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Abstract: The method for symbolic sequence decomposition into a set of consecutive, distinct, non-overlapping strings of

various lengths is proposed. Representation of the sequence as a set of words allows one to use set theory notions. The main

result is a quite new definition of the similarity between any two sequences over a given alphabet. No prior sequence

alignment is necessary. In the present paper two applications of a set of words are described. In the first a similarity measure

is applied to prepare centroids for K-means algorithm. It results in a high performance grouping method for long DNA

sequences. The other application concerns the statistical analysis of word attributes. It is shown that similarity, complexity

and correlation function of word attributes across sequences of digits of fractional parts of some irrational numbers support

the suggestion that the sequences are instances of a random sequence of decimal digits.
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I. INTRODUCTION

Very long sequences, which occur in many fields, when

directly represented by vectors are usually difficult to analyse

or compare, e.g. genomes or share prices. Decreasing the

size of a vector in the course of the preprocessing procedure

has numerous advantages. It reduces significantly the base

of the recorded sequence for further retrieval. The size of

a vector can be reduced by mapping a sequence onto a set of

subsequences (strings, words). The set of words results from

suitable decomposition (parsing) of a sequence. The first use-

ful decomposition was proposed by Lempel and Ziv [1] in

order to define the quantitative measure of symbolic sequence

complexity. Ke and Tong [2] pointed out that the Lempel-

Ziv algorithm leads to a complexity measure which some

artificial, regular sequences reckon as complex.

They developed an algorithm for parsing a sequence of

binary symbols, which is free of such faults. The algorithm

provides a better quantitative measure of complexity which is

defined as the total number of strings. In my paper [3] the Ke

and Tong algorithm was generalized to arbitrary sequences

over a finite alphabet. It was also shown that the whole set

of strings (not only their number) is a very rich source of

information on symbolic sequences.

The most fundamental task in sequence analysis is to

discover any relationships (e.g. similarity) between two ex-

perimental sequences. To compare any of two sequences

a certain measure is required that can determine whether and

how similar (or distant) they are. There are several definitions

of similarity, [4-7]. Neither of them provides a simple, satis-

factory measure of global similarity between two arbitrary

symbolic sequences over the same alphabet. An alternative

similarity measure based on decomposition of sequences into

a set of specific distinct words was proposed in [3]. The si-

milarity between two sequences is related to the number of

common words in the decomposition of two sequences. It is

very convenient, as it does not need previous alignment of the

sequences.

Another task in the set of sequences analysis is sequences

clustering. Its aim is to assign a set of sequences into groups
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so that the objects in the same group are more similar to

each other than to those in other groups. Clustering symbolic

sequences is more challenging than clustering numeric data

because there is no natural measure of similarity between

symbolic sequences. There are many clustering methods and

algorithms. Among partitioning methods, K-means is a com-

monly used algorithm. The algorithm needs initialising a set

of cluster centres, which are often difficult to find, and some

measure of clustering quality. In the present paper the hierar-

chical method and new similarity between sequences is used

to find initial cluster centres. As the clustering quality mea-

sure, the property of an intra-cluster sum of squared new

specific distances is used.

Every word following from sequence decomposition has

several numerical attributes, like length (number of symbols)

and composition (numbers of particular letters and their dis-

tribution). The relation between the values of these attributes

in different segments of the sequence distribution can be

detected with the use of word correlation functions.

The fractional parts of the base of natural logarithm and√
2 numbers are considered as symbolic sequences over the

decimal digits alphabet. It is shown in the present paper that

similarity and correlation functions of word attributes of both

sequences, their randomised counterparts and pseudorandom

sequence of decimal digits are similar with high accuracy.

The aim of the present paper is twofold: firstly, to show

that the set of words, the similarity and distance measures

make the K-means algorithm of clustering symbolic se-

quences more robust, and secondly, to support the hypothesis

saying that very long sequences of decimal digits of irrational

numbers are random sequences.

The paper is organized as follows: in section 2 symbolic

sequence decomposition into a set of consecutive, distinct

strings is recollected. Next, the similarity, distance measure

between sequences, and correlation functions of word attri-

butes are defined. In section 3.2 the clustering algorithm is

applied to a set of 400 long DNA sequences, and in section

3.3 the analysis of three real very long numerical sequences

and their randomised counterparts is made.

II. METHODS

II. 1. Parsing algorithm

The naive decomposition of a symbolic sequence into

a set of short strings of predefined length (called k-mers) has

a limited application. Strings of the same physical meaning

may differ in length and can exist in different places of the

sequence. Successful sequence decomposition can be done

with the use of the Ke and Tong algorithm generalised to any

sequence over a finite alphabet. The details of the algorithm

are as follows. Suppose there is a primary sequence C of

symbols c1, c2,..., cn. Suppose St is a set of words obtained

so far and the first symbol of the new word w is ci. The word

is formed as a result of a specific procedure of appending

symbol ci by the following symbols in three steps.

Step 1. String Q = ci is neither periodic nor chaotic because

there is only one symbol in it. So it has to be appended by

the next symbol. Appending is continued until some symbol

ci+j+l repeats one of the symbols, say k-th, in the string

Q = ci, . . . , ci+j .

Step 2. Let P = ck and R = ci+j+1, so far they are equal.

Both strings are appended P = ckck+1, R = ci+j+1ci+j+2

and so on, until they become different. Then string Q found

in Step 1 is appended by string R, and the new string is

Q = QR.

Step 3. Set St of words is searched for the presence of

string Q. If string Q is found, it is appended by the fol-

lowing (next to the last symbol of Q) symbol of C becoming

Q = Qci+j+k+1. Appending is continued until some string

Qci+j+k+l does not replicate any word from St. The string

w = Qci+j+k+l becomes the new word of the spectrum rep-

resenting sequence C. It may happen that several last symbols

of C cannot be processed by the above replication, they make

a new word.

The code of the parsing algorithm is available on request.

The result of the sequence decomposition is a set of ordered,

distinct and non-overlapping words which will be called the

word spectrum of the primary symbolic sequence C.

II. 2. Similarity

Measuring the similarity between symbolic sequences

is essential in many data (numeric as well) analyses. So far,

due to the lack of natural geometrical interpretation of the

symbolic sequence the resemblance (similarity) measure be-

tween two sequences was difficult to define, mainly because

of the necessity of prior sequences aligning [6, 7].

When spectra S1 and S2 of two sequences C1 and C2 are

known, several similarity measures can be defined. Among

them, the set theory intersection of S1 and S2 against the total

number of words in both spectra

σ(C1, C2) =
2l(int(S

1
, S2))

l (S1) + l (S2)

seems to be the most natural. Here, int(S1, S2) is a set of

words that the two spectra share (intersection of S1 and S2),

and l (S) means the length (number of words) in set S. The

similarity measure σ(C1, C2) has the form of the Dice coef-

ficient [10], except that the symbols have different meaning.

The σ(C1, C2) function varies between 0 when the spectra

are disjoint sets and 1 when sequences S1 and S2 are the

same.

II. 3. Distance

It has been found that the distance between sequences is

very useful when it comes to identifying the number of clus-

ters that best fits a given dataset. Let C be a set of n symbolic

sequences, the distance between the sequences can be estab-

lished with the use of similarities between them. They form

a symmetric table with ones along the main diagonal, which
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is called similarity matrix Σ. An element σij of the matrix de-

pends on sequences Si and Sj but not on the other sequences

of the set. Every sequence Si can be uniquely mapped on i-th
row (or i-th column) of similarity matrix Σ

(σi1, . . . , σin) → xi,

where xi is n-dimensional numeric vector representing i-th
sequence. All rows span specific, linear n dimensional vector

space. Now, a distance between any two vectors xi and xj

can be defined, in the following it will be Euclidean distance

dij = |xi − xj | =

√

√

√

√

n
∑

k=1

(σik − σjk)
2
.

The dij is a context dependent distance between the cor-

responding sequences Si and Sj . The lower bound on the

distance can be shown to be equal to
√
2(1 − σij), which

means that

dij ≥
√
2(1− σij).

There is no monotonic relationship between distances

and corresponding similarities. The set of differences dij −√
2(1 − σij), looks like a random variable of the Weibull

distribution. There is an advantage in using distance in some

applications because distance is an additive measure contrary

to the similarity.

II. 4. Correlation function of word attributes

One of the goals of every analysis of any set of objects is

to find relations between the attributes of its elements across

the sequence. Parsing the sequence into a set of words (word

spectrum) reduces significantly the set of objects representing

the sequence. However, words are more complex objects than

single symbols. A word is characterised by attributes such

as length, a set of symbols and their order. The spectrum

can be considered as a discrete function of many variables

(attributes of the word). The aim of the advanced analysis of

symbolic sequence is to find relations between the variables.

The relations are given by various correlation coefficients.

Let S(w1, w2, . . . , wn) be the word spectrum of sequence C
over alphabet a1, a2, . . . . Any word wi is a string of letters

a1, a2, . . . , al. The numerical attributes of the word are, for

example, l – length of the word, number of a1 instances, set

of integers indicating positions of instances a1, number of

’a1a2’ strings in the word, and so on. The simplest one is the

words length correlation function

cor(i; ; l) =

∑n

j=1
(l(wj)−m)(l(wj+i)−m)
∑n

j=1
(l(wj)−m)

2
,

where m = 1/n
∑n

j=1
l(wj).

The correlation functions can be used as a test for sequence

randomness. If the correlation function exhibits small rapid

changes of its value, there are no correlations between distant

parts of the symbolic sequence.

III. EXAMPLE AND APPLICATIONS

III. 1. Example

To explain the main notions introduced in section 2, a simple

example is presented. A set of four small gene sequences is de-

composed into words and the similarity and distance matrices

of the set are found. A set of short fragments (63 bases each)

of small subunits S16 rRNA gene sequences from four or-

ganisms: (1)-Human, (2)-Saccharomyces cerevisiae, (yeast),

(3)-Zea mays, (corn) and (4)-Escherichia coli downloaded

from the GenBank database (http://www.ncbi.nlm.nih.gov).

The partition algorithm yields word spectra of length from

13 to 15 words. The shortest one is the spectrum of

E. coli: ’GTGC’, ’CAGCA’, ’GCCG’, ’CGGT’, ,’AAT’,

’ACGGA’, ’GGGT’, ’GCAAG’, ’CGTTA’, ’ATCGGA’,

’ATTA’, ’CTGGGC’, ’GTAAAG’. The intersection of the

human and yeast spectra consists of 13 words, while the in-

tersection of human and E. coli is only 5 words long. So

the similarity between the human and yeast sequences is

2 ·13/(15+15) = 0.867, and between the human and E. coli

sequences it is 2 · 5/(15 + 13) = 0.357.

III. 2. Clustering mitochondrial DNA sequences of 400

species

In clustering, the task is to group a data set into a set of

disjoint classes of objects, so that each class is assigned to

a unique cluster. The data within each cluster are supposed

to be similar to each other but different from members of

other clusters. Therefore the basic objective in clustering is to

discover a natural set of clusters based on some similarity or

distance measures. An important problem of clustering proce-

dure initialisation arises at the beginning of cluster analysis.

A common question is about the number of clusters present

in a given dataset and their initial central vectors which may

not necessarily be members of the data set. Actually, cluster

initialisation remains the biggest drawback of the partition-

based clustering algorithms. In the well known K-means

cluster algorithm (see, for example [11] and quotes therein),

if there is no prior knowledge on initial clusters, it is difficult

to obtain good results. Determining the initial cluster central

vectors centroids is an optimization problem. It needs some

measure of quality of the centroids as well as a number of

final clusters.

In [12] a method for sequence clustering that is based on

a representative set of strings was published. In the present

paper a more efficient and reliable method for sequence clus-

tering than that presented in [12] is proposed. It uses the

similarity measure for the preparation of input centroids to



96 B. Kozarzewski

K-means algorithm and a distance measure for the detection

of the optimal set of centroids and clusters. The number of

clusters and the initial set of centroids need not be known

a priori.

The clustering method proposed in the present paper is

a hierarchical agglomerative in the beginning with the aim

of finding k initial cluster centroids. After it has been done

the standard K-means algorithm is used to partition all the

sequences. The centroids of the clusters become input parame-

ters which are inserted into the K-means clustering algorithm

to partition all the sequences. The output of K-means algo-

rithm is a set of k clusters. The procedure of joining and

validation of the number of clusters completes the clustering

process. The approach appears to be very efficient.

Suppose we want to classify a set SN consisting of N
sequences. First of all, the word spectra of sequences and

the similarity matrix Σ of the set have to be found. Next, the

sequences are mapped onto corresponding rows of Σ matrix

and the distance matrix as defined above is computed. In the

agglomerative clustering, the hierarchy of clusters is built

starting with each spectrum as an individual cluster. The two

closest spectra are then grouped, giving one cluster of two

sequences. The remaining clusters still consist of spectra of

a single sequence. To find the distance between two clusters

the Unweighted Pair Group Method Using Arithmetic Mean

is used. Within the cluster, the distance is defined as an arith-

metic mean of distances between all pairs of sequences that

are members of the clusters. Besides, a method for stopping

the clustering process, i.e. determining the best number of

temporary clusters is needed. Several methods are used to

determine the number of clusters. Unfortunately, neither of

them can be called the perfect one. In the present research

it is proposed that the difference (knee point) of the sum of

intra-cluster sum of squared distances (ssd) of all clusters

detects precisely enough the optimal set of cluster. The rapid

increase of the knee point variation signals that the number

of clusters is too high. The sum of squared distances of the

cluster is defined as

sk =
1

n2
k

nk
∑

i,j

|xi − xj |2

where nk is size of the k-th cluster and xi is a vector represent-

ing the sequence belonging to the cluster. The sum of squared

distances of the set of clusters is given by ssc =
∑

k sk. The

knee point defined as kp (n) = ssd (n− 1) + ssd (n+ 1)−
2ssd(n) versus n – the number of pairs (or paired clusters) is

calculated and the recommended set of the best pairs is the

one at which absolute knee point values are still relatively

small.

At the initial step the set of mean vectors of the selected

pairs is considered as a crude approximation for centroids. In

the next step the selected pairs are joined into fours. The best

set of fours is selected in the same manner as described above,

providing better candidates for centroids. Joining the sets is

continued until the number of centroids becomes close to the

expected number of clusters or all knee point variations of

ssd are large. Now the K-means clustering algorithm with

centroids as input parameters is used for partitioning of all

sequences. The resulting number of clusters in the partition

based clustering methods equals the number of centroids and

usually exceeds the optimal number of clusters. Some of them

have to be joined. Validation of the number of clusters is done

with the use of knee point of the sc as the score function

measuring the quality of clustering.

The data set used to test the algorithm consists of mito-

chondrial genomes of four groups (birds, fishes, mammals

and reptiles) each of 100 species, all downloaded from the

GenBank database (http://www.ncbi.nlm.nih.gov). The set of

best pairs selected according to low kp rule consists of 150
mitochondrial sequences, as shown in Fig. 1.

Fig. 1. Knee point of sk versus number of pairs

Fig. 2. Knee point of ssc versus number of clusters

The best set of fours includes 60 sequences, and so

on. The last is a set of eight groups, each consisting of

16 mitochondrial sequences represented by corresponding

vectors (rows of the similarity matrix). The mean vector

of each group is used as the centroid starting location.

The K-means clustering algorithm returns eight clusters

quoted in the supplementary material. The knee point of
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sc of the set of clusters is low, indicating that eight is

not the optimal number of clusters. Joining the closest

clusters into pairs followed by the knee point calculation

yields the plot in Fig. 2. It suggests that four cluster is

the best result of the clustering process. The resulting clus-

ters are presented in the supplementary material. 382 (96%)

MtDNA sequences were grouped properly. Incorrect clus-

tering results refer to six sequences of fish species assigned

to the bird family, four sequences of reptile species assig-

ned to mammals and eight sequences of mammals species

assigned to fishes.

III. 3. Fractional part of irrational number represented

as sequence of digits

Any sequence of digits can be considered as a symbolic

sequence over ten digits alphabet. An example is the frac-

tional part of any irrational number. Let as recall that the

irrational number is one that cannot be written as a ratio of

any two integers. If it is written in the decimal form, it goes

on forever without repeating. Some irrational numbers can

be expressed as a polynomial with rational coefficients. They

are called algebraic numbers. However, much more irrational

numbers are not algebraic, and they are called transcendental

numbers (see, for example, [13] and quotes therein). Many

sequences representing mathematical constants in the deci-

mal base are thought to be normal. In the present context

“normal” means that any single digit in a sequence of length n
occurs approximately n/10 times. All we know on normality

follows from E. Borel theorem: almost every real number is

a normal number. Another property that irrational numbers is

supposed to have is random distribution of digits across the

sequence. In what follows it is shown that the word spectrum

of the sequence provides some arguments for the conjecture.

In recent years new algorithms based on Bailey-Bor-

wein-Plouffe (BBP) [14] have been discovered and high-

performance computing tools have been developed. They

made possible computation digits of very long sequences

of several irrational numbers. It follows from them that the

finite length sequences of commonly known mathematical

constants satisfy the normality condition. The paper [15]

(and references within) presents a compendium of the set of

BBP-type formulas for various mathematical constants.

The fractional part of any irrational number is consid-

ered as a symbolic sequence over the decimal digits alpha-

bet. The sequence can be parsed into a set of distinct words

(a spectrum) according to the method presented in section

2.1. The spectrum allows for the calculation of complexity,

entropy of sequences and comparison of two such sequences

with the use of the similarity measure. What is more, it can be

done for subsets of different length in order to discover how

complexity, entropy and similarities depend on the subset

location or length of the subset. In general, some correla-

tions within a sequence may exist. They can be removed after

the elements of the sequence are thoroughly shuffled. The

shuffling algorithm for the sequence n symbols long consists

of the selection of some random permutation of the set of

integers from 1 to n and then rearrangement of the elements

of the sequence according to the permutation. When it is

repeated, for example, 100 times, any correlations disappear.

Nemiroff and Bonnell [16] computed and made available

several long sequences of digits in decimal base, including

two million long sequences of base of natural logarithm and

square root of 2. The authors declare the sequences have been

checked, they also suggest the sequences are random and

have no unexpected correlations, and ask for testing these

properties.

In what follows a set of five two million long sequences of

decimal digits is considered, they are fractional parts of: orig-

inal sequences; oe – base of natural logarithm, os – square

root of 2, their shuffled (randomised) counterparts – se, ss,

and pseudorandom normal sequence of decimal digits – r.

In order to discover tendencies within sequences, from each

of them the first twenty-two fragments of length from 1000 to

2 million digits was selected.Let us first discuss the normality

property of e and
√
2 sequences.

Fig. 3. Share of selected digits (“0”, “5”, and “9”) in sequence
of e number

Fig. 3 shows that the longer sequence e, the closer to nor-

mal it becomes, and the same is true for
√
2 sequence. It can

be assumed that it is true for the arbitrarily long e and
√
2

sequences.

The spectra of all 5×22 sequences were found and used

to calculate the complexity – length of the spectrum and sim-

ilarities between the sequences of the same length. Detailed

results are included in Tab. 1 of the supplementary material.

In general, the complexity per 1 000 digits slowly decreases

with increasing sequences length. Plots of all five complexiti-

es are hardly distinguishable. The variance of the five results

averaged over subsequence length amounts 10−6 for complex-

ity. One can come to a conclusion that the longer sequence

e and square root of 2, the closer they become to an instance

of the random sequence. Let us now discuss the correlation

functions for e and
√
2 sequences. The two attributes of the

word are considered for correlation of
√
2 sequence, they are
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length and number of “0” digits in the word. Fig. 4 shows the

noise-like dependence of both correlations on distance.

Fig. 4. Correlation functions of word length and score of digit “0”

instances in a word for the sequence of
√

2 number

It does not change when distance of tens of thousands is

considered. The same is true for e sequence.

There are five independent pairs of sequences of every

length. The similarity of each pair is calculated and Fig. 5

shows the similarity of (oe, os) pairs of sequences versus

sequence length. The same plots for other pairs are almost

indistinguishable from the pair (oe, os). The corresponding

average variance is of the order 10−5.

Fig. 5. Similarity of digit sequences of e and
√

2 versus
length of subsequences

Again it can be concluded that all five sequences behave like

different instances of a random sequence. The word spectra

of any two normal random sequences 1 000 digits long have

on average 1.6% of words in common while sequences two

million digits long have approximately a quarter of words in

common. The increase in similarity per 1 000 digits slows

down from 10−2 at the beginning to 10−6 for sequence two

million digits long. The conclusion following from the ex-

periment is rather obvious: all five sequences are statistically

indistinguishable. So both sequences of digits being the frac-

tional part of square root of 2 and base of natural logarithm

of length not exceeding 2 million are probably random se-

quences. Another conclusion also follows that the similarity

between any random, two million digits long sequences is

about 0.25.

For comparison it is worth considering Chapernowne’s

number 0.123456789101112131415 . . . , which is con-

structed by concatenating “0” digit and digits of consecutive

natural numbers as the fractional part. The number is assumed

to be transcendental. The set of two million long sequences of

decimal digits is considered. As follows from Fig. 6, the plot

of digit fractions suggests that the sequence is not normal.

Fig. 6. Share of selected digits in sequence
of Chapernowne’s number

After decomposition of the original and shuffled se-

quences into sets of words, the complexity of both sequences

was found. The detailed results are presented in the supple-

mentary material. As before, the length and number of ’0’

digits in the word are two attributes considered for correlation.

Fig. 7 clearly shows that the sequence is not random.

Fig. 7. Correlation functions of word length and number of digit “0”
instances in word in sequence of Chapernowne’s number
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The correlation function of words length cor(l; i) dis-

plays maxima at various distances i, so does the function

cor(”0”; i). The correlations are very long, of order 105.

It can be concluded that a set of digits of Chapernowne’s

number sequence has quite different global properties from

sequences of e or
√
2 numbers.

IV. CONCLUSIONS

The main objective of the present paper was to demon-

strate that suitable parsing of an arbitrarily long (in principle)

symbolic sequence into a set of strings called words has the

ability to discover several properties of a single symbolic

sequence and some relations between many sequences over

the same alphabet. What is particularly interesting is the cor-

relations of attributes of words across a sequence and the al-

gorithm dividing a set of sequences into a small number of

relatively homogenous subsets on the basis of their similarity

and specific distance between them. Demonstrations were per-

formed on very reliable data; mitochondrial DNA sequences

and sequences of digits of irrational numbers. Rather satisfac-

tory results open the door to more advanced investigations.

One of them is the identification of hypothetical ancestral

sequences of the protein families of extant species. Another

one is the analysis of time series generated by dynamical

systems, based on their specific features, which is an impor-

tant issue in diverse areas, including physiological data time

series. There is some evidence that the symbolic rather than

numerical analysis can be more fruitful in the search for the

characteristics of non stationary time series.
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