
CMST 20(1) 9-20 (2014) DOI:10.12921/cmst.2014.20.01.9-20

Preprocessing and Storing High-Throughput Sequencing Data

Aleksandra Świercz1,2,*, Bartosz Bosak3, Marek Chłopkowski1, Arkadiusz Hoffa1,
Marta Kasprzak1,2, Krzysztof Kurowski3, Tomasz Piontek3, Jacek Błażewicz1,2

1Institute of Computing Science

Poznan University of Technology, ul. Piotrowo 2, Poznań, Poland

2Institute of Bioorganic Chemistry

Polish Academy of Sciences, ul. Noskowskiego 12/14, Poznań, Poland

3Poznań Supercomputing and Networking Center

ul. Noskowskiego 10, Poznań, Poland

∗E-mail: aswiercz@cs.put.poznan.pl

Received: 27 November 2013; revised: 9 February 2014; accepted: 10 February 2014; published online: 18 March 2014

Abstract: DNA sequencing is a process of recognizing DNA sequences of genomes. The process consists in reading short

sequences, that are subsequences of a genome, and merging them into longer sequences, preferably the whole genome.

In the first phase even billions of short sequences are read at once. To simplify and speed up the second phase, we develop

a pipeline of preprocessing the initial set of short sequences that is removing low quality reads and duplicated reads. We also

propose a method for preliminary joining overlapping sequences, which resulted in decreasing the cardinality of initial sets

to 13.9% and 27.8%. We also examine possible ways to store the huge amount of experimental data. We compare different

compression methods, from which the best appeared to be DSRC, developed for special type of text files containing short

sequences and their quality. We test the parameters for TCP data transferring to find the best transfer rate.

Key words: DNA sequencing, compression, preprocessing, transfer optimization

I. INTRODUCTION

Recognizing chains of nucleic acids: deoxyribonucleic acid

(DNA) and ribonucleic acid (RNA) consists in reading the

sequence of their molecules called nucleotides. The nu-

cleotides are symbolically labelled with letters A, C, G and

T (or U) and their sequences represent genetic information

of an organism. The process of reading nucleotides, called

sequencing, is performed with biochemical instruments (se-

quencers). With technological progress the next-generation

sequencers have appeared, which are able to read in paral-

lel simultaneously billions of short reads (DNA/RNA frag-

ments) in one run. In order to recognize the whole genome,

one has to merge these short reads into longer sequences

(contigs) covering the genome. The reasons for obtaining

several contigs instead of one continuous sequence are low

genome coverage in some regions, sequencing errors, and

characteristics of assembly algorithms. In case the genome

has not been known yet, the process of merging the reads

is called de novo assembling, can be considered as a more

complex variant of the shortest common superstring prob-

lem [1] and is computationally hard. Computation time of

the assembling problem can be significantly reduced if the

preprocessing stage is applied, where a number of reads of

low quality are rejected.

There are a series of approaches for assembling de novo:

string-based algorithms which are mainly used for smaller

genomes [2-4], and graph-based ones that are designed

for complex genomes [5-9]. In case of the latter we may

distinguish methods based on so-called de Bruijn graphs

and methods realizing the overlap-layout-consensus strat-

egy. In the de Bruijn graphs nodes represent k-mers (words

of k nucleotides, k much shorter than the length of reads)

[6, 8]. Reads in such a graph are represented as paths through



10 A. Świercz, B. Bosak, M. Chłopkowski, A. Hoffa, M. Kasprzak, K. Kurowski, T. Piontek, J. Błażewicz

the graph. This approach saves memory due to a constant

graph size; however, we lose the information about the reads

(i.e. about the original order of k-mers) and thus the possibil-

ity of misassembly increases. On the other hand, the overlap-

layout-consensus approaches [9] keep the information about

reads which are represented as nodes in the overlap graph

(the graph representing the relation of overlapping between

reads), but as a result memory usage increases. Construc-

tion of a graph then requires calculation of alignments for all

pairs of nodes (reads) from the instance. Due to a huge num-

ber of reads in an instance it is impossible to determine that

in an exact manner. Thus, a fast heuristic is needed, which

selects promising pairs of reads overlapping with high prob-

ability. For the selected pairs alignments are calculated and

arcs are added to the graph where longest paths represent

most valuable contigs.

A large amount of experimental data coming from

the next generation sequencer, Illumina Genome Analyzer

GAIIx, imposes strong necessity of efficient processing,

transferring and archiving the data. Such sequencer is owned

by the European Center of Bioinformatics and Genomics

(ECBiG), a consortium of Poznan University of Technology

and Institute of Bioorganic Chemistry, Polish Academy of

Sciences. Usually the output of one experiment is of several

hundreds GB. It consists of text files which contain reads

together with their quality expressed numerically, and con-

figuration files which are necessary to reproduce the whole

experiment and repeat analyses. In the first part of the article

we describe a possible pipeline for data preprocessing, which

results in deleting low-quality reads, compressing reads, and

preliminary merging of overlapping reads. Our preprocess-

ing procedure allows for more efficient computing at the as-

sembling stage.

Another problem is archiving the experimental data for

further processing, especially if one plans to start again an

analysis from raw data. The problem can be divided into

steps: data compression/decompression, transfer and stor-

age. Data can be compressed in two ways: text data only

or the full set of files from the experiment. In the second

part of the paper we present results of our work with several

compressing algorithms, both specialized and of general pur-

pose. Effective compression is necessary for efficient trans-

fer, thus the quality and time of the compression is crucial.

We have also tested a number of protocols for transferring

the data to a storage server. For the storage we have chosen

the Service Platform for E-Science PLATON-U4, where Pol-

ish scientists and Polish public institutions can safely store

important data.

II. PREPROCESSING OF DATA FOR

DE NOVO ASSEMBLY

Preprocessing, as a step of the DNA assembly process, can

significantly shorten overall computation time of the latter.

Performed cautiously, it may result in considerable reduction

of a volume of sequencing data, but without visible loss of

quality of final contigs. This step consists mainly in purify-

ing raw sequencing data by correcting, truncating or remov-

ing reads of low quality. The quality of reads can be given as

a numerical data file provided by a sequencer, but it can also

be estimated on the basis of nucleotide composition of reads,

especially when N’s are present. The preprocessing step, in

addition to the data purification, may be supplemented with

other procedures useful for further sequence assembly. In our

approach such a procedure, leading to collecting so-called

promising pairs of reads, has been applied. Our procedure is

somewhat in the opposite to the well-known approach often

applied at this step, which involves the dynamic program-

ming algorithm of Smith and Waterman [10].

The preprocessing algorithm that we propose takes at the

input a FASTA/FASTQ file [11-12] which is next processed

according to the following sequence of procedures.

1) Rejection of reads with unspecified nucleotides (N’s)

2) Addition of reverse complements of remaining reads

3) Data compression

4) Lexicographical sorting

5) Removal of duplicates

6) ∆-reads generating and sorting

7) Analysis of overlaps

8) Search for promising pairs

In detail, these operations proceed as follows. Input reads

are removed from further processing if they contain unspeci-

fied nucleotides, but one should be aware that it is not appro-

priate for any possible data source, where N’s can appear in

most of reads. The addition of reverse complementary coun-

terparts of reads is a usual step which allows for representing

data possibly coming from the other DNA strand. As a result,

we obtain a doubled set of contigs at the end. Due to data

compression, where every base is represented with the use

of two bits, the volume of data is reduced fourfold. Note that

we can apply such encoding model only in the case when

reads are composed of specified nucleotides solely (A, C, G,

T), which we have guaranteed after the second step. Further

data reduction is obtained by leaving only one representative

of multiplicated reads, which happens after sorting the data

lexicographically.

CCATGTCAACCTC (offset = 0)

CATGTCAACCTC

ATGTCAACCTC

TGTCAACCTC

GTCAACCTC

TCAACCTC (offset = 5)

Fig. 1. The set of 6 ∆-reads generated for the read
CCATGTCAACCTC and the maximal offset ∆ = 5

∆-reads are variants of reads with several offsets as-

sumed. ∆ is a parameter meaning the maximal offset.



Preprocessing and Storing High-Throughput Sequencing Data 11

For one read, ∆+1 its ∆-reads are generated, and they

are suffixes of the read starting at its ith nucleotide,

i ∈ 〈1;∆ + 1〉, with the offset equal to i-1 (Fig. 1).

After the generation of ∆-reads for all reads present at

this step, ∆-reads are sorted lexicographically, and that gives

us information which ones are prefixes of the others. A pair

of ∆-reads, where one element is a prefix of the other having

offset = 0, corresponds to a pair of reads overlapping with-

out mismatches, with a shift between 1 and ∆. Such techni-

cal realization of the procedure of searching for ideal over-

laps better fits to the architecture of GPU. It allows us to use

a simple matching algorithm and compare only the reads that

can overlap.

As one can easily imagine, coupling all matching reads

on the way to selecting optimal junctions cannot end suc-

cessfully. Even after some efficient data filtering, the re-

maining reads are too numerous and only selected pairs

can be considered for their overlap. The answer which

pairs (promising pairs) should be considered can be found

in several ways, but we propose the following procedure.

From possible covers of ∆-reads found in the previous step

we select only the best ones, i.e. such pairs where one ∆-

read is a longest prefix (from among the present ones) of the

other ∆-read of zero offset. If there are two or more longest

prefixes for a read, all of them are kept in memory. All the

promising pairs of reads are the output of the preprocessing

algorithm and next handled by the assembly algorithm.

Although all the procedures contribute to the reduction

of majority of initial data, the algorithm would be not so use-

ful when implemented entirely for CPU. GPGPU computing

significantly shortens program execution time, but not every

procedure may be implemented for that purpose. We en-

coded for GPU procedures realizing steps 3-7. We had to

divide huge input data sets into chunks to make them possi-

ble to be processed in GPU memory. The chunk size depends

on GPU memory limit set as the program parameter. For the

limit equal to 1024 MB, the chunk size is about 450 MB.

The remaining part of memory is used for storing sorting

data (keys and indexes) and results. For data sorting we used

the SRTS algorithm described in [13]. We performed m/8
key-value MSB radix sort steps starting from the end of read

(by assigning 4 bytes to key field of sorted record, value field

holds read index). After the sorting step we performed a par-

allel comparison between every two neighboring records,

one index per a GPU thread. Results are stored in a file

which is then used for pair searching (step 8).

Pre-assembly

Although very helpful in further computations when an as-

sembly algorithm is able to take advantage of information

of such kind, the set of promising pairs at the output of our

preprocessing sometimes cannot be used. Autonomous as-

semblers usually accept at the input only a set of nucleotide

sequences, possibly of different lengths. Thus we provided

the option of building preliminary contigs by aggregating

promising pairs into bigger structures. The optional step of

the preprocessing algorithm is as follows:

9) Building preliminary contigs

The step consists in augmenting unambiguous paths,

starting from pairs of exactly overlapping reads, in two direc-

tions (left and right) as long as there are single neighbors to

attach. The building of a contig is stopped at a first branching

point (a contig is reported at the output even if the branching

takes place after one read). Once used, reads are not further

taken into account, except the following case. In order to

make the final assembly easier, the branching points are also

encoded as preliminary contigs: junction contigs.

The preprocessing algorithm can be run in two modes:

SR, in which the output contains single reads and prelimi-

nary contigs, and NSR, where only preliminary contigs are

provided.

Experimental results

In order to verify efficiency of the preprocessing algo-

rithm, we performed tests on both artificial and real data

sets. The artificial instance was generated on the basis of

a real DNA sequence by cutting off overlapping reads

of lengths 50, with shifts between neighboring reads from

1 to 10 nucleotides. No errors were introduced into the file.

The instances coming from real experiments with an Il-

lumina sequencer contained natural errors and represented

genomes of Escherichia coli and Caenorhabditis elegans.

The experimental data were obtained from the Short Read

Archive [14]. The data for E. coli (ERR022075_1) con-

tained 22720100 reads of length 100 and, to verify results,

the reference genome (NC_000913.2 from NCBI database

[15]) of length 4639675 nucleotides. The average depth of

coverage (defined as the total nucleotide count in the input

file divided by the genome size) was 484. The C. elegans

data (SRR065390_1) contained 33808546 reads of the same

length and the reference genome (WS230 from WormBase

[16-17]) of length 100286070 nucleotides, with the average

depth equal to 33.

In tests on the artificial data the value of ∆ was set to 10

and the preprocessing algorithm supplemented with the op-

tional step 9 returned one contig identical to the original se-

quence. For the real data the algorithm produced much more

contigs, every one was mapped to the reference genome by

Bowtie2-2.1.0 [18] using end-to-end alignment with thresh-

olds of 1 error (of any kind) and 0 errors (perfect matches).

After steps 1-5 the initial sets of reads were reduced to

32.84% (E. coli) and 86.02% (C. elegans) of their original

cardinality (with reverse complementary reads). Results re-

turned after all 9 steps are presented in Tables 1-4. We also

compared our algorithm with other preprocessing methods,

chosen for the reason of their high error correction quality

(reported by their authors). They are the HiTEC preproces-

sor based on a suffix tree approach [19] and ECHO based



12 A. Świercz, B. Bosak, M. Chłopkowski, A. Hoffa, M. Kasprzak, K. Kurowski, T. Piontek, J. Błażewicz

Tab. 1. Results of the HiTEC and our preprocessing algorithm (steps 1–9) for E. coli data

∆/Source
Max contig

length

Average
contig
length

Number of
contigs

Number of
junction
contigs

Number of
remaining

single reads

Initial
cardinality

reduced to [%]

Number of
reads used
in contigs

Proc.
time
[s]

1 601 110 385777 106722 2858437 14.75 4410435 351

2 631 111 390673 115885 2757407 14.37 4502302 393

3 567 109 477971 119591 2678933 14.42 4577070 422

5 573 107 647962 126187 2473236 14.29 4776171 501

10 590 106 931304 141797 2088796 13.92 5145001 698

HiTEC 100 100 N/A N/A 22455008 98.83 N/A 23782

SGA 100 100 N/A N/A 4520772 19.90 N/A 16674

Tab. 2. Quality of reads generated with preprocessing algorithms (E. coli). SR/NSR are modes with/without single reads, E0/E1 stand for
perfect match/1 error allowed and RAW means raw reads from ERR022075_1 dataset

∆/Source
Reads

mapped
E0 NSR [%]

Reads
mapped

E0 SR [%]

Reads
mapped

E1 NSR [%]

Reads
mapped

E1 SR [%]

Coverage
E0 NSR

[%]

Coverage
E0 SR

[%]

Coverage
E1 NSR

[%]

Coverage
E1 SR

[%]

1 70.190 11.080 98.740 62.920 99.835 99.915 99.885 99.977

2 46.850 9.780 96.300 62.010 96.465 97.635 99.853 99.977

3 36.650 11.010 94.200 62.210 94.042 96.325 99.905 99.977

5 26.500 11.620 90.330 61.980 92.134 95.142 99.930 99.977

10 17.970 11.620 82.460 61.140 90.810 94.171 99.945 99.975

RAW N/A 85.320 N/A 93.730 N/A 99.974 N/A 99.977

HiTEC N/A 98.980 N/A 99.170 N/A 99.964 N/A 99.972

SGA N/A 96.210 N/A 99.530 N/A 99.945 N/A 99.945

on a multiple sequence alignment (MSA) approach [20].

We have also included the String Graph Assembler [21] be-

cause its early processing stages called preprocess, index,

correct and filter can be run separately (without running the

assembly process).

Tests were run on a desktop computer running Windows

7 x64/Linux x64 (the latter for HiTEC and ECHO testing)

with Intel Core i7-3820 @ 3.7 GHz, 16 GB of RAM @ 1866

MHz and NVIDIA Geforce GTX 670 with 2 GB of global

memory.

The average contig lengths are related to regular contigs,

not for the junction ones. The reduction of initial cardinal-

ity has been calculated as the sum of numbers of contigs,

junction contigs and remaining single reads divided by the

number of input reads. The reduction will be even more ef-

ficient if single reads are not reported at the output; they do

not fit well. Actually, we checked the impact of such fur-

ther reduction and we got very high coverage of the refer-

ence genome only by regular contigs. For our algorithm, for

∆ ≥ 3, we obtained over 99.9% of the genome coverage

without using single reads, and the reduction of initial car-

dinality below 5% (for all cases). The program consumed

less than 1 GB of RAM during all stages except building

contigs, where it used 2.9 GB (mostly for caching reads in

memory for faster access, for C. elegans consumed memory

was less than 4 GB). Detailed results of alignment of reads

and contigs are presented in Tab. 2. The HiTEC preproces-

sor was occupying 10 GB of RAM for over 6 hours, reduced

cardinality only to 98.83% (although it is not intended to re-

duce dataset size) and achieved comparable quality. ECHO

consumed up to 25 GB of memory and after almost 9 hours

of processing was killed by the system on the NeighborJoin

phase. SGA pipeline (preprocess, index, correct and filter)

was performed using below 2 GB of RAM and took almost

5 hours.

Although the reduction obtained in tests on the data of

C. elegans is not as impressive as before, it is quite satisfy-

ing for bigger values of ∆ (Tab. 3). The bigger the ∆, the

higher the possibility that contigs are incorrectly assembled.

However, our additional tests verifying the genome cover-

age by NSR-type output (contigs without single reads) have

shown that in the case of ∆=10 it is equal to 98%, where the

cardinality of the dataset is equal to 8.8% of its initial state.

It should be mentioned that the size of a reduced dataset

is crucial for assembling algorithms used after the prepro-

cessing stage. Huge datasets make the assemblers fail due

to enormous memory usage. Tab. 4 shows detailed quality

information. Among other programs only SGA was able to

handle provided data. It used less than 2 GB of RAM and

over 7 hours of CPU time. Unfortunately, other preproces-



Preprocessing and Storing High-Throughput Sequencing Data 13

Tab. 3. Results of our preprocessing algorithm (steps 1–9) for C. elegans data

∆
Max contig

length

Average
contig
length

Number of
contigs

Number of
junction
contigs

Number of
remaining

single reads

Initial
cardinality

reduced to [%]

Number of
reads used
in contigs

Proc. time
[s]

1 288 101 3906758 30345 19347015 68.87 9369485 823

2 287 102 5086154 49852 14396441 57.77 14300553 950

3 377 104 5215910 68658 11512954 49.68 17165235 1100

5 610 108 4487041 102393 8581102 38.96 20063352 1436

10 1066 124 2812086 162436 6411174 27.76 22173237 2207

SGA 100 100 N/A N/A 21777343 64.41 N/A 27446

Tab. 4. Quality of reads generated with preprocessing algorithms (C. elegans). SR/NSR are modes with/without single reads, E0/E1 stand
for perfect match/1 error allowed and RAW means raw reads from SRR065390_1 dataset

∆/Source
Reads mapped
E0 NSR [%]

Reads
mapped

E0 SR [%]

Reads
mapped

E1 NSR [%]

Reads
mapped

E1 SR [%]

Coverage
E0 NSR

[%]

Coverage
E0 SR

[%]

Coverage
E1 NSR

[%]

Coverage
E1 SR

[%]

1 93.960 66.410 95.920 77.670 92.798 99.609 93.096 99.842

2 92.950 60.810 95.750 74.090 96.502 99.520 96.827 99.830

3 91.120 55.120 95.240 70.460 97.452 99.432 97.831 99.816

5 85.180 43.960 93.270 63.330 97.886 99.180 98.460 99.781

10 59.040 23.610 82.490 50.070 93.803 95.749 98.061 99.588

RAW N/A 73.700 N/A 82.400 N/A 99.759 N/A 99.861

SGA N/A 94.59 N/A 95.450 N/A 99.500 N/A 99.552

sors did not finish processing. HiTEC consumed over 65 GB

of memory and we stopped it after over 1000 minutes (of

CPU time) when it was still processing the first iteration (out

of nine) in the first processing split (out of six). We could not

get ECHO to process the whole pipeline, either.

Our experiment and results provided by authors of other

preprocessors point out that the main difference between al-

gorithm presented in this paper and current preprocessors is

the output cardinality reduction. The mentioned preproces-

sors correct data quality (and produce more "perfect" reads)

but do not reduce input size (except removing ambiguous

reads). However, in contrast to specialized preprocessing

programs, the SGA Assembler pipeline [21] can reduce in-

put size significantly (close to our method run with ∆ = 1).

While SGA produce more perfect matching reads, the over-

all coverage (E1) is lower than that achieved in our method.

Moreover, our method performed over 12 times faster for

C. elegans data and almost 24 times faster for E. coli.

III. COMPRESSION OF SEQUENCING DATA

Next-generation sequencers produce a huge amount of ex-

perimental data, thus users are obliged to regularly move the

generated files to some external disk space in order to release

the server for further experiments. Raw data from experi-

ments are used mostly at the beginning for producing text

files in the FASTQ format, containing reads with qualities of

nucleotides. Further analysis, like for example preprocess-

ing, resequencing, assembling de novo, or microRNA analy-

sis, needs only FASTA/ FASTQ files. For most of the exper-

iments no other attempt to re-run any analysis involving raw

data is made. Thus, it seems quite reasonable to compress

raw data and FASTQ files separately, because the latter are

used much more often. In this section we analyze different

tools available for compressing both types of data, and in the

next section we describe protocols transferring data to a stor-

age server.

We started the compression with putting the files created

in the sequencing process, together with the original direc-

tory structure, into one single file with the TAR tool. Next,

the compression was performed using gzip or bzip. We used

it interchangeably due to the fact that the archive size was

similar. The quality of compression is presented in Tab. 5.

The raw data are composed of several types of binary

and text files. As we can see in Tab. 5, the efficiency of

the compression is not very high. In our further comparison

of compression quality of different programs we focused on

FASTQ files, for which specialized algorithms exist. Below

we shortly describe tested tools.

1) Gzip (3,6,9 data compression level) is an open com-

pression standard. This method is based on the deflate

algorithm, a combination of Lempel-Ziv [22-23] and

Huffman trees. Gzip is based on the consolidated TAR

archives [24-25]. The deflate algorithm and gzip file



14 A. Świercz, B. Bosak, M. Chłopkowski, A. Hoffa, M. Kasprzak, K. Kurowski, T. Piontek, J. Błażewicz

Tab. 5. The size of archive before and after compressing

Sequencing data folder (run)
Original size (raw data)

[GB]
Size after

compression [GB]
Compression ratio [%]

110718_HWUSI-EAS1865_00001_FC/ 271 217 80

111104_HWUSI-EAS1865_00002_FC/ 382 299 78

120228_HWUSI-EAS1865_00005_FC/ 412 326 79

120312_HWUSI-EAS1865_00006_FC/ 340 276 81

120412_HWUSI-EAS1865_00007_FC/ 247 176 71

120423_HWUSI-EAS1865_00008_FC/ 408 338 83

120511_HWUSI-EAS1865_00009_FC/ 142 111 78

120803_HWUSI-EAS1865_00012_FC/ 778 554 71

121122_HWUSI-EAS1865_00013_FC/ 409 256 63

121210_HWUSI-EAS1865_00014_FC/ 591 423 72

121218_HWUSI-EAS1865_00015_FC/ 95 77 81

130208_HWUSI-EAS1865_00016_FC/ 293 241 82

AZ-PJ_120712_HWUSI-EAS1865_00011_FC/ 428 252 59

AZ-TT-JG02-62Y44AAXX/ 347 303 87

format have been standardized in several RFC docu-

ments [26-28].

2) Bzip2 (3,6,9 data compression level). Input data are

divided into blocks, and each block is subjected

to compression separately. The compression process

consists of several parts and to each block the fol-

lowing algorithms are applied: the Burrows-Wheeler

transformation [29], Move to Front and Huffman al-

gorithm [30].

3) 7-zip [31] (standard and LZMA algorithm). The base

and default algorithm is LZMA, which is an improved

and optimized version of the Lempel-Ziv algorithm.

This program also allows to use the standard deflate

Lempel-Ziv method.

4) DSRC [32]. This program is a specialized compres-

sion algorithm designed to compress the files in the

FASTQ format. Authors noticed that a FASTQ file

can be divided into three separate parts and it is pos-

sible to create separate data streams. The streams

are processed almost independently by the algorithm.

The hierarchical structure of the data allows for quick

and easy access to data records. Input data are di-

vided into blocks consisting of records (default 32),

and these blocks are grouped into superblocks con-

taining a specified number of blocks (default 512).

This algorithm allows for an incremental creating of

an output file. Each superblock is compressed inde-

pendently. The program allows one to decompress

a selected superblock without decompressing the en-

tire archive.

5) KungFQ [33]. This tool is also dedicated to FASTQ

files. The key step of this method is the conversion of

a FASTQ file into an optimized binary format which

was proposed by authors. The binary file is next com-

pressed by standard tools (such as gzip or LZMA).

This algorithm does not use additional files (for ex-

ample, the reference genome) and scans the input file

only once. An important advantage of the program is

the fact that it has a constant memory usage. The pro-

gram also allows for lossy compression.

In Tab. 6 the programs described above are compared.

For given five different datasets we present sizes of com-

pressed FASTQ files, and compression and decompression

time. It can be seen that the general-purpose programs, such

as gzip, bzip, and 7-Zip, have much longer compression

time and a similar or worse compression degree than the

tested specialized algorithms. It is worth mentioning that the

general-purpose programs allow to compress files of differ-

ent formats, so they have much wider potential application.

However, the nature of our work (DNA/RNA de novo se-

quencing) and the fact that the main and most commonly

used file format is FASTQ direct our future work to design-

ing a specialized compressing algorithm, with the emphasis

put on maximization of the compression degree within ac-

ceptable time.

IV. ARCHIVING DATA FROM SEQUENCER

Each launch of the Illumina sequencer generates a significant

amount of bioinformatic data. In a typical case, this is several

hundreds of GB of information. Due to limited capacity of

local drives and insufficient mechanisms protecting integrity

of the data on a local computer, the resulting data cannot

remain there and must be safely and effectively transferred

to a dedicated data storage space guaranteeing the requested

level of the Quality of Service (QoS).

Given the nature of the handled data as part of the work,

we attempted to evaluate available solutions and find the op-

timal backup procedure taking into account three basic ele-

ments:

• data compression

• data storage

• data transfer



Preprocessing and Storing High-Throughput Sequencing Data 15

Compressing the data

The data obtained from the sequencer are stored in the form

of a complex structure of files and directories which are

difficult to manage and transfer. Additionally, as contents

of most of the files consist of text strings that are relatively

easy to compress, it was natural to use methods of integra-

tion and compression in order to reduce the complexity and

data volume. After collecting main requirements an analysis

of popular tools was performed. The final decision was to

use bzip2 (based on the Burrows-Wheeler algorithm) and

tar programs. By using these tools it was possible to reduce

the size of data about 30%, while the complex structure of

directories and files were put in an easy-to-use single tar.bz2

archive. The compressed file containing the data from a sin-

gle sequencer run, and at the same time the basic unit for

archiving, takes about 100-500 GB of memory.

Storage

The target space for storing generated data was defined in the

early stages of cooperation between Poznań Supercomputing

and Networking Center (PSNC) and the European Center

of Bioinformatics and Genomics (ECBiG). We recognized

as the best solution the PLATON-U4 service, in which Pol-

ish scientists and public institutions can securely store their

data [34].

Under the term PLATON-U4 there are a number of ad-

vanced technologies, from which the most important are:

1) support for multiple protocols like SFTP, WebDAV,

and GridFTP,

2) a logical file system,

3) automatic data replication (synchronous and asyn-

chronous),

4) the use of advanced storage systems: disk arrays, file

servers and tape libraries,

5) encrypted data transfer and access control based on

X509 certificates,

6) geographical spread of access nodes and storage in 10

cities.

For the purpose of gathering information generated by

ECBiG the appropriate account was created in the PLATON-

U4, for which the Service Level Agreement (SLA) con-

tract with the list of necessary parameters was established.

Tab. 6. Comparison of quality and time of compression done by different programs

Original
size [kB]

Size after
compression [kB]

Compression
time

Decompression
time

Size after
compression [kB]

Compression
time

Decompression
time

gzip -3 bzip2 -3

6830080 2135260 6 m 10.733 s 1 m 17.363 s 1562660 17 m 3.809 s 4 m 59.891 s

6830080 2218868 6 m 10.768 s 1 m 17.855 s 1648152 17 m 29.097 s 5 m 08.744 s

570651 182184 30.269 s 6.453 s 134168 1 m 25.156 s 25.286 s

574511 183360 30.258 s 6.551 s 134680 1 m 27.113 s 25.467 s

574466 180568 30.181 s 6.532 s 132372 1 m 26.294 s 25.228 s

gzip -6 bzip2 -6

6830080 1958420 21 m 50.977 s 1 m 10.305 s 1548636 18 m 4.346 s 5 m 15.812 s

6830080 2043904 22 m 26.364 s 1 m 08.563 s 1636176 18 m 35.641 s 5 m 24.052 s

570651 167436 1 m 50.833 s 5.830 s 133096 1 m 29.932 s 28.014 s

574511 168540 1 m 48.859 s 5.839 s 133396 1 m 32.523 s 28.008 s

574466 165856 1 m 49.540 s 5.949 s 131228 1 m 31.795 s 26.809 s

gzip –9 bzip2 -9

6830080 1913808 56 m 50.164 s 1 m 10.617 s 1538260 19 m 0.168 s 6 m 55.324 s

6830080 1998384 64 m 12.428 s 1 m 10.008 s 1628048 19 m 31.541 s 6 m 58.120 s

570651 163972 4 m 29.394 s 5.935 s 132248 1 m 34.447 s 36.021 s

574511 165072 4 m 20.572 s 6.000 s 132496 1 m 37.562 s 38.130 s

574466 162264 4 m 39.746 s 6.106 s 130324 1 m 35.978 s 35.012 s

7-zip 7za LZMA

6830080 1537704 187 m 10.121 s 2 m 59.665 s 1537692 207 m10.172 s 2 m 58.914 s

6830080 1614696 157 m 21.990 s 3 m 07.710 s 1614688 226 m27.213 s 3 m 22.438 s

570651 132204 17 m 35.781 s 15.310 s 132204 17 m 35.711 s 15.306 s

574511 132864 17 m 28.025 s 15.381 s 132864 17 m 27.914 s 15.389 s

574466 132653 17 m 32.117 s 15.149 s 130320 17 m 19.232 s 15.163 s

DSRC KungFQ

6830080 1337214 3 m 39.238 s 2 m 21.552 s 1525520 31 m 35.303 s 371 m 00.590 s

6830080 1404890 3 m 51.110 s 2 m 50.168 s 1605988 35 m 40.876 s 375 m 38.334 s

570651 115229 18.376 s 12.062 s 131204 2 m 41.126 s 30 m 10.569 s

574511 115248 18.861 s 12.311 s 131780 2 m 40.606 s 30 m 53.394 s

574466 113376 18.668 s 11.915 s 129388 2 m 39.604 s 31 m 18.229 s



16 A. Świercz, B. Bosak, M. Chłopkowski, A. Hoffa, M. Kasprzak, K. Kurowski, T. Piontek, J. Błażewicz

Among others, the created SLA contract specifies the limit

on the size of the stored data equal to 10 TB and the princi-

ples of creating replicas.

Data transfer

The large size of the generated data volumes defines essen-

tial requirements when it comes to transfer of information

between a computer located in ECBiG and storage space

in the PLATON-U4 services. To reduce the complexity and

length of network connections and thus increase the band-

width, the basic action was to select the PLATON-U4 access

node located as close as possible to ECBiG, in the Poznań

Supercomputing and Networking Center. The following is

a path of such a configured connection:

traceroute to an1-plg.storage.pionier.net.pl (150.254.173.118),

30 hops max, 40 byte packets

1) 150.254.17.129 (150.254.17.129) 1.307 ms 1.293 ms

1.312 ms

2) hellfire.put.poznan.pl (150.254.6.36) 0.360 ms 0.424 ms

0.453 ms

3) 150.254.212.212 (150.254.212.212) 1.142 ms 1.091 ms

0.881 ms

4) 150.254.255.65 (150.254.255.65) 1.132 ms 1.073 ms

0.912 ms

5) pimpstar-ext-2.man.poznan.pl (150.254.162.34) 1.874

ms 1.527 ms 1.338 ms

6) an1-plg.storage.pionier.net.pl (150.254.173.118) 2.953

ms 2.052 ms 1.979 ms

When performing basic tests, the time to transfer a 1 GB

file between the selected two systems using SFTP was close

to 40 s, giving a bandwidth ˜ 27 MB/s. The response time of

the access point (RTT) was below 2 ms.

The attempt was made to optimize the data transfer time

using the GridFTP protocol [35] and its client tool named

globus-url-copy. GridFTP is an extension of the standard

FTP protocol, and is dedicated to efficient transfer of large

amounts of data. It offers features not available in other tools,

such as:

• parallel transfer using multiple TCP streams,

• the ability to transfer data in pieces simultaneously

from multiple sources (so called stripped transfer),

• transferring file fragments.

The optimization procedure aimed at finding the best

possible values for the parameters corresponding to the num-

ber of connections (-p) and the TCP buffer size (−tcp− bs).
Fig. 2 shows transmission time of the file of 1 GB size

for the default TCP buffer and a variable number of streams.

Fig. 3 shows transfer speed noted for this situation. It can

be noticed that the best values were obtained for six and

nine streams. The measured data transfer time in this case

was near 20 s, the communication throughput was approx-

imately 50 MB/s. In practice, using two streams allows to

achieve satisfactory results, and using a larger number than

6 streams does not result in any improvement of transmission

parameters. For 50 streams a significant drop in performance

probably caused by memory constraints was noted.

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 55 60

0

10

20

30

40

50

60

70

80

90

100

Number of TCP Streams

T
im

e
 [

s
]

Average

Min

Max

Fig. 2. Transfer time of a 1 GB file depending on the number of
TCP streams

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 55 60

0

10

20

30

40

50

60

Number of TCP Streams

Tr
a
n
s
fe

r 
S
p
e
e
d
 [

M
B

/s
]

Fig. 3. Average transfer speed of a 1 GB file depending on the num-
ber of TCP streams

The next step in the optimization was to determine

whether a modification to the TCP buffer size can have a pos-

itive impact on the data transfer time. In newer Linux operat-

ing systems, the size of the buffer is automatically optimized

[36-37], and generally there is no need to manually adjust

this parameter. However, in specific conditions the arbitrary

setting of the buffer size may be advantageous.

According to the manual placed on the GridFTP web-

site [38], the optimal size buffer can be calculated using the

following formula:

tcp− bs = bandwidth in Megabits per second (Mb/s)

×RTT in milliseconds (ms)× 1000/8.

As previously, the conducted RTT is ∼ 2 ms. The prob-

lem is to accurately estimate the bandwidth, but it can be ini-

tially assumed that the bottleneck is the bandwidth of the net-

work card installed on the client computer – speed of 1000

Mb/s. After substituting these values into the formula we get:

tcp− bs = 1000 Mb / s× 2 ms× 1000/8 = 250000 B.



Preprocessing and Storing High-Throughput Sequencing Data 17

The calculated buffer size of 250 000 bytes was used as

the median for the performed tests (Fig. 4).

30

35

40

45

50

55

60

65

70

tcp–bs [B]

T
im

e
 [

s
]

Arbitrary tcp–bs

Without tcp–bs

Fig. 4. Transfer time of 1 GB file depending on the TCP buffer size

Experimental results show that manipulation of the

buffer size does not reduce the transit time below the value

obtained by automatic optimization done by the operating

system [36]. Therefore, there is no need to manipulate with

tcp− bs.
Taking into account the results of the tests presented

above, we conducted 5 attempts at uploading the actual

300 GB size file using SFTP and GridFTP with 6 TCP

streams. The measured transfer time via SFTP was 11783

± 498 s, which gives an average transfer rate of 27.34 ±
1.11 MB/s. Using GridFTP the time of transfer was cut to

7851 ± 497 s and the average transfer rate was increased up

to 41.03 ± 2.44 MB/s.

10

20

30

40

50

60

1 GB (GridFTP) 10 GB (GridFTP) 300 GB (GridFTP) 300 GB (SFTP)

T
ra

n
s
fe

r 
s
p
e
e
d

 [
M

B
/s

]

0

Fig. 5. Transfer speed depending on file size

On the other hand, deterioration of the transfer perfor-

mance was observed for the transfer of large files. This phe-

nomenon was confirmed by subsequent tests and is clearly

visible also for 10 GB files (Fig. 5). Although the decrease of

the speed is significant, GridFTP remains considerably more

efficient than SFTP also for the real 300 GB files. Therefore,

it is preferred for transferring such bioinformatic data.

V. CONCLUSIONS

In this article we have presented a possible pipeline for

data preprocessing. This initial phase, preceding de novo as-

sembly, reduces the cardinality of the input data set by re-

moving reads with unspecified nucleotides, removing du-

plicated reads, compressing and sorting data, and merging

reads without ambiguity in junctions into longer contigs.

In case of E. coli dataset, the initial cardinality has been re-

duced to 14.8% if we allow merged reads to be shifted by

one nucleotide only. By introducing ∆-reads, the method is

able to find consecutive reads that are shifted by up to ∆
nucleotides and merge them as well. If ∆=10, the initial car-

dinality has been decreased to 13.9%. Further on, if we do

not take into account single reads that do not fit well, reduc-

tion of the initial set is below 5%. A slightly lower reduction

rate have been obtained for C. elegans dataset. In case of

∆=10, the data set is equal to 27.8% of its initial state (com-

pare Tables 1–4 for the results). The preprocessing method

has been sped up with the use of GPU processors.

Another important issue presented in the article is archiv-

ing experimental data coming from the Illumina sequencer.

We have shown the necessity of storing FASTA/FASTQ files

separately, because they are used more often in further anal-

ysis. We have compared several compressing methods: the

general usage ones, and those specialized for FASTQ files.

The latter one called DSRC has appeared to have the best

compression rate and the shortest compression time. Its de-

compression time has been comparable to other general us-

age compression methods. In our computational experiments

we have noticed that another method specialized for FASTQ

files, KungFQ, has got extremely long decompression time,

far behind other methods.

We have tested the parameters corresponding to the

transfer of data to the PLATON-U4 service: the number

of connections and TCP buffer size. We have observed the

speedup of the transfer up to 6 TCP streams. For 50 streams

a significant drop in performance most likely caused by

memory constraints was noted. The buffer size is automat-

ically optimized in the Linux operating system, and manual

optimization has not improved the transfer time.

Acknowledgement

The research has been supported by grants No. DEC-

2011/01/B/ST6/07021 and 2012/05/B/ST6/03026 from the

National Science Centre, Poland.

References

[1] T. Jiang, M. Li, DNA sequencing and string learning, Math-
ematical Systems Theory 29, 387-405 (1996).



18 A. Świercz, B. Bosak, M. Chłopkowski, A. Hoffa, M. Kasprzak, K. Kurowski, T. Piontek, J. Błażewicz

[2] J.C. Dohm, C. Lottaz, T. Borodina, H. Himmelbauer,
SHARCGS, a fast and highly accurate short-read assembly
algorithm for de novo genomic sequencing, Genome Res 17,
1697-1706 (2007).

[3] D.W. Bryant, W.K. Wong Jr., T.C. Mockler, QSRA: a qua-
lity-value guided de novo short read assembler, BMC Bioin-
formatics 10, 69 (2009).

[4] R.L. Warren, G.G. Sutton, S.J. Jones, R.A. Holt, Assembling
millions of short DNA sequences using SSAKE, Bioinfor-
matics 23, 500-501 (2007).

[5] R. Li, W. Fan, G. Tian, H. Zhu, L. He, et al., The sequence
and de novo assembly of the giant panda genome. Nature
463, 311-317 (2010).

[6] J.T. Simpson, K. Wong, S.D. Jackman, J.E. Schein,
S.J. Jones, et al., ABySS: a parallel assembler for short read
sequence data, Genome Res 19, 1117-1123 (2009).

[7] Li R, Zhu H, Ruan J, Qian W, Fang X, et al., De novo as-
sembly of human genomes with massively parallel short read
sequencing, Genome Res 20, 265-272 (2010).

[8] D.R. Zerbino, E. Birney, Velvet: algorithms for de novo short
read assembly using de Bruijn graphs, Genome Res 18, 821-
829 (2008).

[9] J. Blazewicz, M. Figlerowicz, P. Gawron, M. Kasprzak,
E. Kirton, D. Platt, A. Swiercz, L. Szajkowski, Whole
genome assembly from 454 sequencing output via modified
DNA graph concept, Computational Biology and Chemistry
33, 224-230 (2009).

[10] T.F. Smith, M.S. Waterman, Identification of common mole-
cular subsequences, Journal of Molecular Biology 147, 195-
197 (1981).

[11] http://www.bioinformatics.nl/tools/crab_fasta.html.

[12] P.J.A. Cock, C.J. Fields, N. Goto, M.L. Heuer, P.M. Rice.
The Sanger FASTQ file format for sequences with quality
scores, and the Solexa/Illumina FASTQ variants, Nucleic
Acids Res 38, 1767-1771 (2010).

[13] D. Merrill, A. Grimshaw, Revisiting sorting for GPGPU
stream architectures, Technical Report CS2010-03, Univer-
sity of Virginia, Department of Computer Science, Char-
lottesville, VA, USA, (2010).

[14] Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra).

[15] Escherichia coli str. K-12 substr. MG1655, complete
genome (http://www.ncbi.nlm.nih.gov/nuccore/
NC_000913.2).

[16] WormBase, ftp://ftp.wormbase.org/pub/wormbase/releases/
WS230/species/c_elegans/ c_elegans.WS230.genomic.fa.gz.

[17] K. Yook, T.W. Harris, T. Bieri, et al., WormBase 2012: More
genomes, more data, new website, Nucleic Acids Research
40, D735-D741 (2012).

[18] B. Langmead, S. Salzberg, Fast gapped-read alignment with
Bowtie 2, Nature Methods 9, 357-359 (2012).

[19] L. Ilie, F. Fazayeli, S. Ilie, HiTEC: accurate error correc-
tion in high-throughput sequencing data, Bioinformatics 27,
295-302 (2011).

[20] W.C. Kao, A.H. Chan, Y.S. Song, ECHO: a reference-
free short-read error correction algorithm, Genome Res 21,
1181-1192 (2011).

[21] J.T. Simpson, R. Durbin, Efficient de novo assembly of large
genomes using compressed data structures, Genome Res 22,
549-556 (2012).

[22] J. Ziv, A. Lempel, A Universal Algorithm for Sequential
Data Compression, IEEE Transactions on Information The-
ory 23, 337-343 (1977).

[23] J. Ziv, A. Lempel, Compression of individual sequences
via variable rate coding, IEEE Transactions on Information
Theory 24, 530-535 (1978).

[24] Deflate and inflate algorithms (http://www.gzip.org/
algorithm.txt ).

[25] J-L Gailly, GNU gzip, 2013 (http://www.gnu.org/software/
gzip/manual/gzip.pdf).

[26] P. Deutsch, J-L. Gailly, ZLIB Compressed Data Format
Specification version 3.3, 1996
(http://tools.ietf.org/pdf/rfc1950.pdf).

[27] P. Deutsch, DEFLATE Compressed Data Format Specifica-
tion version 1.3, 1996 (http://tools.ietf.org/pdf/rfc1951.pdf).

[28] P. Deutsch, GZIP file format specification version 4.3, 1996
(http://tools.ietf.org/pdf/rfc1952.pdf).

[29] M. Burrows, D.J. Wheeler, A block sorting lossless data
compression algorithm, Technical Report 124, Digital
Equipment Corporation. (1994).

[30] D.A. Huffman, A Method for the Construction of Minimum-
Redundancy Codes, Proceedings of the I.R.E., 1098-1102
(1952).

[31] 7-zip file archiver (http://www.7-zip.org/).

[32] S. Deorowicz, S. Grabowski, Compression of DNA sequence
reads in FASTQ format, Bioinformatics 27, 860-862 (2011).

[33] E. Grassi, F.D. Gregorio, I Molineris. KungFQ: A Simple
and Powerful Approach to Compress fastq Files, IEEE/ACM
Transactions on Computational Biology and Bioinformatics
9, pp. 1837-1842 (2012).

[34] M. Brzezniak, N. Meyer, R. Mikołajczak, G. Jankowski, M.
Jankowski. Popular Backup/Archival Service and its Appli-
cation for the Archival of the Network Traffic in the PI-
ONIER Academic Network, CMST Special Issue, 109-118
(2010).

[35] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Du-
mitrescu, I. Raicu, I. Foster, The Globus Striped GridFTP
Framework and Server, SC’05, ACM Press, (2005).

[36] J. Semke, M. Jamshid, M. Matthew, Automatic TCP buffer
tuning. ACM SIGCOMM Computer Communication Re-
view 28.4, 315-323 (1998).

[37] Enabling High Performance Data Transfers, at Pittsburg Su-
percomputing Center, (http://www.psc.edu/index.php/
networking/641-tcp-tune#Linux).

[38] GT 5.0.2 GridFTP (http://www.globus.org/toolkit/docs/
5.0/5.0.2/data/gridftp/).



Preprocessing and Storing High-Throughput Sequencing Data 19

Aleksandra Świercz received her MSc degree in computer science at the Poznan Univeristy of Technology,
Poland, in 2002, and defend her PhD in 2007 at the same University in the bioinformatics field. Since 2000
she has been employed at the Institute of Computing Science, Poznan University of Technology and at the
Institute of Bioorganic Chemistry, Polish Academy of Sciences. She worked as a research assistant at the
Hong Kong Polytechnic University. Her scientific research interests are focused on computational analysis of
genomic sequences: DNA/RNA sequencing, assembling, analysis of microarray data, graph theory.

Bartosz Bosak received his MSc degree in computer science at Poznan University of Technology in Poland
(Laboaratory of IT Systems in Management). Since 2007 he is working at the Application Department of
Poznań Supercomputing and Networking Center as a system analyst and developer. His research interests
concern Grids, HPC, communication in distributed environments and service integration in SOA. He has
been involved in diverse European and national projects, including BREIN (FP6), MAPPER (FP7) and PL-
Grid.

Marek Chłopkowski is a PhD student at Poznan University of Technology. In 2010 he recieved MSc in Com-
puter Science. He is mainly interested in GPGPU applications in fields of data compression and computa-
tional biology including redesign and adaptation of serial algorithms for parallel processing. Recreations
include racing, snowboarding and running.

Arkadiusz Hoffa received MSc degree in computer science at the Poznan University of Technology, Poland
in 2008. He started there PhD studies at where he was an Assistant Professor in period 2008 and 2011. Arka-
diusz is working as java programer in private sector and is continuing his research independently. His research
interest are biological data compression and alternative splicing types identifying.

Marta Kasprzak received the MSc degree in computer science at the Poznan University of Technology,
Poland, in 1995. In 2004, she defended her habilitation thesis at the same university. She has been contin-
uously employed at the Institute of Computing Science, Poznan University of Technology since 1994. She
focuses her scientific research on bioinformatics/computational biology, mainly on DNA sequencing, assem-
bly and mapping, with the stress put on theoretical analysis of these problems: computational complexity and
modeling with the use of graph theory.



20 A. Świercz, B. Bosak, M. Chłopkowski, A. Hoffa, M. Kasprzak, K. Kurowski, T. Piontek, J. Błażewicz

Krzysztof Kurowski, holds a PhD degree in Computer Science and he is leading the Applications Depart-
ment at Poznań Supercomputing and Networking Center, Poland. He was actively involved in many EU-
funded R&D projects in the areas of Information Technology and High Performance Computing over the last
decade, including GridLab, inteliGrid, HPC-Europa, QosCosGrid or MAPPER. He was a research visitor at
University of Queensland, Argonne National Lab, and CCT Louisiana States University. His research activ-
ities are focused on the modeling of advanced applications, scheduling and resource management in hetero-
geneous and hierarchical computing systems, including GPU-based systems. Results of his research efforts
have been successfully presented at many international conferences and workshops. He has also successfully
published several journal papers and co-edited the scientific book in the area of large-scale computing.

Tomasz Piontek received his MSc in computer science in 1998 at Poznan University of Technology (Par-
allel and Distributed Computing). After his MSc, he joined the programmers group at PUT and worked on
mobile network protocol analyzers software for Siemens A.G. and Tektronix, Inc. Since 2002 he has been
working in Poznań Supercomputing And Networking Center in Application Department and was involved
in many EU-funded and national R&D projects in the area of Grids and HPC Computing: GridLab, ACGT,
QosCosGrid, PL-Grid, MAPPER. His research interests include distributed computing, large-scale simula-
tions and resource management. He is an author or co-author of several papers in professional journals and
conference proceedings. In PSNC he leads a team developing QosCosGrid middleware services and tools
and is responsible for collaboration with domain research groups in the PLGrid PLUS project.

Jacek Błażewicz Professor and a vice-director (since 1987) of the Institute of Computing Science of Poznan
University of Technology. He is also a professor at the Institute of Bioorganic Chemistry of PAS. Member
of the Polish Academy of Sciences (since 2002). Member of the Polish Informatics Society and Founding
Member of the Polish Bioinformatics Society (president of the Revisory Committee – since 2008); Member
of the Scientific Councils of IPI PAS and IChB PAS. He is also a vice-president of the Combinatorial Opti-
mization Working Group of EURO (European Association of Operational Research Societies) – since 1995;
a Honorary Coordinator of the Computational Biology, Bioinformatics and Medicine WG of EURO - since
2007 and a Member of the EPSRC Peer Review College. Since 1997 he is an editor of the series International
Handbooks on Information Systems at Springer and a member of editorial boards of 10 international journals
(Parallel Computing, Journal of Heuristics, Journal of Scheduling among others). Co-chairman of 35 inter-
national conferences (among others: Dagstuhl Symposium on Scheduling – 1995, 1997, 1999, 2002, 2004;
Symposium on Parallel & Distributed Processing – Aussois – 1998, Marseille – 2001, 2008; Hangzhou –
2011; EURO Conference on Computational Biology, Bioinformatics and Medicine – Rome – 2008; Notting-
ham – 2012). In the area of computer science and bioinformatics he published over 350 papers and books.
His total citation number is over 3400 and h_index= 27 (according to ISI Citation Search). He was awarded
EURO Gold Medal (1991) and the Doctorate Honoris Causa of the University of Siegen (2006). He is also
a recipient of the State Award, 8 awards of the Ministry of Science and Higher Education as well as the award
of Division IV of PAS. In 2012 he was elevated to the position of IEEE Fellow. In 2012 a Copernicus Prize
was bestowed upon him and in 2013 he was elected for a position of Vice-President of IFORS.

CMST 20(1) 9-20 (2014) DOI:10.12921/cmst.2014.20.01.9-20


