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Abstract: The present work is concerned with the boundary integral equation formulation for the solutions of equations
under fractional order thermo elasticity in a three dimensional Euclidean space. A mixed initial-boundary value problem
is considered and the fundamental solutions of the corresponding coupled differential equations are obtained in the Laplace
transform domain. We employ one reciprocal relation in the present context and formulate the boundary integral equations
on the basis of our fundamental solutions.Then the formulation is illustrated with a suitable example.
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I. INTRODUCTION

Most often numerical techniques are employed as an al-
ternative tool to solve practical engineering problems that
are intractable to solve by any analytical method. More-
over, the advent of high-speed computers in today’s time
has drawn the attention towards versatile and accurate nu-
merical methods in engineering analysis. In the recent years,
the Boundary Element Method (BEM) or Boundary Integral
Equation Method (BIEM) has been playing a very crucial
role for solving linear partial differential equations due to
its efficiency with respect to the computer time and storage,
its simplicity and the ease of its implementation as com-
pared to other numerical techniques. As mentioned by Breb-
bia [1], Brebbia and Walker [2] and Fenner [3], it becomes
very methodical as compared to other numerical methods
like the Finite Element Method (FEM) for obtaining the so-
lutions of the same accuracy. Particularly, the BIEM/BEM
method is easily applicable to solve the elasticity problem
in an infinite region. BIEM can be applied in many more
areas of engineering and sciences, including fluid mechan-
ics, acoustics, electro magnetics and fracture mechanics. The
first numerical treatment of the BIE method was formu-
lated by Jawson [4] and Symm [5]. Rizzo and Shippi [6]

introduced the boundary element method for steady state
thermo elasticity and showed numerical results for three di-
mensional linear homogeneous isotropic medium. Chen and
Dargush [7] reported the BIE formulations for the dynamic
coupled poroelasticity and thermo elasticity with relaxation
times by using a unified approach. Work carried out by the
researchers like Cruse and Rizzo [8], Banerjee and Butter-
field [9], Brebbia et al. [10], Ziegler and Irschik [11] are
also worth mentioning in this direction. Application of the
boundary element method for three dimensional problems
of coupled thermo elasticity was analyzed by Tanaka et al.
[12]. Anwar and Sherief [13] presented the boundary inte-
gral equation formulation for generalized thermo elasticity
with relaxation times. Subsequently, several researchers like
Kogl and Gaul [14], El-Karamany and Ezzat [15, 16] El-
Karamany [17], Prasad et al. [18], Kothari and Mukhopad-
hyay [19] have reported BIE formulations in various ther-
moelasticity theories. Remillat et al. [20] have given vis-
coelastic testing and fractional derivative modelling to de-
scribe the thermally induced transformation.

In the last few decades, various models have been es-
tablished by using fractional calculus to study the proper-
ties of various real materials like polymers, etc. Furthermore,
fractional calculus has also been proved to be very useful in
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the areas of diffusion, heat conduction, viscoelasticity, con-
tinuum mechanics and electromagnetics, etc. As we know,
the first application of fractional calculus was made by Abel
(1802-1829) for the solution of an integral equation that
arises in the formulation of the tautochronous problem [21].
Liouville has done a rigorous study of fractional calculus,
and later on Caputo played a very important role in employ-
ing the fractional order derivatives for the description of vis-
coelastic material.

The classical heat conduction equation (diffusion equa-
tion) that is based on Fourier’s law of heat conduction
has been widely and successfully applied to the conven-
tional heat conduction problems. However, it has been re-
alized in recent years that it is applicable to the problems
that involve large spatial dimension and long-time response.
It yields unacceptable results in situations that involve ex-
treme thermal gradients, high heat flux conduction and short
time behaviour (Tzou [22], Chandrasekharaiah [23, 24]).
Moreover, this heat conduction implies that if the mate-
rial is subjected to any thermal disturbance then its effect
will be felt instantaneously at distances infinitely far from
its source. It is a physically unrealistic behaviour, particu-
larly for transient process of heat conduction at extremely
short time (Chandrasekharaiah [23]). In order to overcome
the inadequacy of Fourier’s law, serious efforts have been
made during the last few decades. It must be mentioned that
Cattaneo [25] and Vernotte [26, 27] proposed for the first
time a model of heat conduction (CV model) for a homoge-
nous and isotropic solid in the form

−k∇T = q(x, t) + τ
∂q

∂t
. (1)

As a modification of Fourier’s law where τ , a nonnegative
parameter and referred to as the thermal relaxation time,
is interpreted as the time lag needed to establish the steady
state of heat conduction at a point in a material when a tem-
perature gradient is suddenly imposed on it. Very recently,
Sherief et al. [28] has introduced a theory of fractional or-
der thermoelasticity in the frame work of the CV model and
proposed a new form of the heat conduction model in the
form

−k∇T = q(x, t) + τ
∂αq

∂tα
, (2)

where (0 < α < 1)is the fractional order parameter and Ca-
puto’s definition of fractional order derivative is employed
here.

The main objective of the present work is to formulate
the boundary integral equations for the solutions of equa-
tions under fractional order thermoelasticity in a three di-
mensional Euclidean space. We consider a mixed initial-
boundary value problem and derive the expressions of fun-
damental solutions of the corresponding coupled and time-
fractional order differential equations in the Laplace trans-
form domain. We formulate the boundary integral equations
on the basis of our fundamental solutions and one reciprocal

relation in the present context. In the present formulation,
we have considered the model of fractional order thermoe-
lasticity by introducing the fractional order derivatives and
the parameter, whose value lies between 0 and 1, in the heat
conduction equation. The concept of fractional calculus has
been applied in the present formulation. This formulation
is believed to be helpful for the solution of problems under
fractional order thermoelasticity by using the boundary ele-
ment method.

II. MATHEMATICAL FORMULATION:
BASIC GOVERNING EQUATIONS

We consider a homogeneous isotropic elastic body oc-
cupying the region V and bounded by a smooth surface S.
We employ a three dimensional rectangular Cartesian co-
ordinate system. The basic governing equations that describe
the physical components of the thermo elastic system in the
context of fractional order thermo elasticity can therefore be
considered as follows (Sherief [28]):
The equations of motion:

µui,kk + (λ+ µ)uk,ki + ρFi − γθ,i = ρüi. (3)

The equation of energy:

kθ̄,kk = ρCe

(
θ̇ + τ0

∂α

∂tα
θ̇

)
+ γT0

(
ė+ τ0

∂α

∂tα
ė

)
− ρCe

(
Q+ τ0

∂α

∂tα
Q

)
,

(4)

where (0 < α < 1), α being the fractional order parameter.
The constitutive equations:

σij = 2µeij + (λe− γθ)δij , (5)

eij =
1

2
(ui,j + uj,i). (6)

In the above equations, the superposed dot and comma
notations are used for time derivative and the material deriva-
tive, respectively. Summation convention has been used here
and δij denotes Kronecker delta. i, j, k varies from 1 to 3.
σij and eij are the components of stress and strain tensors
respectively; e = ekk is the dilatation; ui are the components
of the displacement vector u. λ and µ are the Lame’s elastic
constants. Ce is the specific heat at constant strain, θ is the
temperature, T0 is the reference temperature and

γ = (3λ+ 2µ)αt, (7)

where αt is the coefficient of thermal expansion, Q is the
heat source and Fi are the components of the body force
vector. k is the thermal conductivity, τ0 is thermal relaxation
parameter. We assume that all the functions are to be the
function of x and t, where x = (x1, x2, x3).
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III. BOUNDARY CONDITIONS

(S1 ,S2) and (S3,S4) are the partitions of the surface
S s.t.

S1 ∪ S2 = S = S3 ∪ S4, (8)

S1 ∩ S2 = S3 ∩ S4 = φ. (9)

Now we assume the following boundary conditions.
Mechanical conditions: The traction vector component

pi = σijnj (10)

is specified on the part S1 of S. ui is specified on S2 . Here
nj are the components of the outward normal n on the sur-
face S. These conditions can be written as:

σijnj = pi0(x, t) on S1, (11)

ui = ui0(x, t) on S2. (12)

Thermal conditions: Thermal conditions are taken as:

θ = θ0(x, t) on S3, (13)

θ,n = θn0(x, t) on S4. (14)

We consider that the initial conditions are homogeneous.
Clearly, using equation (5), the components of the traction
vector on the surface S is obtained in the form

pi(x, t) = [2µeij + (λe− γθ)δij ]nj(x) =

=µnj(x)ui,j + µnj(x)uj,i + λni(x)uj,j − γθni(x).
(15)

IV. FORM OF ABOVE EQUATIONS IN LAPLACE
TRANSFORM DOMAIN

The Laplace transform of a function f(t) is given by

f̄(p) =

∫ +∞

0

e−ptf(t)dt. (16)

Applying the Laplace transform on both sides of equation
(3)-(5), we get

µūi,kk + (λ+ µ)ūk,ki + ρF̄i − γθ̄,i = ρp2ūi, (17)

kθ̄,kk = ρCep(1 + τ0p
α)

(
θ̄ +

γT0
ρCe

ū,kk −
Q̄

p

)
, (18)

σ̄ij = 2µēij + (λūk,k − γθ̄)δij . (19)

Now, we introduce Helmholtz decomposition of the dis-
placement and body force vectors in the following way:

ui = φ,i +εijkψk,j , (20)

where

ψi,i = 0, (21)

Fi = X,i +εijkYk,j , (22)

where

Yi,i = 0. (23)

In equations (20) and (22), φ, X are scalar potentials and ψk
and Yk are vector potentials. Therefore, by substituting (20)
and (22) in (17) and (18), we get

�2
1φ̄−mθ̄ = −X̄

c21
, (24)

�2
2ψ̄i = − Ȳi

c22
, (25)

Dθ̄ − ap(1 + τ0p
α)∇2φ̄ = −ρCe

k
(1 + τ0p

α)Q̄, (26)

where we have introduced the notations:

m =
γ

(λ+ 2µ)
, c21 =

(λ+ 2µ)

ρ
,

c22 =
µ

ρ
, a =

γT0
k
,

�2
i ≡ ∇2 − p2/c2i for i = 1, 2, 3;

and

D ≡
[
∇2 − ρCe

k
p (1 + τ0p

α)

]

V. FUNDAMENTAL SOLUTIONS IN LAPLACE
TRANSFORM DOMAIN

In order to describe the action of body force, the source
of heat of very large magnitude that act for a very short pe-
riod of time upon the body, we shall consider the following
two cases:
Case 1: We assume that an instantaneous source of heat lo-
cated at xi = yi where y ∈ (V ∪ S) is acting upon an
elastic body in the absence of the body forces i.e. Q =
δ(x− y)δ(t), Fi = 0

Let us denote the corresponding fundamental solutions
by primes. Now, under the above assumptions, the equations
(24)-(26) reduce to

�2
1φ̄
′ −mθ̄′ = 0 (27)

�2
2ψ̄
′
i = 0 (28)

Dθ̄′ − ap(1 + τ0p
α)∇2φ̄′ =

=− ρCe
k

(1 + τ0p
α)δ(x− y).

(29)

From equation (28), we can conclude that

ψ̄′i = 0. (30)

Decoupling equations (27) and (29), we arrive at

(∇2 − k21)(∇2 − k22)φ̄′ = −mρCe
k

(1 + τ0p
α)δ(x− y),

(31)
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where k21 , k22 are the solutions of characteristic equation

kv4 −
[
(ρCe +mak)p(1 + τ0p

α) + pα+1 k

c21

]
v2

+pα+2ρCe
(1 + τ0p

α)

c21
= 0.

(32)

The solution φ̄′ of equation (31) is given by

φ̄′(x, p) = −mρCe
(1 + τ0p

α)

(∇2 − k21)(∇2 − k22)
δ(x− y). (33)

By using the Helmholtz equation

1

(∇2 − k2)
δ(r) = − 1

4πr
e−kr, (34)

we obtain from equation (33)

φ̄′(x, p) =
mρCe

4πk(k21 − k22)
(1 + τ0p

α)(e−k1r − e−k2r).

(35)
Equations (20), (30) yield

ū′i(x, p) = φ̄,′i(x, p). (36)

Now, using r =
√

(xi − yi)(xi − yi),

r,i =
(xi − yi)

r
, (37)

ū′i(x, p) = −ρCe
kr

m(1 + τ0p
α)

4π(k21 − k22)

×
[
e−k1r

(
1 +

k1
r

)
− e−k2r

(
1 +

k2
r

)]
r,i

(38)

in view of equation (27) we find

θ̄′(x, p) =
1

m
(∇2 − p2

c21
)φ̄′(x, p). (39)

Hence, we can obtain θ̄′( x , p) as

θ̄′(x, p) =
ρCe
kr

m(1 + τ0p
α)

4π(k21 − k22)

×
[
e−k1r

(
k21 −

p2

c21

)
− e−k2r

(
k22 −

p2

c22

)]
.

(40)

Taking Laplace transform of traction vector, we get from
equation (15)

p̄i(x, t) =µnj(x)ūi,j + µnj(x)ūj,i

+λni(x)ūj,j − γθ̄ni(x).
(41)

Equation (38) yields

ū′i,j = −ρCe
k

[
r,i
r
g1,j −

(r,j r,i g1 − rr,ij g1)

r2

]
, (42)

where

g1 =
m(1 + τ0p

α)

4π(k21 − k22)

×
[
e−k1r

(
1 +

k1
r

)
− e−k2r

(
1 +

k2
r

)] (43)

and

g1,j =
m (1 + τ0p

α)

4π (k21 − k22)

[
− k1e−k1rr,j

(
1 +

1

r2

)
−k21e−k1r

r,j
r

+ k2e
−k2rr,j

(
1 +

1

r2

)
−k22e−k2r

r,j
r

]
.

(44)

Equation (42) can be simplified as

ū′i,j =
m(1 + τ0p

α)

4π(k21 − k22)

×
[
r,i r,j

g3
r
− 1

r2
(δij − 3r,i r,j )g1

]
,

(45)

where

g3 =
(1 + τ0p

α)

4π(k21 − k22)

[
k21e
−k1r − k22e−k2r

]
, (46)

therefore from equations (41) and (45), we get

p̄′l(x, p) =
ρCe
kr

{
2µnk

[
r,l r,k

(
g3 + 3

g1
r

) δlk
r

]

+nl

[
λr,k r,k

(
g3 + 3

g1
r

)
− 3

λ

r

]}
.

(47)

Here case (1) is completed.

Case 2: In this case, we assume that in absence of heat
source i.e. when Q = 0, an instantaneous concentrated body
force is acting at the point xi = yi in the direction of xj axis.
Therefore, we take

F̄i = F̄
(j)
i = δijδ(x− y).

Let ū(j)i , θ̄(j) denote the corresponding fundamental solu-
tions. We use Helmholtz Resolution for the vectors u(j)i and
F

(j)
i and so we can write

ū
(j)
i = φ̄

(j)
,i + εilkψ̄

(j)
l,k , (48)

F̄
(j)
i = P̄

(j)
,i + εilkR̄

(j)
l,k (49)

The potentials in R.H.S. of above equations satisfy the equa-
tions

(∇2 − k21)(∇2 − k22)φ̄(j) =

=− 1

c21

[
∇2 − ρCe

k
p (1 + τ0p

α)

]
P̄ (j),

(50)

θ̄(j) =
1

m

[(
∇2 − p2

c21

)
φ̄(j) +

P̄ (j)

c21

]
, (51)(

∇2 − p2

c21

)
ψ̄
(j)
l = − 1

c22
R̄

(j)
i , (52)

where k21 and k22 are the solutions of the same characteris-
tic equation as given by (32). In view of the body forces as
chosen above, the corresponding Helmholtz decomposition
leads to

P̄ (j) = − 1

4π

(
δij
r

)
,i (53)
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R̄
(j)
l =

1

4π
εilk

(
δij
r

)
,k . (54)

By using Helmholtz equation, solution of equation (50) can
be written as

φ̄(j) =
1

4πc21

r,i
r2

δij
(k21 − k22)

×

[
2∑

n=1

(−1)n−1E(1 + knr)e
−knr

]
+ δij

ri
r2

1

4πp2
,

(55)

where

E =
[k2n −

ρCep(1+τ0p
α)

k ]

k2n
, (56)

ψ̄
(j)
l = εijl

(
r,i

4πp2r2

)[(
1 +

pr

c2

)
e−

pr
c2 − 1

]
, (57)

ū
(j)
l =

U1δij
r

+
U2r,i r,j

r
, (58)

where

U1 =
1

4πp2

(
p2

c22
+

p

rc2
+

1

r2

)
e−

pr
c2

+

2∑
n=1

(−1)n−1
Bn
r2

(1 + knr)e
−knr,

(59)

U2 =

[
− 1

4πp2

(
p2

c22
+ 3

p

rc2
+ 3

1

r2

)
e−

pr
c2

]
+

2∑
n=1

(−1)n−1
Bn
r2

(
k2n + 3

kn
r

+
3

r2

)
e−knr,

(60)

Bn =
1

k2nc
2
1

1

(k21 − k22)

(
k2n −

ρCep(1 + τ0p
α)

k

)
. (61)

With the help of equations (26) and (50) with the condition
that the source of heat is absent, we find

θ̄(j) = G

2∑
n=1

(−1)n−1e−knr(1 + knr)
r,i
r2
, (62)

where

G =
δij

4πc21

p(1 + τ0p
α)

(k22 − k21)
.

Here we achieve the conclusion that the temperature for Case
2 is related with the expression of the displacement for Case
1 as

θ̄(j) =
ρpε

mγ
u′j , (63)

where

ε =
mak

ρCe
.

Then the component of the traction vector can be obtained
in a similar way as in Case (1).

p̄
(j)
l (x, p) = µnk[(ū

(j)
l,k + ū

(j)
k,l) + nl(λū

(j)
k,k − γθ̄

(j))],
(64)

where

ū
(j)
i,k =

U1,k

r
δij −

U1δij
r2

+
U2,k

r2
r,i r,j

−U2

r2
r,i r,j r,k +

U2

r
r,ik r,j +

U2

r
r,i r,jk ,

(65)

U1,k =

2∑
n=1

(−1)n−1Bne
−knr r,k

r

[
−k2n − 2

(1 + knr)

r2

]
+

r,k
4πp2

e
−pr
c2

[
−p

3

c32
− 2

p

r2c2
− 2

r3
− p2

c22r

]
,

(66)

U2,k = − r,k
4πp2

e
−pr
c2

[
−p

3

c32
− 6

p

r2c2
− 6

r2
− 3

p2

c22r

]
+

2∑
n=1

(−1)n−1Bne
−knrr,k

[
−k2n − 6

kn
r2
− 3

k2n
r
− 6

r3

]
.

(67)
U1,U2 are given by equation (59) and (60), respectively. This
completes Case 2.

VI. RECIPROCITY THEOREM

When a body is under the action at two different ther-
moelastic loadings, the reciprocal relation states the relation
between two sets of thermoelastic loadings and correspond-
ing thermoelastic configurations.

In order to find out the integral representations of the dis-
placement and temperature distributions in terms of bound-
ary values, we will now employ a reciprocity theorem for the
linear theory of fractional order thermo elasticity. For this we
consider the body with volume V subjected to two different
systems of thermoelastic loadings

L(β) = (F
(β)
i , Q(β), p

(β)
i , u

(β)
i0 , θ

(β)
0 , θ

(β)
n0 ) for β = 1, 2

and the corresponding thermoelastic configurations are de-
noted as

Iβ = (uβi , θ
β) for β = 1, 2.

Now by following Sherief et al. [28], we can derive the fol-
lowing reciprocal relation:

ρT0p(1 + τ0p
α)

k

∫
V

[
F̄

(1)
i ū

(2)
i − F̄

(2)
i ū

(1)
i

]
dV

−ρCe(1 + τ0p
α)

k

∫
V

[
Q̄(1)θ̄(2) − Q̄(2)θ̄(1)

]
dV =

=

∫
S3

[
θ̄(1)θ̄,(2)n −θ̄(2)θ̄,(1)n

]
dS

+

∫
S4

[
θ̄(1)θ̄,(2)n −θ̄(2)θ̄,(1)n

]
dS − T0p(1 + τ0p

α)

k

×

{∫
S1

[
σ̄
(1)
ij ū

(2)
i − σ̄

(2)
ij ū

(1)
i

]
njdS

+

∫
S2

[
σ̄
(1)
ij ū

(2)
i − σ̄

(2)
ij ū

(1)
i

]
njdS

}
.

(68)
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Clearly, for an infinite isotropic medium, the body forces,
heat sources act only in a bounded region and the surface in-
tegral in equation (68) will be absent.

VII. BOUNDARY INTEGRAL EQUATIONS

In order to obtain the integral representation of the trans-
formed displacement and temperature inside the bounded re-

gion V in terms of the prescribed functions p̄i0, ūi0, θ̄0, θ̄n0
on the surface S, the fundamental solutions ū′i, θ̄

′, ū(j)i , θ̄(j)

in the infinite region and their values ū′i0, θ̄′0, ū(j)i0 , θ̄(j)0 on
the surface S, we consider the following two cases:

First, as we have considered earlier

F̄i = 0 and Q̄ = δ(x− y) where y ∈ (V ∪ S) (69)

thus equation (68) becomes

(1 + τ0p
α)∆(x)θ̄(x, p) =

k

ρCe

{∫
S3

[
θ̄′0θ̄,n−θ̄0θ̄′n0

]
dS +

∫
S4

[
θ̄′θ̄n0 − θ̄θ̄′,n

]
dS

}
− T0
ρCe

p(1 + τ0p
α)

×

{∫
S1

[p̄i0ū
′
i − p̄′i0ūi]dS +

∫
S2

[
σ̄ij ū

′
i0 − σ̄′ij ūi0

]
njdS

}
− T0
Ce

(p+ τ0p
α)

∫
V

F̄iū
′
idV + (1 + τ0p

α)

∫
V

Q̄θ̄′dV,

(70)

where ū′i,θ̄
′ are the fundamental solutions obtained previously in Case 1 and we denote∫

V

δ(x− y)dV (y) = ∆(x),

where

∆(x) = 1, x ∈ V ∆(x) = 0, if x /∈ (V ∪ S) ∆(x) =
1

2
, x ∈ S.

Next, we assume

F̄i = δijδ(x− y) and Q̄ = 0.

Then from equation (68) we get as previously,

p(1 + τ0p
α)∆(x)ūj(x, p) =

k

ρT0

{∫
S3

[
θ̄0θ̄,

(j)
n −θ̄

(j)
0 θ̄,n

]
dS

+

∫
S4

[
θ̄θ̄

(j)
n0 − θ̄(j)θ̄n0

]
dS

}
+

1

ρ
p(1 + τ0p

α)

{∫
S1

[
p̄i0ū

(j)
i − p̄

(j)
i0 ūi0

]
dS

+

∫
S2

[
σ̄ilū

(j)
i0 − σ̄

(j)
il ūi0

]
njdS

}
− p(1 + τ0p

α)

∫
V

F̄iū
(j)
i dV − Ce

T0
(1 + τ0p

α)

∫
V

Q̄θ̄(j)dV

(71)

where ū(j)i ,θ̄(j) denote the fundamental solutions which have been obtained previously in case 2. Now applying the inverse
Laplace transform to equation (70) and using the Convolution theorem of Laplace transform as

L−1(F̄1(p)F̄2(p)) =

∫ t

0

F1(τ)F2(τ)dτ

we arrive at

∆(x)

[
θ(x, t) + τ0

∂α

∂tα
θ(x, t)

]
= M1(x, t), (72)

where
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M1(x, t) =
k

ρCe

∫ t

0

{∫
S3

[θ′0 (y, t− τ) θ,n (y, x, τ)− θ0(y, x, τ)θ′,n (y, t− τ)] dS

+

∫
S4

[θ′ (y, t− τ) θn0 (y, x, τ)− θ(y, x, τ)θ′n0 (y, t− τ)]dS

}
dτ

+
T0
ρCe

∫ t

0

{∫
S1

[
pi0 (y, x, τ)

(
∂

∂τ
+ τ0

∂α+1

∂τα+1

)
u′i (y, t− τ)

]
dS

×
∫
S2

[
σij (y, t− τ)

(
∂

∂τ
+ τ0

∂α+1

∂τα+1

)
u′i0 (y, x, τ)

]
dS

}
dτ

− T0
ρCe

∫ t

0

{∫
S1

ui (y, x, τ)

(
∂

∂τ
+ τ0

∂α+1

∂τα+1

)
p′i0 (y, t− τ) dS

+

∫
S2

ui0 (y, t− τ)

(
∂

∂τ
+ τ0

∂α+1

∂τα+1

)
σ′ij (y, x, τ) dS

}
dτ

+
T0
Ce

∫ t

0

∫
V

Fi(y, t− τ)

(
∂

∂τ
+

∂α+1

∂τα+1

)
u′i (y, x, τ) dV dτ

+

∫ t

0

∫
V

Q(y, t− τ)

(
1 +

∂α

∂τα

)
θ′ (y, x, τ) dV dτ.

(73)

Solving equation (72) we get the expression of temperature in the following manner:

θ(x, t) =
1

∆xτ0

[∫ t

0

Eα,α(− 1

τ0
τα)M1(x, t− τ)dτ

]
, (74)

where Eα,α(z) is known as "Mittag-Leffler" function which is defined as (Podlubny [21]) :

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
. (75)

Similarly, from equation (71) we obtain

∆(x)

[
uj(x, t) + τ0

∂α

∂tα
uj(x, t)

]
= M2(x, t), (76)

where

M2(x, t) =
k

ρT0

∫ t

0

{∫
S3

[θ0 (y, x, τ)
∂u′j (y, t− τ)

∂n
− u′j (y, t− τ)

∂θ (y, x, τ)

∂n
]dS +

∫
S4

[
θ (y, x, τ)

∂u′j (y, t− τ)

∂n

−u′j (y, t− τ) θn0 (y, x, τ)
]
dS

}
dτ +

1

ρ

∫ t

0

{∫
S1

[
pi0 (y, x, τ)

(
1 + τ0

∂α

∂τα

)
u
(j)
i (y, t− τ) dS

]

+

∫
S2

[
σil (y, t− τ)

(
1 + τ0

∂α

∂τα

)
u
(j)
i0 (y, x, τ)nldS

]}
dτ − 1

ρ

{∫ t

0

∫
S1

ui (y, x, τ)

(
1 +

∂α

∂τα

)
p
(j)
i0 (y, t− τ) dS

+

∫
S2

ui0 (y, t− τ)

(
1 +

∂α

∂τα

)
σ
(j)
il (y, x, τ)nldS

}
dτ +

∫
V

Fi(y, t− τ)

(
1 + τ0

∂α

∂τα

)
u
(j)
i (y, x, t− τ) dV dτ

−
∫ t

0

∫
V

Q (y, t− τ)

(
1 + τ0

∂α

∂τα

)
u′j (y, x, t− τ) dV dτ

(77)
As before, the solution of equation (76) yield displacement as

uj(x, t) =
1

∆xτ0

[∫ t

0

Eα,α

(
− 1

τ0
τα
)
M2(x, t− τ)dτ

]
(78)
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Taking the limit x→ ξ, where ξ is a point on the boundary S, we get from equation (74) and (78) as

θ(ξ, t) =
2

τ0

[∫ t

0

Eα,α

(
− 1

τ0
τα
)
M1(ξ, t− τ)dτ

]
(79)

uj(ξ, t) =
2

τ0

[∫ t

0

Eα,α

(
− 1

τ0
τα
)
M2(ξ, t− τ)dτ

]
(80)

This completes our formulation.
The above two equations together with the prescribed boundary conditions which are taken in the beginning and the

limiting behaviour of fundamental solutions as r → 0 can be used to set up linear equations of the boundary integral
equation method.

VIII. EXAMPLE

Now, we will consider an example in order to illustrate the present formulation. We consider a formulation in which
we determine the primary variables ui(x, t) and θ(x, t) as the solution of the field equations (3) and (4), subjected to the
homogeneous initial and boundary conditions as follows:

σij(xB , t)nj(xB) = pi0(xB , t) = 0 (81)

θ,n (xB , t) = θn0(xB , t) = 0 (82)

where xB is a point on S1 = S4 and

θ(xB , t) = θ0(xB , t) (83)

ui(xB , t) = ui0(xB , t) (84)

where xB is a point on S2 = S3

Now, using equations (69) and (70), we achieve

θ̄(x, p) = − k

ρCe(1 + τ0pα)

{∫
S3

[
θ̄0(y, x, p)θ̄′,n (y, p)− θ̄′0(y, p)θ̄,n (y, x, p)

]
dS

+

∫
S4

[
θ̄(y, x, p)θ̄′n0(y, p)− θ̄′(y, p)θ̄n0(y, x, p)

]
dS

}
+
T0p

ρCe

{∫
S1

[p̄i0
′(y, x, p)ūi(y, p)− p̄i0(y, p)ū′i(y, x, p)]dS

+

∫
S2

[
σ̄′ij(y, p)ūi0(y, x, p)− σ̄ij(y, x, p)ū′i0(y, p)

]
njdS

}
− T0p

Ce

∫
V

F̄i(y, p)ū
′
i(y, x, p)dV

+

∫
V

Q̄(y, p)θ̄′(y, x, p)dV,

(85)

pūj(x, p) =
k

ρT0(1 + τ0pα)

{∫
S3

[
θ̄0(y, x, p)θ̄,(j)n (y, p)− θ̄(j)0 (y, p)θ̄,n (y, x, p)

]
dS

+

∫
S4

[
θ̄(y, p)θ̄

(j)
n0 (y, x, p)− θ̄(j)(y, x, p)θ̄n0(y, p)

]
dS

}
− p

ρ

{∫
S1

[
p̄
(j)
i0 (y, p)ūi(y, x, p)− p̄i0(y, x, p)ū

(j)
i (y, p)

]
dS

+

∫
S2

[
σ̄
(j)
ij (y, x, p)ūi0(y, p)− σ̄ij(y, x, p)ū(j)i0 (y, p)

]
njdS

}
− p

∫
V

F̄i(y, p)ū
(j)
i (y, x, p)dV +

∫
V

Q̄(y, p)θ̄(j)(y, x, p)dV.

(86)
Here we have taken ∆(x) = 1.

In view of (83)-(84), the functions θ(xB , t) and ui(xB , t) are unknowns on the part S1 = S4 of the surface S.
We further assume that the fundamental solutions satisfy the conditions

θ̄′0(xB , t) = θ̄
(j)
0 (xB , t) = 0 on S2 = S3
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and

ū′i0(xB , t) = ū
(j)
i0 (xB , t) = 0 on S2 = S3.

Therefore by using these conditions and taking x → ξ we get the equations (85) and (86) as the system of two Fredholm’s
integral equations:

0 = − k

ρCe(1 + τ0pα)

{∫
S3

[
θ̄0(y, p)

∂

∂n′(ξ)
θ̄′,n (y, ξ, p)

]
dS

+

∫
S4

[
θ̄(y, p)

∂

∂n′(ξ)
θ̄′n0(y, ξ, p)

]
dS

}
+
T0p

ρCe

{∫
S4

[
p̄i0
′(y, p)

∂

∂n′(ξ)
ūi(y, ξ, p)

]
dS

+

∫
S3

[
σ̄′ij(y, p)

∂

∂n′(ξ)
ūi0(y, ξ, p)

]
njdS

}
− T0p

Ce

∫
V

F̄i(y, p)
∂

∂n′(ξ)
ū′i(y, ξ, p)dV

+

∫
V

Q̄(y, p)
∂

∂n′(ξ)
θ̄′(y, ξ, p)dV,

(87)

pūj(ξ, p) =
k

ρT0(1 + τ0pα)

{∫
S3

[
θ̄0(y, ξ, p)θ̄,(j)n (y, p)

]
dS +

∫
S4

[
θ̄(y, p)θ̄

(j)
n0 (y, ξ, p)

]
dS

}

−p
ρ

{∫
S4

[
p̄
(j)
i0 (y, p)ūi(y, ξ, p)

]
dS +

∫
S3

[
σ̄
(j)
ij (y, ξ, p)ūi0(y, p)

]
njdS

}

−p
∫
V

F̄i(y, p)ū
(j)
i (y, ξ, p)dV +

∫
V

Q̄(y, p)θ̄(j)(y, ξ, p)dV,

(88)

where n′(ξ) is the outer normal to the surface S4. By employing suitable numerical techniques, the integrals involved in
equations (87) and (88) can be discretized and the problem then reduces to finding the solution of a system of linear equa-
tions. The final solution can therefore be determined by using a suitable numerical method of Laplace inversion.

IX. SUMMARY

In the present paper, we achieve fundamental solutions
in the Laplace transform domain for fractional order ther-
moelasticity. Then by employing a suitable reciprocal rela-
tion, we formulate boundary integral equations for a mixed
boundary initial value problem.

At last, we have given an example which represents a
better explanation for our formulation. We believe that the
present formulation will help to find the numerical solution
of a concrete problem under fractional order thermoelasticity
by the BEM/BIEM method.

There are many numerical methods for solving the BIE
system like the point collocation method etc. In the point col-
location method, the boundary is discretized at some points
(collocation points) and we select a solution that satisfies the
given equation at those collocation points. This method is
believed to be accurate for several one and two-dimensional
problems and the convergence rate of the point collocation
method can be applied for better results.
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