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Abstract: This study describes the methodology that was developed to run a Molecular Dynamics Simulation (MDS) code
to simulate the behaviour of a single nanoparticle dispersing in a fluid with a temperature gradient. A soft disk model
described by the Lennard-Jones potential is used to simulate the system. The nanoparticle is assembled via the use of four
subdomains of interatomic interactions and hence presents in full resolution the transfer of energy from the fluid-to-solid-
to-fluid subdomains. A cluster computing system (HTCondor) was used to perform a large scale deployment of the MDS
code. The obtained showcase results were successfully evaluated using three widely documented tests from the associated
literature (Randomness, Radial Distribution and Velocity Autocorrelation Distribution Functions). It was discovered that
the nanoparticle travels a larger distance in the fluid than the distance travelled by a fluid molecule (recovery region).
The findings were confirmed by calculating the Green-Kubo self-diffusivity coefficient halfway through the simulation
at which an enhancement of 156% was discovered in favour of the Nanoparticle. This might be the physical mechanism
responsible for the experimentally observed thermal performance enhancement in nanofluids.
Key words: nanofluids, nanoparticles, MDS, HTCondor, heat transfer, computational study

I. BACKGROUND

Nanofluids are binary mixtures consisting of a car-
rier/base fluid (usually conventional coolants) and a small
volumetric concentration (ranging from sub 1% up to 10%)
of solid particles with a size of usually less than 100 nm. They
were invented by Choi [1] in the mid-nineties initially as an
alternative to micron sized solids used inside conventional
coolants to increase their thermal conductivity. The origi-
nal idea was that nanoparticles instead of micron particles
would create less erosion problems by abrasion on the coolant
conveying channels and reduce sedimentation issues usually
encountered with micron sized particles. However, adding
small quantities of nanoparticles to fluids proved experimen-
tally to be more beneficial than initially expected as a very
small addition of nanoparticles leads to a high thermal en-
hancement over the carrier fluid, which, so far, cannot be fully
explained using the classic thermodynamic models. Enhance-
ments of the order of 9%, 10-14%, 40-44% and 100-200%

were observed by the majority of researchers for the purely
conductive, mixed conductive/convective, pool boiling and
critical heat flux heat transfer modes, which promises a step
change to the overall performance of heat transfer related
applications [1, 2].

Apart from the thermal performance benefits of nano-
fluids over conventional fluids, secondary functions make
them highly desirable by designers of thermal processes.
Nanofluids provide an opportunity to custom build coolants
to suit specific purposes, since the number of available de-
grees of freedom increases significantly relative to normal
coolants. Apart from the conventional coolant chemical com-
position, temperature of application and flow state, nanofluids
offer another set of tuneable parameters such as nanoparti-
cle material, size, shape and concentration, all of which are
expected to have a direct effect on the thermal conductivity
characteristics. As such, since 2000 and onwards, nanofluid
research has been increasing almost exponentially in order
to understand the heat transfer mechanisms that enable their
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augmented thermal performance as well as quantifying the
effects of the tuneable parameters on the overall heat transfer
enhancement [3-18].

Previous theoretical investigations, including Molecular
Dynamic Simulations (MDS) studies, have not been con-
clusive in providing a definitive explanation regarding the
thermal heat transfer mechanisms employed by nanofluids.
This has been the case as the investigators frequently mod-
elled the problem using several assumptions regarding the
nature of the fluid and the heat propagation it employs [2, 8, 9,
17-22]. Theoretical investigations usually simulate nanofluids
using classical thermodynamic principles applied to a single
phase modelled fluid. Various correlations regarding the heat
propagation values based on previous experiments are used to
tune these models. In this type of studies, there is no physical
modelling of the nanoparticles themselves or their interaction
with the basefluid. This approach makes it impossible to dis-
cover the real nature of heat transfer as well as to predict the
general thermal performance of these two-phase fluids, since
the mechanisms of heat transfer are mainly pre-determined
from the domain set up and rely on correlations that might
not extrapolate to the more general case. From a previous
study by the current authors [2], it was discovered that there is
a large diversity between experimental results obtained from
various research groups around the world. This happens due
to the lack of standardisation of nanofluid preparation, type
and experimentation. Therefore, it becomes difficult to tune
theoretical investigations by using measured thermal perfor-
mance correlations generalised across the nanofluids domain,
since such correlations may depend on a specific method of
nanofluid preparation, type and experimentation. MDS stud-
ies come to solve this issue by resolving the nanoparticle
and fluid interactions and, hence, allow the system to evolve
under its own dynamics and kinematics rather predetermin-
ing it from the domain set up. These simulations require
a vast amount of computational power to fully resolve the
interactions involved. As such, in these studies, domain sim-
plification is something, which is usually employed to reduce
computational burden. The most usual method is by switch-
ing between the molecular and macroscopic domain, namely
parts of the domain are simulated via a simple classical ther-
modynamics analytical model and the calculated values are
then passed through to the parts of the domain simulated using
molecular dynamics. Usually, simplistic analytical models are
used to simulate the heat transfer through the nanoparticles,
while the nanoparticles themselves are considered circular or
spherical with no surface texture in the 2D and 3D cases cor-
respondingly. Even though the inner analytical models used
to simulate heat transfer through the nanoparticles are well
established from classical thermodynamics (single phase heat
transfer), this presents a plethora of adverse complications
arising of how these solutions are coupled with the molecular
dynamic parts of the domain. The transfer of heat between
the nanoparticle surface and the surrounding fluid molecules

is very complex. The interaction of the nanoparticle surface
and the surrounding fluid, which leads to an exchange of
energy, are heavily dependent on the nanoparticle surface,
orientation, surface energy content resolution, texture and
nanoparticle dynamics and kinematics (including nanopar-
ticle spin). The simplified models usually assume a 2D/3D
linear transfer of energy across a circular/spherical nanopar-
ticle with no surface texture, no spin and uniform surface
energy content, which in its entirety ignore these factors. This
has the adverse effect of dictating an unnatural and highly
simplified overall method of heat transfer, which is expected
to interfere with the final results. More complex MDS simu-
lations try to resolve this issue by creating detailed models of
the atomic form and bonds of every molecule involved in the
solution. These models usually require even more computa-
tional power, hence more simplifications and assumptions are
still carried onwards from classical thermodynamics, which
makes it very hard to prove whether each and every one of
them might have an effect on the final solution. To sum up,
the outcomes from theoretical and MDS studies found in the
literature might have been affected by the assumed modelling
processes. There is hence a necessity to break up the task into
its simplest form and with the least amount of assumptions
create a model detailed enough to study the heat propagation
mechanisms in nanofluids from first principles.

This study aims to investigate the conductive heat trans-
fer mode mechanism through a simplified, single particle
nanofluid. This is achieved via a Molecular Dynamics Simula-
tion code, which is composed to study the dynamic dispersion
of a nanoparticle, which has a surface structure and is not as-
sumed to be spherical, and compare this to the corresponding
dispersion of a fluid molecule. Single fluid atom and nanopar-
ticle tracking is used throughout the simulations to be able to
extract the molecular path data required. This process has to
be repeated thousands of times in order to obtain the statistics
of the nanoparticle dispersion process with low statistical
uncertainty. The code is deployed at a computational scale of
the order of millions of Central Processing Unit (CPU) hours
with a minimum domain size of 1600 atoms. This makes it
impossible to run the code on a single conventional computer
system as a vast amount of high throughput computational
power is required to run thousands of simulations and be able
to extract macroscopic statistical thermodynamic data from
a chaotic domain behaviour. As such, a cluster computing
system (HTCondor§) had to be used. The MDS model makes
no assumptions regarding the macroscopic thermodynamic
quantities of the fluid, while the domain set up is such that
preserves the simplicity of molecular collisions. The associa-
ted macroscopic thermodynamic quantities of the system are
calculated via usual statistical molecular dynamics analy-
sis performed for each simulation run at the post-processing
stage of the results. The system is chaotic in its nature; namely,
any change in the energy content at each point of the system
will affect its evolution. As such, the system is initiated at
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a random stage at every run and allowed to evolve without
any thermostatic or energy regulation control on the domain.
An ensemble of the results of all runs builds a statistically
credible outcome for the macroscopic thermodynamic results
presented. The backbone of the developed code is based on
the available MDS models across the academic community
(in particular from [23]).

The remaining paper describes the methodology and the
deployment of the MDS code on the computational domain,
which is novel in its own right. It continues with the verifica-
tion of the operation of the MDS code and the presentation
of initial results that propose an explanation of the physics
leading to enhanced heat transfer in nanofluids. The paper
ends with a summary of the main findings.

II. METHODS

This section contains the methodology followed to design
and deploy the code via the HTCondor cluster.

II. 1. General domain set-up
This section describes the methodology followed to as-

semble, test, benchmark and run the MDS code routines.

II. 1. 1. MDS core Code
The core of the MDS code, taken from the literature [23],

is written in Fortran 90 and compiled via Microsoft Visual Stu-
dio 2008 on a Windows platform (Windows XP and later on
Windows 7). The simplified Lennard-Jones potential model
(Eq. 1) is used to simulate the forces between liquid argon
atoms in the domain (Eq. 2). Eq. 2 can be derived upon inte-
grating Eq. 1. Eq. 3 can be derived from Eq. 2 by substitution
and represents the force vector an atom experiences in the
domain.
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where
f ij – force vector between the ith and jth pair of atoms,
m – atomic mass,
Na – number of atoms in the domain,
rij – distance vector between the ith and jth pair of atoms,
r̈i – acceleration vector of the ith atom ,

uij – potential energy vector between the ith and jth pair of
atoms,

ε – strength of interaction,
σ – characteristic length scale,
rc – cut-off distance at which we assume that the attractive

tail of the model is no longer significant.

It can be concluded from equations 2 and 3 that the con-
trolling dimensional parameters of the system are σ, m and
ε. Non-dimensionalisation of the system is achieved by sub-
stituting r with rσ for the units of length, e with eε for the
units of energy and t with t

√
mσ2/ε for the units of time. As

a result, the equation of motion is reduced to non-dimensional
units in Eq. 4.
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The model is used in its 2D form with periodic boundaries
on the x and y axes forming the surface of a torus. To ensure
that any wraparound effects are avoided (a paradox of having
a perturbation from an atom travelling around the smallest
wrap-around dimension(s) of the torus and returning to self-
affect/excite the atom), the domain dimensions are chosen
to be much larger than the cut-off distance of the molecules
(the cut-off distance is the distance that defines the extent of
the interaction force field for each molecule in the domain).
The system is initialised with each atom uniformly distributed
in the assigned domain area using a desired density and initial
system temperature. The initialisation process aims, firstly,
to define the average intermolecular spacing, according to
user-selected number of atoms and density, and, secondly, to
assign random velocity components to each atom, thus ensur-
ing that the system depicts a collection of atoms at a given
time. An equilibration process is applied only once on the first
iteration uniformly across the domain and after the velocity
vector assignment to ensure that the system is initialised at the
given initial temperature. The system is subsequently left to
reach a steady state without any more invasive controls on the
energy content of the system. The integration of the equations
of motion is solved numerically using the “leapfrog” method.

The domain is initialised with a fixed density of 0.8 Non
Dimensional Units (NDU) and a temperature of 1 NDU across
the simulations performed. This translates to a square domain
size length (L) according to Eq. 5 and an initial indicative
velocity magnitude sum for the first iteration, used for equili-
bration, given by Eq. 6.
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where
d – number of dimensions (here d = 2 since a 2D system is

used),
T – initial temperature of the system,
ρ – overall number density of system.

The system reaches steady state in this configuration after
the 5000th iteration, which corresponds to a Non Dimensional
(ND) time of 25 units. A time step of 0.005 NDU is selected,
which for argon liquid atoms corresponds to a real time of
approximately 10−14 seconds – a typical value used for MDS
simulations to ensure stability and accuracy. The link between
the theoretical MDS calculations presented in this study and
a real ensemble of monoatomic molecules will be that of
liquid argon.

Soft disks are used to represent the fluid molecules in this
investigation while the fabrication of the nanoparticle will
also translate to an assembly of these disks with altered force
relations. This path is preferred, instead of modelling the ex-
act chemistry of nanofluids, as the domain modelling remains
simple and requires fewer assumptions to set up which might,
in their turn, affect the overall solution.

II. 1. 2. MDS Code extensions – boundaries and
temperature gradient

The core model represented an infinite system, namely
a system at which there are no boundaries in any dimension as
those are handled by a wraparound function. It was desired to
use a semi-infinite system with one dimension being infinite
(horizontal x-axis direction), while bounding the system in
the vertical dimension (y-axis). This system transformation
in space can be envisaged by a shape change from a full toric
surface into a cylindrical surface. This was required in order
to be able to apply a finite temperature gradient in a bound
coordinate and investigate the molecular motion across it
without the implications of a wraparound coordinate.

“Walls” are created at the extremes of the y-coordinate.
The walls are stochastic, which means that the walls do not
have any physical constituency (they are not represented by
a fixed chain of atoms or forces at a given location), but
an arbitrary theoretical one. The theoretical location of the
wall is marked (i.e. the end of a half domain length with the
coordinate system centred at the geometrical centre of the do-
main). The code will detect if any atoms are about to cross the
imaginary wall boundary and before updating their location
during the next iteration, their location and their y-velocity
components will be corrected so as to reflect off the “wall”
and return into the domain. This is a hard-wall correction,
which does not represent a true physical process and hence
leads to minor energy leakages. Nevertheless, it is a simple
and typical model used for this type of applications, which
will allow heat to be extracted or added to the system.

A linear temperature gradient is achieved across the y-
direction by regulating the “temperature” of the walls. Keep-
ing the temperature of the lower wall to 1 NDU, it is possible

to induce a temperature gradient in the system by increasing
the temperature of the top wall. The regulation of wall tem-
perature is achieved by the hard wall routines. Every time
an atom reflects on the fixed boundaries, its velocity mag-
nitude components can be altered to represent an isotropic
energy transfer to the atom. The history of the velocity mag-
nitudes prior to reflection is logged and an indicative “single
atomic temperature” purely based on the kinetic energy of
the atom is calculated. If the temperature is different than the
prescribed “wall temperature”, the code decides if the atom
will lose energy (atom hotter than wall) or gain energy (atom
is colder than wall) to equilibrate the atomic temperature
with the wall temperature during a wall collision. The energy
transfer is performed isotropically by matching the overall
atomic magnitude to the wall temperature, while preserving
the reflection angles and hence the angles of the reflected
velocity component.

II. 1. 3. Nanoparticle assembly and handling processes
Two approaches were followed to assemble the nanopar-

ticle. The first approach – which required less computational
power and complexity – was the “oil droplet” model. This
model was developed to allow the initial formation and vali-
dation of the routines without the need of a supercomputer.
This is achieved by limiting to a large extent the detail of inter-
atomic interactions. Following the validation of this code ex-
tension, it was possible to advance to the final “solid particle”
model [24] at which a more elaborate procedure is followed
to assemble the nanoparticles, while the computational time
for the simulations increases significantly. The final assembly
routines are based on [24]. The theory behind the two models
for nanoparticle assembly is described below, which have
been selected in order to generate a realistic nanoparticle,
which does not have a spherical shape.

(a) The “oil droplet” model
The initial attempts to form a more crystal like particle

followed a simple “oil droplet” approach. An atom was se-
lected from the domain and its interatomic attraction value
ε was increased from the nominal 1 NDU to a larger value.
This enabled the formation of more rigid bonds between the
Argon atoms forming the oil droplet. The larger the ε value,
the greater the effects of bond strength variations around
the atom. This model was simple and did not require much
computational power to conclude hence, the initial model of
nanoparticle assembly tested and helped forming the final
extensions for the MDS computation and the post-processing
codes.

The model, however, had limitations, which required
a more detailed approach. The main limitations arising from
the preliminary model were the inability to form a crystallic
solid with a fixed size as well as performing any solid-solid
and solid-fluid interactions. Cross-correlation routines (Eq. 7)
were used to define the boundaries of the oil droplet.

CCR(ri) = v̂i · v̂NP (7)
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where

v̂i – unit vector of the ith atom,
v̂NP – unit vector of the central atom of the assembled

nanoparticle,
CCR(ri) – cross correlation function value for the molecule

“i” located at a distance r from the central “oil
droplet” molecule.

A spatial velocity cross correlation function was used to
correlate the velocity field of the centre of the “oil droplet” to
the surrounding molecules at a fixed time. The CCR(ri) gives
peaks of the directional vector matching of the nanoparticle
centre velocity vector with that of the neighbouring atoms.
The CCR(ri) ranges from -1 to +1, with +1 being a case
of perfect velocity directional matching and -1 an antiphase
velocity vector directional matching of 180◦. The peaks of the
CCR(ri) are expected to mark the atoms, which on average
move in the same direction as the central nanoparticle atom,
hence identifying a cluster formation. A lower threshold peak
value magnitude of less than 1 was used to acknowledge
a match in order to allow for small directional mismatching
due to the motion of atoms inside the oil droplet domain.
Other quantities apart from the unit vectors were also in-
troduced in parallel (such as velocity magnitude and local
temperature matching) using simpler approaches than Eq. 7;
however, the correlation functions gave small and indistinct
peaks. This indicated that the oil droplet formed was highly
volatile and unstable with no defined boundaries in between
the droplet and the rest of the fluid atoms, as there was an
absence of the needed intermolecular forces and interactions
to create them. The shape and mass of the droplet was chang-
ing continuously from collisions with other fluid atoms or the
walls while the fluid-oil droplet interactions were performed
similarly to fluid-fluid interactions in order to simplify the
scripts and reduce the required computational power.

Fig. 1. Domain set up schematic indicating main features

(b) The “solid particle” model
The limitations of the “oil droplet” model led to the de-

velopment of a more elaborate, computationally demanding
and highly complex assembly approach, based on the ‘solid
particle’ model [24]. The solid particle is assembled by the
formation of 3 subdomains inside the main domain, as shown
in Fig. 1, which are the core of the particle, subdomain A, the
surface of the particle, subdomain B, and the surroundings of
the particle, where the fluid argon atoms exist, subdomain C.
The atoms in each subdomain are assigned a different value
for their interatomic potential force parameter ε. Subdomain
A atoms have an εA of 5 NDU, subdomain B an εB of 2 NDU
and subdomain C an εC of 1 NDU (as commonly used in
other MDS simulations [24]). A surface domain is required
to limit “evaporation” effects occurring by collisions on the
surface of the particle and loss of mass.

A radial selection of atoms is executed to assemble the
nanoparticle. This is done by selecting an atom, which is re-
garded as the central atom of the nanoparticle from which the
subdomains are radially and concentrically created according
to the considered nanoparticle size (subdomain B is kept at
a fixed width of 1 NDU). If an atom changes subdomains
throughout the simulation, then its ε parameter is automat-
ically updated to match that of the prescribed subdomain.
Eq. 4 is altered to accommodate the effective interatomic at-
traction parameter εeff (equations 8 and 9) of the combination
of forces involved by the interaction of atoms in different
subdomains with each other. There are 3! force combination
pairs involved (A-A, B-B, C-C, A-B, A-C, B-C as denoted
by their subdomain characterisation letters) arising from the
various subdomain characteristics and according to the given
location of the atomic pairs i-j under consideration.
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ij
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εeff = εiεj (9)

This approach assembles nanoparticles, which are stable,
while the surface evaporation is limited by the use of a surface
subdomain., An automatic replenishment of lost nanoparti-
cle constituent atoms is performed during each iteration, in
order to ensure that the generated nanoparticles retain their
size and mass. A crystal-like core is expected to be formed
(subdomain A), which still allows limited motion between
the bound atoms thus simulating more realistically the energy
transitions through the nanoparticle.

II. 1. 4. Evaluation of developed MDS code
The evaluation of the developed MDS code was per-

formed using data from [23]. The data included system pro-
perties such as temperature (Eq. 6), kinetic energy (Eq. 10),
potential energy (Eq. 11), total energy (sum of kinetic and
potential energies of the system) and system pressure (Eq. 12).
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Convergence tests were additionally performed to detect sys-
tem instabilities on the same quantities using different running
durations of the simulation.
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where
Ek – kinetic energy of system,
Eu – potential energy of system,
P – system pressure.

For the heated system, it was discovered that with all
of the core extensions in place the system properties reach
a steady state on average after 20-30 thousand iterations,
which corresponds to a ND time of 100-150 units (where
the temperature of the system reaches a plateau). Without
any energy input (hot wall temperature the same as cold
wall temperature), a significant energy leakage was present.
The energy leakage was following an exponential trend with
the system being drained of 50% of its initial total energy
after 100 thousand iterations and 98% of its total energy after
1 million iterations. The leak was compensated for and the
system reached steady state with the application of a temper-
ature surplus compared to the initialisation state as small as
0.16 NDU on the hot wall (for comparison the minimum tem-
perature difference used for the parametric studies performed
was 1 NDU). The leakage is arising from the implementation
of the hard wall model.

The validity of the system with the addition of the ex-
tensions was also verified via two test processes. The first
was a comparison of the randomness distribution functions
(Eq. 13, Fig. 2) [25, 26], which provides information regard-
ing the atomic distribution in the domain. The domain is
sub divided into regions (grid division) and the atomic num-
ber inside each grid is compared to the expected one in or-
der to form an atomic distribution map. This test was per-
formed without the nanoparticle assembly routines active as
the system atomic distribution is altered with the formation
of nanoparticles hence comparisons with the reference cases
(core code with no extensions) is no longer possible. A good
agreement with the reference core code was achieved after
the extensions were activated, hence it can be concluded that
the extensions have no effect on the normal operation of the
domain.

D =
σ2

grid − λ
1
2

grid

λgrid
, (13)

where

D – randomness function value,
σgrid – standard deviation of atomic numbers in each grid

cell counted,
λgrid – expected number of atoms in each grid cell.

Fig. 2. Comparison of the Randomness distribution functions for
changing grid division in a 10 000 particles domain after 100 000

iterations with and without the extensions

The radial distribution function (RDF) was also employed
as a validation test. This function provides information re-
garding the atomic concentration ring bands as seen by an
atom at their centre (Eq. 14).

g (r) =

(
N (r)

∆V (r)

)
/σ, (14)

where

g(r) – radial distribution function value of the rth ring
from the central atom,

N(r) – number of atoms in the rth ring from the central
atom,

∆V (r) – elemental volume (corresponding ring area in a 2D
domain) of the rth ring from the central atom.

The peaks and crests of the function, their spacing and
amplitude provide a full profile regarding the structure of the
domain (all of the thermodynamic quantities of the system
can be resolved using the RDF function). The results (Fig. 3)
were in agreement with similar ones found in the literature
for the Lennard-Jones model [23, 24, 27] for the “calibration”
RDF function plot, where the system is used with all but
the nanoparticle assembly MDS code extensions activated.
For the “Nanoparticle” RDF function plot (Fig. 3), all the
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MDS code extensions are activated and the RDF function
is similar to the RDF functions found in the literature re-
garding crystallic solid dendrimers in fluid/gas mixtures [24,
27-29]. An averaging process of 1000 iterations is used to
assemble the RDF functions for both samples. It is evident
that the process used to assemble the Nanoparticle is creating
a compound structure arrangement resembling that of a solid.
The process of nanoparticle assembly involves “freezing” the
selected atom arrangement and imposing a crystallic inter-
molecular force profile. As a result, this produces a crystalline
structure with less density than the surrounding fluid Argon
atoms, as indicated in Fig. 3. The structure has similar RDF
profile to that of a dendrimer. The RDF tends to a value,
which is slightly sub-one NDU for longer radial distances,
indicating a marginally reduced density (of about 5%) com-
pared to the theoretical one. This is due to the small deficit
of molecules left in the fluid domain, because a number of
them were used for the Nanoparticle assembly. The nanopar-
ticle for this investigation had a radius of 7 NDU of length,
which corresponds to a mapped real nanoparticle size of 2nm.
A fixed temperature gradient, for both cases, of 0.02 NDU of
temperature per NDU of length is also imposed.

Fig. 3. Comparison of Radial Distribution Functions (RDF) plot for
the Calibration and Nanoparticle cases

The mapping of the nanoparticle size is performed by
comparing the relative sizes between the atoms/molecules
forming a nanoparticle and its carrier fluid in a real nanofluid
and applying this size comparison between the fluid atoms
and the assembled nanoparticle in the MDS. For this study,
a size mapping relation corresponding to a gold-water
nanofluid is applied, since the relevant gold to water molecu-
lar size ratio matches the relevant nanoparticle to fluid atom
sizes used in the MDS code.

The final test performed was to investigate the trends of
the normalised Velocity Autocorrelation Function (VACF) for
the nanoparticle and compute the self-diffusion coefficient
to verify its agreement with the literature (Eq. 15). The nor-
malised Velocity Autocorrelation Function (VACFN ) is de-
scribed by Eq. 16 and the self-diffusion coefficient can be

calculated by the Green-Kubo relationship – Eq. 17.

VACF = 〈V (t1) · V (t1 + t′)〉 , t1 ≤ t′ ≤ t2 (15)

VACFN =

〈
V (t1) · V (t1 + t′)

|V 2 (t1)|

〉
, t1 ≤ t′ ≤ t2 (16)

Dself =
1

3

∫ t2

t1

〈V (t1) · V (t1 + t′)〉 dt′, (17)

where
Dself – self-diffusion coefficient
t1, t2 – reference times where the diffusivity investigation is

initiates (t1) and ends (t2)
t′ – integral time variable
V – atomic velocity vector

The domain has a size of 56×56 atoms with a tempera-
ture gradient of 0.02 NDU of temperature per NDU of length.
The results are averaged across 1385 complete runs of the
code (simulations) with a fixed simulation duration of 100k
iterations. The number of runs used was the minimum to be
able to provide a credible statistical outcome for the presented
values.

Fig. 4. Comparison of the normalised VACF for the calibration and
Nanoparticle cases

Fig. 4 displays a normalised VACF plot for the first 0.5
out of the 5 ND time units considered in the investigation for
the 50th iteration step (about half way through the simulation
corresponding to a ND time of 250). Two data sets are plotted,
one without a nanoparticle formation (calibration) and one
with a nanoparticle of 2 nm in diameter in place. Both data
sets indicate an exponential decay of the normalised VACF,
which is in agreement with the literature [24, 30-32].
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The self-diffusion coefficient for each iteration step was
computed by using the trapezium rule with a linear unit step
interval to calculate the integral of the VACF from a trans-
lated time of zero ND time units (t1) up to the point where
each plot first crosses the x-axis.

II. 1. 5. Randomisation process
Care was required to include suitable randomisation pro-

cess that will allow the extraction of results as well as en-
abling the debugging process. During the design and vali-
dation of the code, the randomisation is required to create
a random initialisation state of the system in time, which
should be repeatable. This was achieved by fixing the native
randomisation input argument (ti) and hence setting up a ran-
dom but frozen initialisation state of the system in time (state).
The evolution in time of identical systems (simulation run-
ning time trun), given the identical initialisation arguments
(ti), was the same; hence it was possible to study the effects
each routine imposed on the system by studying the evolu-
tionary system changes (state) compared to the standard basic
timeline evolution of the domain (baseline).

In order to extract realistic statistical results on macro-
scopic thermodynamic phenomena from the code, a more
elaborate randomisation process of the initialisation state
needed to be performed. In the real world, the atoms in a do-
main are continuously moving (unless the domain is frozen
to either its absolute zero temperature or in time) in a chaotic
manner. Hence the system (state) is different at every instance
(ti chosen to initiate the experiment must be a unique num-
ber). If it was possible to record full resolution snapshots
of a thermodynamic system through time, the probability of
getting exactly the same system state (same molecular speed,
location and direction of every atom) as one in the past is
impossible considering realistic timescales. The monotonic
variable that gives rise to the random arrangements of the
system in the real world is the time dimension (treal). As
such, in order to recreate the various system states that will
model a realistic process, the randomisation process has to re-
produce a different and unique initial state for each complete

simulation under account. This was achieved by seeding the
native randomisation routine of the code by a unique number
(treal), which links the domain time evolution (statei) to the
real time dimension. A diagram of the process described in
this section can be found in Fig. 5.

The seeding process is using the high resolution timing fa-
cility of Windows 7 environment, which has a time resolution
of 100 ns to retrieve the date-stamp (treal) of the execution of
the code (date and time are included). Each job is assigned
sequentially to each core processor with a maximum period
of job submission of the order of at least 30 ms (namely treal

is always a unique number which increases monotonically).
The core processors are synchronised with the Windows 7
environment time servers, hence it is assumed that they are all
following the same timeline reference. It is hence possible to
initialise the domain at a unique state (statei) for the number
of simulations performed for each parametric study.

II. 2. HTCondor environment set up
It was decided to employ a novel technique to run the

vast amounts of simulations required for this study. This was
based on HTCondor, which operates by taking advantage of
the idling time of networked processors. In this case study,
processing cores around the Imperial South Kensington cam-
pus belonging to networked computers, normally used for
teaching, were employed to run the vast amount of calcula-
tions required. HTCondor was used to organise, distribute,
run and monitor the calculations as well as collect the result-
ing data across the network back to an administration cluster
built for this purporse. Thousands of CPU cores were suc-
cessfully employed for this study. The current authors believe
that the development of this path will enable institutions to
proceed with high CPU load simulations using cheaper and
more user approachable platforms than the ones traditionally
used (Supercomputing clusters), which might be otherwise
out of reach.

More information on the HTCondor set up including hard-
ware set up for the administration cluster can be found in
Appendix A.1.

Fig. 5. Diagram of randomization routines process followed
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III. RESULTS AND DISCUSSION

Extended post processing and assessment of results was
implemented through Matlab scripting. This provides a wide
flexibility of tools, which are not available or are hard to
employ using Fortran 90. This section presents the prelimi-
nary physical results of the code. System performance results
under HTCondor operation can be found in Appendix A.3.

III. 1. Visualisation of the system

Fig. 6. Snapshot of nanoparticle assembly (fluid atoms with black
colour, nanoparticle surface atoms with yellow colour, internal
nanoparticle atoms with green colour and central internal nanoparti-

cle with red colour)

The visualisations of the fluid molecules and nanoparti-
cle behaviour were implemented through Matlab that aided
code development. Fig. 6 displays an example from a snap-
shot of a nanoparticle assembly under the “solid particle”
model. Black dots represent fluid atoms, yellow dots repre-
sent nanoparticle surface atoms, green dots represent internal
nanoparticle atoms while the red dot represents the central
internal nanoparticle atom. It is evident that the nanoparticle
structure is modelled in full resolution, hence the proper-
ties controlling energy transfer via dynamic and kinematic
processes can be modelled exhaustively. Fig. 7 shows an ex-
ample of a trajectory recorded for a nanoparticleThe main
postprocessing approach uses locational data from the tra-
jectory of the central atom inside the nanoparticle as well
as the current domain set up of each data set and compares
it to the trajectory data of a fluid atom released from the
same location as the nanoparticle without the activation of the
nanoparticle assembly routine. This is in order to extract the

required path statistics for the reference baseline atom and the
nanoparticle. Compression algorithms had to be developed
and applied through Matlab to cope with the large volume of
data collected. More information can be found in Appendix
A.2.

III. 2. MDS showcase results
The results from an example run are included in this

section as a showcase for the MDS, Matlab and HTCondor
scripts and hardware. The study focuses on a 3136 atom do-
main (56×56) with an applied temperature gradient of 0.02
NDU of temperature per NDU of length. The nanoparticle has
a radius of 7 ND length units, which corresponds to a physical
mapped size of 2 nm (diameter).

Fig. 7. Nanoparticle (represented by black dot) visualisation in time
lapse (one red dot per iteration) performing Brownian motion

Fig. 8 shows a plot of the average one dimensional dis-
tance vector (against the temperature gradient) followed by
a fluid atom and a nanoparticle both released from the same
domain location (middle of the domain). The 95% confi-
dence intervals from the statistical analysis indicate that the
minimum number of simulations selected for this study is
sufficient to attain a clear distinction between the distance
vector travelled for each, the fluid atom and nanoparticle,
against the temperature gradient. Initially, an oscillation ex-
ists in the first steps of the calculation (Fig. 8). The oscillation
is not a result of system instabilities by the assignment of
the force fields arising from the initialisation process of the
system as the time scale associated is longer than the time,
indicated by [23], which is required for the system to reach
equilibrium. The oscillations appear to be a thermodynamic
phenomenon associated with the thermal shock experienced
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Fig. 8. Distance vector plots for a normal particle (fluid argon atom) and a 2 nm nanoparticle released from the same location in a domain
with a fixed temperature gradient

by the application of the hot and cold walls and the waves
of energy transfer experienced by the initially cold domain.
The instabilities last for about 80 time units. During that time,
the nanoparticle and fluid atom appear to have no difference
in their one dimensional distances covered against the tem-
perature gradient. The initial instabilities appear to provide
a “kick” for both the fluid atom and the nanoparticle towards
the colder region of the domain, which on this initial study
appear to agree with the thermophoretic force expected to be
present at such scales.

From 80 time units and onward, the plot of Fig. 8 indi-
cates a clear distinction between the average behaviour of
a nanoparticle and a fluid atom. A region where the nanopar-
ticles and fluid atoms begin moving along the direction of the
temperature gradient exists (the gradient of the distance plot
becomes positive). The authors can only speculate that this
distinction might arise due to mass diffusivity phenomena
becoming more dominant than thermophoretic effects in this
part of the time domain evolution. In this “recovery” region,
it is yet unclear what might be the true reason, which induces
a faster recovery of the nanoparticle compared to the fluid
atom.

The self-diffusion coefficient for the calibration and
nanoparticle cases as described in section 2.1 was found to
be 0.0472 and 0.1208 ND length units squared over ND time
units respectively. The self-diffusion coefficient was calcu-

lated for the complete set of simulations and statistical error
was found to be negligible in its calculation. For the given
interval, the self-diffusion coefficient of the Nanoparticle is
156% larger compared to a normal fluid atom in the domain,
which might be accounted for the thermal phenomena ob-
served in a real nanofluid.

It is yet unclear what the initial wave shaped instabilities
are from a non dimensional time of 0-75 time units and also
what causes the faster nanoparticle recovery compared to the
fluid atom from a non dimensional time of 80 and onwards.
Parametric studies are required to provide more definitive
answers to explain the observed behaviour.

IV. CONCLUSIONS

A Molecular Dynamic Simulation code has been com-
posed to model a simplified nanofluid containing a single
nanoparticle dispersing in a prescribed temperature gradient.
Three common methods were used to evaluate the resulting
MDS code – the randomness distribution function, the radial
distribution function and the velocity autocorrelation function.
The results were compared with those found in the literature
and were in good agreement. The main outcomes of the study
are:
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1. The study successfully demonstrated the use of a more
financially affordable platform (HTCondor) used to
execute this type of simulations, which may potentially
assist similar, high computationally demanding studies
in the future.

2. Showcase results for a 2 nm nanoparticle in a 56×56
atom domain with 0.02 ND temperature gradient units
are obtained. The results of the one dimensional dis-
tance vector indicate the following:

3. Oscillations appear to be present for the initial part
of the solution speculated to arise from a thermody-
namic effect during the transient heating up state of the
system.

4. Thermophoresis is speculated to be dominant for the
first part of the solution (0-80 time units), while there
is no distinction between the nanoparticle and fluid
atom vector distance covered for the nanoparticle size
investigated.

5. On average the nanoparticle appears to cover more dis-
tance compared to a fluid atom (baseline atom) during
its motion along the temperature gradient – recovery
(from a time of 80 NDU and onwards), where mass
diffusivity effects appear to be more dominant.

6. The self-diffusion coefficient for the nanoparticle
(Green-Kubo self-diffusivity relationship) is enhanced
by 156% over that of the baseline fluid atom. This
might explain the thermal enhancement observed in
nanofluids.

7. Parametric investigations are required to help under-
stand the observed behaviour.

List of abbreviations

CPU – Central Processing Units
MDS – Molecular Dynamics Simulation
ND – Non Dimensional
NDU – Non Dimensional Units
RDF – Radial Distribution Function
SSD – Solid State Drive
VACF – Velocity Autocorrelation Function
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APPENDIX

A. 1. HTCondor set up
HTCondor is a workload management computing system
invented by the High Throughput Computing division of

the Department of Computing Sciences of the university of
Wisconsin-Madison (UW-Madison) around 1988 (renamed
“HTCondor” from 2012 onwards from “Condor”). The system
is able to take advantage of the idling time of networked com-
puter systems (such as ordinary desktop machines) in order
to run batch jobs and return the results via the local network.
Such system is under trial at the South Kensington univer-
sity campus of Imperial College London and in collaboration
with the Information and Communication technologies (ICT)
division it was decided to co-develop and test parts of the
system to enable computing the lengthy MDS required for
the current study. The system is installed campus wide and
has a current maximum capacity of around 4000 cores with
a current nominal operational capacity of 3000-3500 cores
depending on usage (green saving energy higher order poli-
cies of the campus are restricting the maximum usage during
the current deployment and testing phase of the HTCondor
system). The machines employed to form the HTCondor bank
of nodes/core processors are 64 bit Windows 7 machines in-
corporating multicore or/and hyper threaded processors that
can be employed individually for each job assignment. The
machines utilised for this purpose are the same machines
located inside computational teaching cluster rooms of the
campus. Automatic HTCondor script cut off (suspend and
vacation routines) provide priority of node utilisation to phys-
ical users or higher order functions sent from the ICT division
(e.g. for maintenance, updates etc.) over any batch job sent to
the system. The HTCondor is provided under an open source
license.

The current campus installation utilises the “vanilla uni-
verse” under the HTCondor 7.8.2 version. This is an oper-
ational mode, which provides flexibility for running scripts
but has limited administrative services. The main limitations
of the “vanilla universe” are the lack of check pointing ser-
vices and remote system calling. This presents an issue for
longer code runs that get interrupted and cannot be resumed
on the same node as all progress is lost and the run has to be
restarted. As a result, the system was not responding well to
increased node user activity.

A. 1. 1. MDS Core code and HTCondor configuration
file adjustment
In order to reach to the final version of the Fortran 90 MDS
code for this study, significant alterations had to be performed
to suit the HTCondor node environment compared to the
initially developed desktop version. These changes mainly
revolved around system performance increase by changing
the operational profiles of the code, as well as altering the
handling routines for the inputs and outputs of the code. The
MDS code was compiled into an executable 64 bit Windows
7 compatible file and along with the input files it was sent by
an HTCondor function to a temporary storage space on the
nodes for execution. The Fortran 90 code had hence to adapt
to use dynamic paths for the input and output functions as the
paths changed from node to node. The code was also adjusted
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so as the solution was performed into short blocks, namely,
it was preferred to break up the solution into shorter runs of
100k iterations than having a node running multiple simula-
tions from the same execution file. This provides a dynamic
and more reliable environment for collecting the required
data as a failure to complete a short run will only cause a loss
of data for the particular run instead of a series of simulations.
Specific hard-kill commands are also incorporated into the
MDS code to increase system performance. These routines
detect when a case might become unstable and terminate it in
a controlled manner in order to retrieve the results produced
and free up the available nodes; something which was of great
use especially during the designing and debugging process.

The HTCondor configuration files also had to be tuned
to be able to increase the overall performance of the system.
Taking account of the large volume of jobs required to mo-
nitor by the administration machines, the settings had to be
altered from their generic profile to accommodate the specific
use for the MDS code. The allocation of jobs was performed
sequentially in order of the shorter to the longest runs to in-
crease system utilisation, data retrieval and postprocessing
optimisation.

A. 1. 2. Hardware requirements
The cluster was required to run a large amount of jobs

(order of thousands) at any given time. This presented one of
the largest challenges in setting up the system as there were
many limitations on the simultaneous operation, monitoring,
assignment and retrieval of the thousands of instances of the
MDS code running. It was discovered that several bottlenecks
existed, which halted the full deployment of the system. Real
time monitoring of the nodes requires fast response from the
administration machines to their corresponding nodes. A con-
tinuous communication of the nodes is required to keep track
of the job assignment and completion as well as dynamically
responding to node availability and priority system functions.
The communication is performed by having the nodes “touch-
ing” periodically their progress files, which are located under
the administration machine storage system (pulse check). By
increasing the number of nodes, the responsiveness of the
storage space of the administration machine appeared to be
lagging to the amount of request received. This presented
a hardware issue as the hard disks used, the network response
and processor response of the administration was insufficient
to perform these tasks. An additional problem arose from
the lack of sufficient Random Access Memory (RAM) re-
quired by the HTCondor administrators to keep track of each
MDS run as the amount of memory required was beyond the
maximum capacity of the administration machine.

As a result, it was not possible to run more than a couple
of hundreds of concurrent simulations on HTCondor from
a single administration machine. It was hence decided to split
up the administration of the nodes into six individual ma-
chines. Each machine was equipped with a fast Solid State
Drive (SanDisk SDSSDP-064G-G25, 64GB, SATA 6GB/s,

2.5 inch Internal SSD), where the job communication files
are stored and 6GB of RAM. Each administration machine is
a 64 bit, dual core machine running Windows 7 with a 1Gbit
network connection. A shared 1Gbit network space of 180GB
for the input, execution and output files was used where each
node had access to read and write hence reducing signifi-
cantly the data transfer load from/to the local administrators.
The current hardware provides a maximum simultaneous
handling support capacity of 1200 jobs per administration
machine (7200 jobs in total from the administration bank),
which provides multiple redundancies for the current system
operation as well as accommodating future system expand-
ability. Each administrator is limited to a maximum number
of jobs to run under normal operation according to Eq. 15.
This limitation is necessary to keep the administration bank
load utilisation balanced for long periods of running time.

Mjobs =
Nnodes

Nadmin
, (18)

where
Mjobs – maximum number of jobs to assign on each ad-

ministration machine
Nnodes – number of available nodes
Nadmin – number of administration machines in operation

A. 2. Matlab Post Processing Routines
Traditional statistical quantities, such as means and their

variances, are hence required to quantify the change in the
properties investigated across every simulation and every
iteration. A method of collecting statistical data from each
iteration is followed across the range of the performed simu-
lations. This led to challenges as data compression routines
were required to preserve the data recorded and allow the ex-
ecution of the code without overwhelming the RAM capacity
of the machine running the post processing jobs. The statis-
tics compression algorithm derived uses recursive processes,
equations 16 to 20 to calculate the statistics cumulatively in-
stead of collectively. The entire range of data is not required
to estimate the final mean and variance of the population,
since this is calculated incrementally. This tactic makes it pos-
sible to perform the statistical analysis with minimal memory
requirements.

µyi =

∑
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Nyi
(19)
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where
y – atomic property y,
µyi – mean of the 1st up to the ith value of population

property y,
µyn – mean of the 1st up to the nth value of population

property y (n > i),
σ2
yi

– variance of the 1st up to the ith value of population
property y,

σ2
yn

– variance of the 1st up the nth value of population
property y (n > i).

The Matlab routines also offer automatic incremental
backup, stop and resume functions in order to minimise data
and computational time losses in case of a system crash, when
they are implemented on a desktop machine. The routines
are also adjusted and compatible to run on HTCondor should
an increased load of post processing is required. The incre-
mental backup, stop and resume functions are unavailable
when they are deployed through the condor system due to
aforementioned limitations of the “vanilla universe”.

A. 3. HTCondor system operation and performance
The preliminary test cases investigated how the code and

HTCondor environment react to long and short code runs. It
is estimated that the process of designing, debugging and test-
ing all of the systems as well as obtaining the first showcase
results documented in this study to have taken an equivalent
running time of about 5 million CPU hours. It was discovered
that the performance of the system drops significantly for
runs of the order of 16hrs and over. The performance was
also moderately reduced for short runs (runs shorter than
1hr). A further investigation indicated that the bottlenecks
encountered for the longer runs were due to the lack of check-
pointing and network drive speed limitations upon batches of
runs reaching completion. The longer runs have higher prob-
ability of getting interrupted by priority functions or users at
the node systems and with the lack of a checkpointing facility
the runs are cancelled and restarted.

Moreover, even if the longer runs do reach completion
– even though countermeasures are taken to limit this case
up to a permissible degree by randomising the write inter-
vals after completion – there is still a high probability that
a large number of nodes is simultaneously trying to transfer
and write up data to a single network storage node which
gets overwhelmed and discards connections. As such, the
system will cancel the nodes that fail to write up the data in
a pre-allocated time interval and restart them on a different
node. These two antagonising factors are hampering signifi-
cantly the overall system performance. Shorter runs present

a similar problem however; the countermeasures in place
(random assigned time delays in data transfer) as well as the
distribution, allocation and running time of very short jobs
reduce the impact of the problem compared to the longer runs.
A maximum performance was reached for runs taking around
5hours to complete at which the problems of data transfer
and the probability of simulation interruption are minimised.

The problems concerning interruptions by a priority ser-
vice or a user at the node machines can be resolved by form-
ing up a checkpointing facility. This is not offered by the
native HTCondor software as an option for the “vanilla uni-
verse” running on Windows platforms. In this case, the only
way to resolve the issue (without affecting the primary user
functions of the nodes at the campus) is by changing the
“universe” HTCondor is running the jobs into a different one,
which provides more services (for example the “standard uni-
verse”). Nevertheless, this will have as a result to limit up to
a large degree the flexibility the node platforms present to
run scripts through the system. There is also the possibility
of hard coding checkpointing functions in the “vanilla uni-
verse” however; the first attempts performed for this study
indicated extensive problems with the stability of the system
due to the extensive higher order campus network security
and operation policies. A tertiary solution would be to abolish
the singular network storage scheme and employ a clustered
storage scheme with fast solid state drives (SSD). HTCondor
offers this facility by disabling network storage and setting
up for the files each node produces to be returned back to the
administration machine. This is something to be tried in the
future before larger scale changes are attempted however; this
solution will impair a large CPU use of the administration
machines to write the high volume and short response rate
network data required which might as a result limit the overall
node volume handling capacity by the administrators.
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