associated with searching for clients3.
Both scenarios start with selecting an option (Klienci →
Wyszukaj; Clients → Search), and then showing a search
criteria window. One scenario results in showing a client list
(pol. lista klientów) and the other one (when the list is empty)
shows an info message.

In the next step of the recovery process, the TALE tool has
transformed the recorded scripts into an initial RSL model.
This model was then manually modified by adding use cases
to group scenarios and merging alternative scenarios under
these use cases. The result of this activity is illustrated in
Fig. 12. It shows a small fragment of the use case model
with six use cases, connected through RSL’s special «invoke»
relationships (denoted by arrows between use cases, see [34]).
Two scenarios that resulted from the recording shown in
Fig. 11 were manually inserted as contents of the “Search for
client” use case. The scenarios were merged and appropriate

condition sentences (‘cond:’) were added. Finally, invocation
sentences (‘invoke/INSERT’) that denote calling of invoked
use cases, were introduced.

Together with use case scenarios, also the user interface
and domain notions were recovered. This is illustrated in Fig.
13. It shows notions related to two of the windows shown
in Fig. 11. These windows were turned into notions of type
Screen. These notions are connected with appropriate data
notions. One of them is typed as Simple View, as it denotes
attributes for a single data element placed on a window. The
other data notion is a List View because it offers a list of many
elements shown on a window. It can be noted that both views
share some of the attributes.

The recovered domain model is consistent both with
the user interface elements of the legacy system and with
the recovered scenarios. Fig. 13 can be compared with
Fig. 11 and 12 to see this consistency. For example, the
“wyszukiwanie klienta data” (Eng. search for clients data)
notion contains attributes that reflect the fields in the window
entitled “Wyszkiwanie klienta” in the legacy user interface.

The final step is to refine the RSL model to cater for possi-
ble modifications and extensions to the system’s functionality.
Often, the domain model needs manual refactoring due to
required renaming of recovered notion names. This is done
in the ReDSeeDS perspective of our tool suite and is illus-
trated in Fig. 12. Some notions were renamed and several use
cases “wired” to compose for consistent application logic and
navigation between various parts of the user interface.

The case study also involved migration to new technol-
ogy. The result of this migration is shown in Fig. 14. The
shown forms were generated completely automatically from
the presented domain model. What is more, the generated
system also followed the application logic according to the
presented use case scenarios. As part of the case study, the
generated code was updated with database access and some

3 The system’s user interface is entirely in Polish, so the figure provides some English translations.



Extracting Use Case Scenarios and Domain Models from Legacy Software 147

Fig. 12. Fragment of the use case model obtained during case study

Fig. 13. Fragment of the domain model obtained during case study

simple business logic (data processing). Detailed discussion
of the structure of the generated code is out of scope of this
paper, and the reader is referred to other work by the authors
[34, 3].

V. DISCUSSION AND CONCLUSION

The development of the TALE tool took around 20 man-
months. The team consisted of the authors of this paper. The
effort involved appropriate research and implementation of
the RFT-to-RSL transformation algorithm and the scenario
management editor. The tool is a crucial element of wider
research to develop an effective method to migrate legacy
systems to modern technologies. It has to be stressed that
the requirements models generated and managed within the

tool can be further used to generate code in a wide range
of technologies [3]. The current results show that full (dy-
namic) code of the upper layers (view, controller/presenter
in MVC/MVP architectures) can be automatically generated.
The only disadvantage is that the data processing layer (model
in MVC/MVP) has to be migrated using other methods.

The effort associated with migrating legacy applications
using TALE is concentrated in recording and merging user-
system interaction scenarios. This would involve instructing
regular users of the legacy system to cover all the paths that
are intended for migration. Then, the recorded paths would
need to be merged into use cases. It can be noted that in
contrast to typical reverse-engineering methods, the above
activities do not involve workforce with advanced skills. Fur-
ther generation of the new system is fully automatic. In sum-
mary, the “manual” effort to migrate a system consists of
three elements: playing out scenarios + merging scenarios



148 M. Śmiałek, K. Rybiński, N. Jarzębowski, W. Nowakowski, S. Blatkiewicz

Fig. 14. Automatically generated web forms

into use cases + updating the generated system with data
processing/storage algorithms. In case of lack of legacy docu-
mentation and/or lack of legacy source code, this approach
seems to be the only economical solution. Even in case when
the legacy source code is available, its re-engineering might
often be very difficult (cf. GOTO statements in legacy code
etc.) and thus not economical.

The current conclusions regarding efficiency of the ap-
proach can be only qualitative. Our initial observations show
that the current capabilities of automatic retrieval of crude
RSL models can improve performance by at least 20% in rela-
tion to writing same RSL models from scratch. This is mainly
due to an improved process of analysing the legacy system’s
behaviour and generation of the bulk of the sentences with
related domain elements. However, this still necessitates to
be acknowledged by more objective empirical results. This is
planned as the next step in research on requirements-based
recovery.

In regard to implementation of TALE, several interesting
observations can be emphasised. The plug-in architecture of
RCP has significantly facilitated interfacing and reusing the
ReDSeeDS components. Overall, the Eclipse environment
provided a coherent workspace for the project, despite sig-
nificant learning curve associated with its various elements.

A prominent example is the GMF/EMF framework [33] used
to develop the graphical model editors. It allowed us to
quickly transform a metamodel (like the one shown in Fig. 5)
into a rich graphical editor. Still, GMF/EMF lacks satisfac-
tory documentation which leads to quite significant overhead
associated with mastering this environment. Moreover, in the
context of ReDSeeDS, we have experienced overhead due to
incompatibility between the EMF and the JGraLab storage.
On the other hand, JGraLab has proven to be a very efficient
model repository which is also easy to apply. It provides
a very rich low-level API with additional high-level wrappers
for common complex tasks.

The ultimate goal for the research around TALE is cer-
tainly very practical. It can be noted that the tool can recover
the logic of practically any software system in respect to its
observable behaviour. This makes the tool completely inde-
pendent of the legacy system’s internals (often “twisted” and
not recoverable by other means). It can be noted that TALE
can be easily interfaced with other (G)UI ripping tools. This
would necessitate changes only to the remics.recovery.model
component that currently processes RFT scripts (XML). This
gives vast possibilities for recovering application logic for
various types of user interface technologies.



Extracting Use Case Scenarios and Domain Models from Legacy Software 149

Future work around the TALE system will involve raising
the levels of automation. This opens a vast and interesting
research agenda. One of the possibilities include automating
the UI interaction and screen recording. Another possibil-
ity is to develop mechanisms for analysing recorded scripts
and scenarios and their automatic merging and grouping into
use cases. This would need to involve the analysis of cer-
tain patterns in use case scenarios and conformance of the
recovered scenarios to these patterns. A separate direction of
research will be improvement of RSL’s syntax and seman-
tics for capturing the application and domain logic, and then
transforming them into code. For instance, it is necessary to
develop a very precise notation for UI elements and associ-
ated domain notions. With such notations, transformations
from RSL models to code would necessitate very little post-
transformation manual work on the generated code. This will
allow to fulfil the ultimate goal of very highly automated
migration of legacy systems into modern technologies.

Acknowledgment

This research has been carried out in the REMICS project
(http://www.remics.eu) and partially funded by the EU (ICT-
257793 under the 7th Framework Programme).

References

[1] W. Nowakowski, M. Śmiałek, A. Ambroziewicz, T. Straszak,
Requirements-Level Language and Tools for Capturing Soft-
ware System Essence, Comp. Science and Inf. Systems 10(4),
1499-1524 (2013).

[2] H. Kaindl, M. Śmiałek, P. Wagner, et al., Requirements Speci-
fication Language Definition, Technical Report D2.4.2, ReD-
SeeDS Project, 2009.

[3] M. Smialek, N. Jarzebowski, W. Nowakowski, Translation of
Use Case Scenarios to Java Code, Computer Science 13(4),
35-52 (2012).

[4] REMICS project home page, http://remics.eu/.
[5] ReDSeeDS project home page, http://redseeds.eu/.
[6] M. Smialek, T. Straszak, Facilitating transition from require-

ments to code with the ReDSeeDS tool, [In:] Requirements
Engineering Conference (RE), 2012 20th IEEE International,
pages 321-322 IEEE, 2012.

[7] W. Nowakowski, M. Smialek, A. Ambroziewicz, N. Jarze-
bowski, T. Straszak, Recovery and Migration of Application
Logic from Legacy Systems, Computer Science 13(4), 53-70
(2012).

[8] H. Hungar, T. Margaria, B. Steffen, Test-Based Model Gen-
eration for Legacy Systems, [In:] IEEE International Test
Conference (ITC), pages 971-980, Charlotte, NC, 2003 IEEE
Computer Society.

[9] R. Pérez-Castillo, I. García-Rodríguez de Guzmán, M. Piattini,
Knowledge Discovery Metamodel-ISO/IEC 19506: A standard
to modernize legacy systems, Comput. Stand. Interfaces 33(6),
519-532 (2011).

[10] MoDisco Project website, http://www.eclipse.org/MoDisco/.

[11] Netfective Blue Age website, http://www.bluage.com/en/.
[12] A. Ambroziewicz, M. Smialek, REMICS KDM Extension for

Application Logic, Technical report, REMICS Project, 2012,
Deliverable D3.6.

[13] P.H. Aiken, Reverse engineering of data, IBM Systems Jour-
nal 37(2), 246-269 (1998).

[14] J.-L. Hainaut, M. Chandelon, C. Tonneau, M. Joris, Contribu-
tion to a theory of database reverse engineering, [In:] Reverse
Engineering, 1993., Proceedings of Working Conference on,
pages 161-170, 1993.

[15] A.M. Memon, I. Banerjee, A. Nagarajan, GUI Ripping: Re-
verse Engineering of Graphical User Interfaces for Testing,
[In:] Proceedings of the 10th Working Conference on Reverse
Engineering, pages 260-269, November 2003.

[16] E. Stroulia, M. El-Ramly, P. Iglinski, P. Sorenson, User Inter-
face Reverse Engineering in Support of Interface Migration
to the Web, Automated Software Engineering 10(3), 271-301
(2003).

[17] S.A. Fahmi, H.-J. Choi, Software Reverse Engineering to
Requirements, [In:] Proc. Int. Conf. Convergence Inform.
Technol., pages 2199-2204, 2007.

[18] Y. Yu, J. Mylopoulos, Y. Wang, et al., RETR: Reverse En-
gineering to Requirements, [In:] Reverse Engineering, 12th
Working Conference on, page 234, 2005.

[19] J. Repond, P. Dugerdil, P. Descombes, Use-case and scenario
metamodeling for automated processing in a reverse engineer-
ing tool, [In:] 4th India Software Eng. Conf., ISEC ’11, pages
135-144, 2011.

[20] A. Bertolino, P. Inverardi, P. Pelliccione, M. Tivoli, Automatic
synthesis of behavior protocols for composable web-services,
[In:] Proc. 7th ESEC/FSE ’09, pages 141-150, 2009.

[21] JabRef Reference Manager website, http://jabref.sourceforge.
net/.

[22] C. Davis, D. Chirillo, D. Gouveia et al., Software Test Engi-
neering with IBM Rational Functional Tester: The Definitive
Resource, IBM Press, 1st edition, 2009.

[23] HP Unified Functional Testing page, http://www.hp.com
/go/uft.

[24] SmartBear TestComplete page, http://smartbear.com/products/
qa-tools/automated-testing-tools.

[25] Selenium home page, http://docs.seleniumhq.org/.
[26] H. Astudillo, G. Génova, M. Śmiałek, J. Llorens Morillo,

P. Metz, R. Prieto-Diáz, Use Cases in Model-Driven Soft-
ware Engineering, Lecture Notes in Computer Science 3844,
262-271 (2006).

[27] Object Management Group, Unified Modeling Language, Part
2: Superstructure, version 2.4.1, formal/2012-05-07, 2012.

[28] Eclipse Platform home page, http://eclipse.org/.
[29] Object Management Group, OMG Meta Object Facility

(MOF) Core Specification, version 2.4.1, formal/2013-06-01,
2013.

[30] JGraLab project home page, https://github.com/jgralab.
[31] R.M. Karp, M.O. Rabin, Efficient randomized pattern-

matching algorithms, IBM Journal of Research and Dev.
31(2), 249-260 (1987).

[32] Apache Xerces project page, http://xerces.apache.org/.
[33] R.C. Gronback, Eclipse Modeling Project: A Domain-Specific

Language (DSL) Toolkit, Addison-Wesley, 2009.
[34] M. Smialek, W. Nowakowski, N. Jarzebowski, A. Am-

broziewicz, From Use Cases and Their Relationships to Code,
[In:] Second IEEE International Workshop on Model-Driven
Requirements Engineering, MoDRE 2012, pages 9-18 IEEE,
2012.



150 M. Śmiałek, K. Rybiński, N. Jarzębowski, W. Nowakowski, S. Blatkiewicz

Michał Śmiałek currently holds the position of a Professor. He obtained a habilitation (higher doctorate)
degree in informatics from the Warsaw Military University and has graduated the Warsaw University of
Technology (MSc and PhD) and the University of Sheffield (MSc). Prof. Śmialek has more than 20 years
of experience in software development mainly using object-oriented methods. For several years he worked in
the industry as a software developer and project manager. He teaches software modelling and requirements
engineering in academia and for the major Polish companies. He published a book on UML modelling and
over 70 articles in national and international refereed journals and conference proceedings. He is a member
of program committees of international conferences in the area of software engineering, and did reviews for
major software engineering journals. His research interests include metamodelling, model transformations,
scenario-based requirements engineering and object-oriented development methods.

Kamil Rybiński is a PhD student in the Department of Theory of Electrical Engineering and Applied Infor-
matics at Warsaw University of Technology. He received a BEng and MSc in informatics (with a specialisation
in Software engineering) from Faculty of Electrical Engineering at the same University. His research interest
includes requirements engineering, model-driven software development and knowledge representation. He
worked as a researcher in the REMICS project.

Norbert Jarzębowski is a PhD student in the Department of Theory of Electrical Engineering and Applied
Informatics at Warsaw University of Technology. He received a BEng and MSc in informatics (with a speciali-
sation in Software engineering) from Faculty of Electrical Engineering at the same University. He worked as
a system and business analyst for CUBE-CR, Roche and PZU, and as a researcher in the REMICS project.

Wiktor Nowakowski is a researcher in the Department of Theory of Electrical Engineering and Applied
Informatics at Warsaw University of Technology. His main areas of research are in requirements engineering,
model-driven software development and software language engineering. Wiktor also has extensive industry
experience working on small- to large-scale projects, mainly as business systems analyst.

Sławomir Blatkiewicz is an IT consultant and developer. He received a BEng and MSc in informatics (with
a specialisation in Software engineering) from Faculty of Electrical Engineering of Warsaw University of
Technology. He worked as a researcher in the REMICS project and currently works as a Java EE developer in
the banking sector.

CMST 20(4) 139-150 (2014) DOI:10.12921/cmst.2014.20.04.139-150


