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Abstract: The technique of Young’s modulus variation in the finite element is not spread in biomechanics. Our future goal is

to adapt this technique to bone tissue strength calculations. The aim of this paper is to present the necessary studies of the

element’s integration method that takes into account changes in material properties. For research purposes, a virtual sample

with the size and distribution of mechanical properties similar to these in a human femoral wall, was used. WinPython, an

environment of Python programming language was used to perform simulations. Results with the proposed element were

compared with ANSYS element PLANE42 (with constant Young modulus). The modeled sample was calculated with five

different integration methods at five different mesh densities. Considered integration methods showed a very high correlation

of results. Two-point Gauss Quadrature Rule proved to be the most advantageous. Results obtained by this method deviate

only slightly from the pattern, while the computing time was significantly lower than others. Performed studies have shown

that accuracy of the solution depends largely on the mesh density of the sample. Application of the simplest integration

method in combination with four times coarser mesh density than in ANSYS with a standard component still allowed to

obtain better results.
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I. INTRODUCTION

The finite element method was developed for structural

engineering. Development of science has allowed its use for

calculations in other areas. The technique of Young’s modu-

lus variation in the finite element was presented for functional

graded composites [1] and fracture mechanics [2]. Our study

aimed to adapt this technique to the bone tissue strength cal-

culations. The currently used bone calculation method means

assignment of individual material properties such as Young’s

modulus (E) to each of the model’s element. Subsequent mod-

ulus’ values are assigned to the elements by reading the inten-

sity of radiation absorption for each pixel in HU (Hounsfield

units) the scale of CT images radiodensity; it corresponds to

the amount of radiation that a given structure absorbed: the

bigger the number, the more radiation it absorbs. Calculation

is performed using formulas (1) and (2) [3, 4]. In cited papers

authors assumed bone tissue as isotropic material.

ρ
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cm3

]

=
0.63 ·HU− 6.7

1000
(1)

E[MPa] = 1904ρ1.64 (2)

Such calculations method (one image pixel – one Young’s

modulus) and differences in HU values of neighboring pixels

generate discontinuities between adjacent elements. Discon-

tinuities of properties do not occur in reality and should be

considered as an error of the method. The common solution

of this problem is to interpolate the material data on a refined

mesh. Such action, however, does not improve the results

significantly and also increases the computational time [5].
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Authors’ proposition of solving this problem is the use

of a finite element which has different Young’s modulus val-

ues in its nodes in the calculations. The functions describing

changes of these values are used to define the material prop-

erties of the elements used in strength calculations. The aim

of this numerical experiment was to choose the most advan-

tageous method for BD matrix integration (BD matrix is

the result of multiplying three matrices: strain matrix B, elas-

ticity matrix D and the Jacobian matrix J). As a result of

integration in generalized coordinates s and t the element

stiffness matrix is obtained:

k = g ·

∫

1

−1

∫

1

−1

B
T ·D ·B · |J |ds dt (3)

Calculations, modelling and graphs were made in Python

programming language, using the WinPython distribution.

Fig. 1. Tomographic image of man’s femur (top) and magnified view
of the bone section (bottom)

II. MATERIAL AND METHODS

For the purposes of the numerical experiment quadratic

model with dimension l × l = 1.3× 1.3 mm and g = 1 mm

thickness was created. Dimensions correspond to half of the

human femur wall width (Fig. 1).

Young’s modulus changes in the volume of the virtual

sample according to its distribution in the bone: increases

from the bone edge to the center of the wall and decreases

again to the edge (Fig. 2). The computational experiment

involves compression of the bone sample that has the same

characteristics in every direction. The sample is supported on

the lower edge (nodes from the bottom row could shift hori-

zontally, except the node in point A which has both degrees

of freedom removed) and loaded over the entire upper edge,

and the side edges remain free. Compression is realized by

the displacement of the upper nodes layer (kinematic con-

straint). The displacement value was calculated with the use

of Hooke’s law in one dimension (4). The displacement (∆l)

value was chosen in such a way that, when Young’s modulus

for the entire sample is equal to the mean value E – generated

the stress of 100 MPa [7]. Poisson ratio was set as 0.3 [8].

∆l =
σ · l

E
= −0.0967 mm, (4)

where σ = 100 MPa – compressive stress present in bone [7],

l = 1.3 mm – height of the sample, E – mean value for

Young’s modulus Emin = 485 MPa, Emax = 5377 MPa,

calculated with (1) and (2) for radiodensity of 700 . . . 3000
HU present in femur bone [7].

Our aim is the study of 2D Young’s modulus problem

before development of the 3D element. A plane stress model

was selected for numerical methods study. The plane model is

only a test and is not expected to be used in actual bone stress

calculations. Its simplicity allows for clear visual inspection

of the results. The test results in the next stage of work will

be transferred to the 3D model. It was calculated using the

standard 4-node rectangular element from the Serendipity

family [9]. The shape function described the element in nor-

malized coordinates is:

Ni =
1

4
(1 + s · si) (1 + t · ti) , (5)

where i = 0, . . . , 3 – node numbers, si, ti – normalized

coordinates at node i.

Each of the element’s four nodes has two degrees of free-

dom: displacements along the x and y-axis. All elements have

the same unitary thickness value. The material properties are

assigned to the finite element by the elasticity matrix D.

For plane stress state [6, 9]:
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where: ν – Poisson’s ratio.

Fig. 2. Virtual sample and its place in bone area. Variability of
Young’s modulus from Emin to Emax was calculated by (1) and (2)
for the common value of radiodensity on the shore and in the middle
of the long bone’s wall 700 . . . 3000 HU [7]. The distribution of E

variation we simplified by linear distribution (8)

The plane stress model was used to perform calculations.

An alternative would be the use of a plane strain model, but

for testing numerical methods does not matter which method

has been adopted. In addition, the plane stress model allows

one to easily compare the results of compression for variable

and constant E (the variation of the stress field depends only

on variation of Young’s modulus). In standard formulation

of the single finite element, Young’s modulus E is a sin-

gle parameter defined as one value for the elasticity matrix.

The authors’ proposition is to write the Young’s modulus

parameter of a single finite element as a function dependent

on x and y coordinates E = E (x, y).
The finite element calculations are divided into two steps:

the first one is to build the global stiffness matrix, while the

second is calculation of displacements and stresses. Obtain-

ing the global stiffness matrix is based on a summation of

successive elements’ local matrices. While creating the lo-

cal stiffness matrix, for each of the elements’ nodes Young’s

modulus value is calculated with the use of the formulae (8)

Ei = a · xi + b · yi + c, (8)

where i = 0, . . . , 3 – node numbers.

Then, the modulus value for a specific location are calcu-

lated on the element’s surface according to the interpolation

formula:
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(9)

where s and t are natural coordinates of serendipity element

[9]. As shown in (9), the modulus of the computed spot de-

pends on the nodal modulus calculated with (8). Formula (9)

is used to calculate the adequate values of Young’s modu-

lus for each of the BD matrix Gaussian integration points.

This diversity of E in Gauss points is originality in FEM

calculation for bone tissue (in classical FEM, value of E for

each element’s Gauss points are equal) – Fig. 3.

The additional variability introduced into the element

raises the degree of a polynomial contained in the BD ma-

trix, hence the need for the search for a cost-effective and

sufficiently precise integration method for a variable Young’s

modulus element.

III. RESULTS

The calculations of the described sample were performed

for five mesh densities 3× 3, 10× 10, 25× 25, 50× 50 and

100× 100 elements. In FEM, before summing local stiffness

matrices in a global one, every local’s entire has to be integral.

The authors used two methods of integration:

1. Numerical integration, by the trapezoidal method in 21

intervals in each direction.

2. Gaussian quadrature, in 2, 3, 4 and 6 points’ coordi-

nates.

Results of all integration methods for sample mesh density

of 10 × 10 elements are almost identical, therefore, a com-

plete set of results is shown in Fig. 4, while in Fig. 5 and 6

there are only results for two extreme methods.
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Fig. 3. Comparison of the Young’s modulus values in the Gauss points for the classic FEM method (left) and with modifications used in this
work (right)

Fig. 4. Results of normal y stress calculations in 5 different integral
methods with 10× 10 meshing

Fig. 5. Results of normal x stress calculations in 2 different integral
methods with 10× 10 meshing

Fig. 6. Results of shear stress in xy plane calculations in 2 different
integral methods with 10× 10 meshing
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To verify the accuracy of subsequent results graphs

(Fig. 4-6) of the stress vs sample diagonal (Fig. 2 from A

to B) coordinates were generated. In order to improve the

accuracy of graphs (Fig. 7-10), stress was calculated for 3

additional points in every element. Discontinuity of stresses

occurring between finite elements (stepped construction of

the graphs Fig. 7-10) is a natural inaccuracy of FEM and is

used to calculate indicator of calculation quality [9].

Fig. 7. Graph of stress on the distance on the diagonal AB for normal
x-stresses

Fig. 8. First element (from the diagonal line) with the largest differ-
ences

Fig. 9. Graph of stress on the distance on the diagonal AB for normal
y-stresses

Fig. 10. Graph of stress on the distance on the diagonal AB for shear
stress in xy plane

Differences between subsequent integration methods are

nearly unnoticeable: less than 1%. Due to the satisfactory

precision of the 2 Gauss point quadrature integration method,

authors chose it to compare subsequent elements mesh den-

sity.

Fig. 11. Results of normal stress calculations in x-axis with various
sample meshing (last picture calculated in ANSYS: one element one

Young’s modulus)

To verify the correctness of received results, calculations

were performed with the ANSYS program. Comparison of

results obtained with the authors’ method and by ANSYS

(Fig. 11-13) show nearly identical graphs, which proves that
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element proposed by authors works correctly. Small differ-

ences in stresses’ fields due to different calculation methods

(our method: variable Young’s modulus in element’s volume,

ANSYS: constant Young’s modulus in element’s volume) and

various desktop environments.

Fig. 12. Results of normal stress calculations in y-axis with various
sample meshing (last picture calculated in ANSYS: one element one

Young’s modulus)

To compare results of stress calculations for the following

meshing densities, graphs of the stress-sample diagonal coor-

dinates (AB line), with like previous 3 extra points in every

element were created (Fig. 14-16).

IV. DISCUSSION

Accuracy of calculation of normal stresses in the x-axis

depends largely on the mesh density of the samples; the

most accurate calculations were made with mesh density

of 100 × 100 elements (Fig. 11-13). In the illustrated case,

the force acts on the sample along the axis y, so the most

convenient parameter is normal stresses at this very axis. Its

very accurate results show that the division on just 25× 25
elements, residual stresses require much less division of the

same area. Mesh densities of 3 × 3, 10 × 10, 25 × 25 and

50×50 (Fig. 11-13) have nearly the same trend (Fig. 14). For

x-axis stress sparse elements distribution (3×3) causes a shift

of the calculated values in the sample area also it increases

maximum stress values of 30%.

For y-axis (Fig. 15) stress we can observe the same de-

pendence as for x-axis.

Fig. 13. Results of shear xy stress calculations with various sam-
ple meshing (last picture calculated in ANSYS: one element one

Young’s modulus)

The shear stress calculation (Fig. 16) shows significantly

different results. Differences of calculated stress values have

no systematic error.

Fig. 14. Graph of stress on the distance on the diagonal AB for
normal x-stresses. Different meshing, the same 2 Gauss points inte-

gration method
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Tab. 1. Sample computing time by various integration methods (in seconds)

Method Meshing 3× 3 Meshing 10× 10 Meshing 25× 25 Meshing 50× 50 Meshing 100× 100

2 Gauss points 0.6472049 2.1001356 12.0611346 54.5561081 420.8379792

3 Gauss points 0.6782838 2.1776570 12.6584298 57.1105987 437.7866906

4 Gauss points 0.6893282 2.3199014 13.4893099 59.6273304 446.0396503

6 Gauss points 0.7374736 2.6436009 15.4095962 73.6180064 470.7408321

Numerical 0.6885902 2.2669395 13.3021994 66.6352694 460.9023881

Fig. 15. Graph of stress on the distance on the diagonal AB for
normal y-stresses. Different meshing, the same 2 Gauss points inte-

gration method

Fig. 16. Graph of stress on the distance on the diagonal AB for
shear stress in xy plane. Different meshing, the same 2 Gauss points

integration method

V. CONCLUSION

Despite raising the degree of a polynomial in the BD

matrix in the finite element with varying Young’s modulus,

presented results clearly show that the two-coordinate Gauss

quadrature integration method is sufficiently accurate, thus

satisfactory and at the same time the fastest one (Tab. 1).

In practice of the long bones CT images the pixel size should

not be smaller than 1 mm due to the reduced radiation dose.

The conducted studies show that with a 4-node finite ele-

ment with size transferred directly from the CT scan and the

Young’s modulus gradient common in the thickness of the

long bones, satisfactory results can be obtained only when the

density distribution of the sample is increased to 25, which

requires a CT pixel size of 0.052 mm and is both inaccessible

and unacceptable. Therefore, one cannot count on accurate

results of the calculations despite taking into account the

Young’s modulus component variability. Our further work

will aim to consider the variability of Young’s modulus in the

8-node finite element.
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