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Abstract: The method for symbolic sequence decomposition into a set of consecutive, distinct, non-overlapping strings of
various lengths is proposed. Representation of the sequence as a set of words allows one to use set theory notions. The main
result is a quite new definition of the similarity between any two sequences over a given alphabet. No prior sequence
alignment is necessary. In the present paper two applications of a set of words are described. In the first a similarity measure
is applied to prepare centroids for K-means algorithm. It results in a high performance grouping method for long DNA
sequences. The other application concerns the statistical analysis of word attributes. It is shown that similarity, complexity
and correlation function of word attributes across sequences of digits of fractional parts of some irrational numbers support
the suggestion that the sequences are instances of a random sequence of decimal digits.
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I. INTRODUCTION

Very long sequences, which occur in many fields, when
directly represented by vectors are usually difficult to analyse
or compare, e.g. genomes or share prices. Decreasing the
size of a vector in the course of the preprocessing procedure
has numerous advantages. It reduces significantly the base
of the recorded sequence for further retrieval. The size of
a vector can be reduced by mapping a sequence onto a set of
subsequences (strings, words). The set of words results from
suitable decomposition (parsing) of a sequence. The first use-
ful decomposition was proposed by Lempel and Ziv [1] in
order to define the quantitative measure of symbolic sequence
complexity. Ke and Tong [2] pointed out that the Lempel-
Ziv algorithm leads to a complexity measure which some
artificial, regular sequences reckon as complex.

They developed an algorithm for parsing a sequence of
binary symbols, which is free of such faults. The algorithm
provides a better quantitative measure of complexity which is
defined as the total number of strings. In my paper [3] the Ke

and Tong algorithm was generalized to arbitrary sequences
over a finite alphabet. It was also shown that the whole set
of strings (not only their number) is a very rich source of
information on symbolic sequences.

The most fundamental task in sequence analysis is to
discover any relationships (e.g. similarity) between two ex-
perimental sequences. To compare any of two sequences
a certain measure is required that can determine whether and
how similar (or distant) they are. There are several definitions
of similarity, [4-7]. Neither of them provides a simple, satis-
factory measure of global similarity between two arbitrary
symbolic sequences over the same alphabet. An alternative
similarity measure based on decomposition of sequences into
a set of specific distinct words was proposed in [3]. The si-
milarity between two sequences is related to the number of
common words in the decomposition of two sequences. It is
very convenient, as it does not need previous alignment of the
sequences.

Another task in the set of sequences analysis is sequences
clustering. Its aim is to assign a set of sequences into groups
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so that the objects in the same group are more similar to
each other than to those in other groups. Clustering symbolic
sequences is more challenging than clustering numeric data
because there is no natural measure of similarity between
symbolic sequences. There are many clustering methods and
algorithms. Among partitioning methods, K -means is a com-
monly used algorithm. The algorithm needs initialising a set
of cluster centres, which are often difficult to find, and some
measure of clustering quality. In the present paper the hierar-
chical method and new similarity between sequences is used
to find initial cluster centres. As the clustering quality mea-
sure, the property of an intra-cluster sum of squared new
specific distances is used.

Every word following from sequence decomposition has
several numerical attributes, like length (number of symbols)
and composition (numbers of particular letters and their dis-
tribution). The relation between the values of these attributes
in different segments of the sequence distribution can be
detected with the use of word correlation functions.

The fractional parts of the base of natural logarithm and
/2 numbers are considered as symbolic sequences over the
decimal digits alphabet. It is shown in the present paper that
similarity and correlation functions of word attributes of both
sequences, their randomised counterparts and pseudorandom
sequence of decimal digits are similar with high accuracy.

The aim of the present paper is twofold: firstly, to show
that the set of words, the similarity and distance measures
make the K-means algorithm of clustering symbolic se-
quences more robust, and secondly, to support the hypothesis
saying that very long sequences of decimal digits of irrational
numbers are random sequences.

The paper is organized as follows: in section 2 symbolic
sequence decomposition into a set of consecutive, distinct
strings is recollected. Next, the similarity, distance measure
between sequences, and correlation functions of word attri-
butes are defined. In section 3.2 the clustering algorithm is
applied to a set of 400 long DNA sequences, and in section
3.3 the analysis of three real very long numerical sequences
and their randomised counterparts is made.

II. METHODS

II. 1. Parsing algorithm

The naive decomposition of a symbolic sequence into
a set of short strings of predefined length (called k-mers) has
a limited application. Strings of the same physical meaning
may differ in length and can exist in different places of the
sequence. Successful sequence decomposition can be done
with the use of the Ke and Tong algorithm generalised to any
sequence over a finite alphabet. The details of the algorithm
are as follows. Suppose there is a primary sequence C of
symbols ¢1, cs,..., ¢,. Suppose S; is a set of words obtained
so far and the first symbol of the new word w is ¢;. The word
is formed as a result of a specific procedure of appending
symbol ¢; by the following symbols in three steps.

Step 1. String Q = ¢; is neither periodic nor chaotic because
there is only one symbol in it. So it has to be appended by
the next symbol. Appending is continued until some symbol
¢i+j+1 repeats one of the symbols, say k-th, in the string
Q =Cjyer s Cigyge

Step 2. Let P = ¢; and R = c¢;441, so far they are equal.
Both strings are appended P = cicrp41, R = Ciqj+1Citj42
and so on, until they become different. Then string ¢ found
in Step 1 is appended by string R, and the new string is
Q@ =QR.

Step 3. Set S; of words is searched for the presence of
string (). If string @ is found, it is appended by the fol-
lowing (next to the last symbol of @) symbol of C' becoming
Q = Qcitj+k+1- Appending is continued until some string
Q¢itj+k+1 does not replicate any word from S;. The string
w = QCitjyr+1 becomes the new word of the spectrum rep-
resenting sequence C. It may happen that several last symbols
of C' cannot be processed by the above replication, they make
a new word.

The code of the parsing algorithm is available on request.
The result of the sequence decomposition is a set of ordered,
distinct and non-overlapping words which will be called the
word spectrum of the primary symbolic sequence C.

II. 2. Similarity

Measuring the similarity between symbolic sequences
is essential in many data (numeric as well) analyses. So far,
due to the lack of natural geometrical interpretation of the
symbolic sequence the resemblance (similarity) measure be-
tween two sequences was difficult to define, mainly because
of the necessity of prior sequences aligning [6, 7].

When spectra S; and Sy of two sequences C; and C are
known, several similarity measures can be defined. Among
them, the set theory intersection of .57 and S5 against the total
number of words in both spectra

2(int (S, S))

o(C1, C2) = 1(S1) +1(S2)

seems to be the most natural. Here, int(S7, S2) is a set of
words that the two spectra share (intersection of S; and S5),
and [ (S) means the length (number of words) in set S. The
similarity measure o (C7, C2) has the form of the Dice coef-
ficient [10], except that the symbols have different meaning.
The o(C4, C3) function varies between 0 when the spectra
are disjoint sets and 1 when sequences S; and Sy are the
same.

1I. 3. Distance

It has been found that the distance between sequences is
very useful when it comes to identifying the number of clus-
ters that best fits a given dataset. Let C be a set of n symbolic
sequences, the distance between the sequences can be estab-
lished with the use of similarities between them. They form
a symmetric table with ones along the main diagonal, which
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is called similarity matrix 3. An element o;; of the matrix de-
pends on sequences .S; and .S; but not on the other sequences
of the set. Every sequence .S; can be uniquely mapped on i-th
row (or i-th column) of similarity matrix >

(Jila ) UZ’I’L) — Xy,
where x; is n-dimensional numeric vector representing i-th
sequence. All rows span specific, linear n dimensional vector

space. Now, a distance between any two vectors x; and X;
can be defined, in the following it will be Euclidean distance

n

> (o — o).

k=1

dij = |xi — %] =

The d;; is a context dependent distance between the cor-
responding sequences S; and S;. The lower bound on the
distance can be shown to be equal to \/Q(l — 0;;), which
means that

dij Z \/5(]. - Jij)~

There is no monotonic relationship between distances
and corresponding similarities. The set of differences d;; —
\/5(1 — 03;), looks like a random variable of the Weibull
distribution. There is an advantage in using distance in some
applications because distance is an additive measure contrary
to the similarity.

II. 4. Correlation function of word attributes

One of the goals of every analysis of any set of objects is
to find relations between the attributes of its elements across
the sequence. Parsing the sequence into a set of words (word
spectrum) reduces significantly the set of objects representing
the sequence. However, words are more complex objects than
single symbols. A word is characterised by attributes such
as length, a set of symbols and their order. The spectrum
can be considered as a discrete function of many variables
(attributes of the word). The aim of the advanced analysis of
symbolic sequence is to find relations between the variables.
The relations are given by various correlation coefficients.
Let S(w1,wa, ..., w,) be the word spectrum of sequence C'
over alphabet a1, as, . ... Any word w; is a string of letters
ai,as,...,a;. The numerical attributes of the word are, for
example, | — length of the word, number of a; instances, set
of integers indicating positions of instances a;, number of
"ayag’ strings in the word, and so on. The simplest one is the
words length correlation function

> (H(w;) = m)(U(wj4i) —m)
>t (wy) —m)*

where m = 1/n 377, l(wy).

cor(i;;l) =

)

The correlation functions can be used as a test for sequence
randomness. If the correlation function exhibits small rapid
changes of its value, there are no correlations between distant
parts of the symbolic sequence.

III. EXAMPLE AND APPLICATIONS

I1I. 1. Example

To explain the main notions introduced in section 2, a simple
example is presented. A set of four small gene sequences is de-
composed into words and the similarity and distance matrices
of the set are found. A set of short fragments (63 bases each)
of small subunits S16 rRNA gene sequences from four or-
ganisms: (1)-Human, (2)-Saccharomyces cerevisiae, (yeast),
(3)-Zea mays, (corn) and (4)-Escherichia coli downloaded
from the GenBank database (http://www.ncbi.nlm.nih.gov).
The partition algorithm yields word spectra of length from
13 to 15 words. The shortest one is the spectrum of
E. coli: "GTGC’, "CAGCA’, 'GCCG’, 'CGGT’, ;AAT’,
"ACGGA’, "GGGT’, 'GCAAG’, "CGTTA’, ’ATCGGA’,
*ATTA’, "CTGGGC’, "GTAAAG’. The intersection of the
human and yeast spectra consists of 13 words, while the in-
tersection of human and E. coli is only 5 words long. So
the similarity between the human and yeast sequences is
2-13/(15415) = 0.867, and between the human and E. coli
sequences itis 2 - 5/(15 + 13) = 0.357.

IIL. 2. Clustering mitochondrial DNA sequences of 400
species

In clustering, the task is to group a data set into a set of
disjoint classes of objects, so that each class is assigned to
a unique cluster. The data within each cluster are supposed
to be similar to each other but different from members of
other clusters. Therefore the basic objective in clustering is to
discover a natural set of clusters based on some similarity or
distance measures. An important problem of clustering proce-
dure initialisation arises at the beginning of cluster analysis.
A common question is about the number of clusters present
in a given dataset and their initial central vectors which may
not necessarily be members of the data set. Actually, cluster
initialisation remains the biggest drawback of the partition-
based clustering algorithms. In the well known K-means
cluster algorithm (see, for example [11] and quotes therein),
if there is no prior knowledge on initial clusters, it is difficult
to obtain good results. Determining the initial cluster central
vectors centroids is an optimization problem. It needs some
measure of quality of the centroids as well as a number of
final clusters.

In [12] a method for sequence clustering that is based on
a representative set of strings was published. In the present
paper a more efficient and reliable method for sequence clus-
tering than that presented in [12] is proposed. It uses the
similarity measure for the preparation of input centroids to
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K-means algorithm and a distance measure for the detection
of the optimal set of centroids and clusters. The number of
clusters and the initial set of centroids need not be known
a priori.

The clustering method proposed in the present paper is
a hierarchical agglomerative in the beginning with the aim
of finding k initial cluster centroids. After it has been done
the standard K -means algorithm is used to partition all the
sequences. The centroids of the clusters become input parame-
ters which are inserted into the K -means clustering algorithm
to partition all the sequences. The output of K-means algo-
rithm is a set of k£ clusters. The procedure of joining and
validation of the number of clusters completes the clustering
process. The approach appears to be very efficient.

Suppose we want to classify a set Sy consisting of NV
sequences. First of all, the word spectra of sequences and
the similarity matrix ¥ of the set have to be found. Next, the
sequences are mapped onto corresponding rows of Y matrix
and the distance matrix as defined above is computed. In the
agglomerative clustering, the hierarchy of clusters is built
starting with each spectrum as an individual cluster. The two
closest spectra are then grouped, giving one cluster of two
sequences. The remaining clusters still consist of spectra of
a single sequence. To find the distance between two clusters
the Unweighted Pair Group Method Using Arithmetic Mean
is used. Within the cluster, the distance is defined as an arith-
metic mean of distances between all pairs of sequences that
are members of the clusters. Besides, a method for stopping
the clustering process, i.e. determining the best number of
temporary clusters is needed. Several methods are used to
determine the number of clusters. Unfortunately, neither of
them can be called the perfect one. In the present research
it is proposed that the difference (knee point) of the sum of
intra-cluster sum of squared distances (ssd) of all clusters
detects precisely enough the optimal set of cluster. The rapid
increase of the knee point variation signals that the number
of clusters is too high. The sum of squared distances of the
cluster is defined as

1 &
— P . 2
Sk ”z ; Ixi — %]

where ny, is size of the k-th cluster and x; is a vector represent-
ing the sequence belonging to the cluster. The sum of squared
distances of the set of clusters is given by ss. = >, si. The
knee point defined as kp (n) = ssd(n — 1) + ssd(n+ 1) —
2ssd(n) versus n — the number of pairs (or paired clusters) is
calculated and the recommended set of the best pairs is the
one at which absolute knee point values are still relatively
small.

At the initial step the set of mean vectors of the selected
pairs is considered as a crude approximation for centroids. In
the next step the selected pairs are joined into fours. The best
set of fours is selected in the same manner as described above,
providing better candidates for centroids. Joining the sets is

continued until the number of centroids becomes close to the
expected number of clusters or all knee point variations of
ssd are large. Now the K -means clustering algorithm with
centroids as input parameters is used for partitioning of all
sequences. The resulting number of clusters in the partition
based clustering methods equals the number of centroids and
usually exceeds the optimal number of clusters. Some of them
have to be joined. Validation of the number of clusters is done
with the use of knee point of the sc as the score function
measuring the quality of clustering.

The data set used to test the algorithm consists of mito-
chondrial genomes of four groups (birds, fishes, mammals
and reptiles) each of 100 species, all downloaded from the
GenBank database (http://www.ncbi.nlm.nih.gov). The set of
best pairs selected according to low kp rule consists of 150
mitochondrial sequences, as shown in Fig. 1.
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Fig. 1. Knee point of s versus number of pairs
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Fig. 2. Knee point of ss. versus number of clusters

The best set of fours includes 60 sequences, and so
on. The last is a set of eight groups, each consisting of
16 mitochondrial sequences represented by corresponding
vectors (rows of the similarity matrix). The mean vector
of each group is used as the centroid starting location.
The K-means clustering algorithm returns eight clusters
quoted in the supplementary material. The knee point of
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sc of the set of clusters is low, indicating that eight is
not the optimal number of clusters. Joining the closest
clusters into pairs followed by the knee point calculation
yields the plot in Fig. 2. It suggests that four cluster is
the best result of the clustering process. The resulting clus-
ters are presented in the supplementary material. 382 (96%)
MtDNA sequences were grouped properly. Incorrect clus-
tering results refer to six sequences of fish species assigned
to the bird family, four sequences of reptile species assig-
ned to mammals and eight sequences of mammals species
assigned to fishes.

I1I. 3. Fractional part of irrational number represented
as sequence of digits

Any sequence of digits can be considered as a symbolic
sequence over ten digits alphabet. An example is the frac-
tional part of any irrational number. Let as recall that the
irrational number is one that cannot be written as a ratio of
any two integers. If it is written in the decimal form, it goes
on forever without repeating. Some irrational numbers can
be expressed as a polynomial with rational coefficients. They
are called algebraic numbers. However, much more irrational
numbers are not algebraic, and they are called transcendental
numbers (see, for example, [13] and quotes therein). Many
sequences representing mathematical constants in the deci-
mal base are thought to be normal. In the present context
“normal” means that any single digit in a sequence of length n
occurs approximately n/10 times. All we know on normality
follows from E. Borel theorem: almost every real number is
a normal number. Another property that irrational numbers is
supposed to have is random distribution of digits across the
sequence. In what follows it is shown that the word spectrum
of the sequence provides some arguments for the conjecture.

In recent years new algorithms based on Bailey-Bor-
wein-Plouffe (BBP) [14] have been discovered and high-
performance computing tools have been developed. They
made possible computation digits of very long sequences
of several irrational numbers. It follows from them that the
finite length sequences of commonly known mathematical
constants satisfy the normality condition. The paper [15]
(and references within) presents a compendium of the set of
BBP-type formulas for various mathematical constants.

The fractional part of any irrational number is consid-
ered as a symbolic sequence over the decimal digits alpha-
bet. The sequence can be parsed into a set of distinct words
(a spectrum) according to the method presented in section
2.1. The spectrum allows for the calculation of complexity,
entropy of sequences and comparison of two such sequences
with the use of the similarity measure. What is more, it can be
done for subsets of different length in order to discover how
complexity, entropy and similarities depend on the subset
location or length of the subset. In general, some correla-
tions within a sequence may exist. They can be removed after
the elements of the sequence are thoroughly shuffled. The
shuffling algorithm for the sequence n symbols long consists

of the selection of some random permutation of the set of
integers from 1 to n and then rearrangement of the elements
of the sequence according to the permutation. When it is
repeated, for example, 100 times, any correlations disappear.

Nemiroff and Bonnell [16] computed and made available
several long sequences of digits in decimal base, including
two million long sequences of base of natural logarithm and
square root of 2. The authors declare the sequences have been
checked, they also suggest the sequences are random and
have no unexpected correlations, and ask for testing these
properties.

In what follows a set of five two million long sequences of
decimal digits is considered, they are fractional parts of: orig-
inal sequences; oe — base of natural logarithm, os — square
root of 2, their shuffled (randomised) counterparts — se, ss,
and pseudorandom normal sequence of decimal digits — r.
In order to discover tendencies within sequences, from each
of them the first twenty-two fragments of length from 1000 to
2 million digits was selected.Let us first discuss the normality
property of e and v/2 sequences.
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Fig. 3. Share of selected digits (“0”, “5”, and “9”) in sequence
of e number

Fig. 3 shows that the longer sequence e, the closer to nor-
mal it becomes, and the same is true for V2 sequence. It can
be assumed that it is true for the arbitrarily long e and /2
sequences.

The spectra of all 5x22 sequences were found and used
to calculate the complexity — length of the spectrum and sim-
ilarities between the sequences of the same length. Detailed
results are included in Tab. 1 of the supplementary material.
In general, the complexity per 1 000 digits slowly decreases
with increasing sequences length. Plots of all five complexiti-
es are hardly distinguishable. The variance of the five results
averaged over subsequence length amounts 10~° for complex-
ity. One can come to a conclusion that the longer sequence
e and square root of 2, the closer they become to an instance
of the random sequence. Let us now discuss the correlation
functions for e and v/2 sequences. The two attributes of the
word are considered for correlation of v/2 sequence, they are
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length and number of “0” digits in the word. Fig. 4 shows the
noise-like dependence of both correlations on distance.

0.03 T T T T

correlation function

400 500 600 700 800 900 1000
distance

0 100 200 300

Fig. 4. Correlation functions of word length and score of digit “0”
instances in a word for the sequence of v/2 number

It does not change when distance of tens of thousands is
considered. The same is true for e sequence.

There are five independent pairs of sequences of every
length. The similarity of each pair is calculated and Fig. 5
shows the similarity of (oe, 0s) pairs of sequences versus
sequence length. The same plots for other pairs are almost
indistinguishable from the pair (oe, 0s). The corresponding
average variance is of the order 10~°.
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Fig. 5. Similarity of digit sequences of e and /2 versus
length of subsequences

Again it can be concluded that all five sequences behave like
different instances of a random sequence. The word spectra
of any two normal random sequences 1 000 digits long have
on average 1.6% of words in common while sequences two
million digits long have approximately a quarter of words in
common. The increase in similarity per 1000 digits slows
down from 10~2 at the beginning to 10~ for sequence two

million digits long. The conclusion following from the ex-
periment is rather obvious: all five sequences are statistically
indistinguishable. So both sequences of digits being the frac-
tional part of square root of 2 and base of natural logarithm
of length not exceeding 2 million are probably random se-
quences. Another conclusion also follows that the similarity
between any random, two million digits long sequences is
about 0.25.

For comparison it is worth considering Chapernowne’s
number 0.123456789101112131415..., which is con-
structed by concatenating “0” digit and digits of consecutive
natural numbers as the fractional part. The number is assumed
to be transcendental. The set of two million long sequences of
decimal digits is considered. As follows from Fig. 6, the plot
of digit fractions suggests that the sequence is not normal.
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Fig. 6. Share of selected digits in sequence
of Chapernowne’s number

After decomposition of the original and shuffled se-
quences into sets of words, the complexity of both sequences
was found. The detailed results are presented in the supple-
mentary material. As before, the length and number of ’0’
digits in the word are two attributes considered for correlation.
Fig. 7 clearly shows that the sequence is not random.
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Fig. 7. Correlation functions of word length and number of digit “0”
instances in word in sequence of Chapernowne’s number
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The correlation function of words length cor(l;4) dis-
plays maxima at various distances ¢, so does the function
cor(”07;1). The correlations are very long, of order 10°.
It can be concluded that a set of digits of Chapernowne’s
number sequence has quite different global properties from
sequences of e or v/2 numbers.

IV. CONCLUSIONS

The main objective of the present paper was to demon-
strate that suitable parsing of an arbitrarily long (in principle)
symbolic sequence into a set of strings called words has the
ability to discover several properties of a single symbolic
sequence and some relations between many sequences over
the same alphabet. What is particularly interesting is the cor-
relations of attributes of words across a sequence and the al-
gorithm dividing a set of sequences into a small number of
relatively homogenous subsets on the basis of their similarity
and specific distance between them. Demonstrations were per-
formed on very reliable data; mitochondrial DNA sequences
and sequences of digits of irrational numbers. Rather satisfac-
tory results open the door to more advanced investigations.
One of them is the identification of hypothetical ancestral
sequences of the protein families of extant species. Another
one is the analysis of time series generated by dynamical
systems, based on their specific features, which is an impor-
tant issue in diverse areas, including physiological data time
series. There is some evidence that the symbolic rather than
numerical analysis can be more fruitful in the search for the
characteristics of non stationary time series.
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