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Abstract: The space-time fractional KdV-Burgers equation has been derived using the semi-inverse method and Agrawal’s
variational method. The modified Riemann-Liouville definition is used for the fractional differential operators. The derived
fractional equation is solved using the fractional sub-equation method.
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I. INTRODUCTION

All forces in nature are nearly non-conservative: dissipa-
tive and/or dispersive forces. Classical mechanics, using inte-
ger differential equations, treated conservative forces while
the non-integer differential equations can be used to describe
the non-conservative forces. Fractional calculus is a field of
mathematics that grows out of the traditional definitions of
calculus. Fractional calculus has gained importance during
the last decades mainly due to its applications in various fields
of science and engineering. Some of the areas of present day
applications of fractional calculus include fluid flow, rheol-
ogy, dynamical process in self-similar and porous structures,
diffusive transport akin to diffusion, electrical networks, prob-
ability and statistics, control theory of dynamical systems, vis-
coelasticity, electro-chemistry of corrosion, chemical physics,
optics, and signal processing, and so on [1-7].

There are different kinds of fractional integration and dif-
ferentiation operators. The most famous one is the Riemann-
Liouville definition [8-11], which has been used in various
fields of science and engineering successfully, but this def-
inition leads to the result that constant function differenti-
ation is not zero. Caputo put definitions which give zero
value for fractional differentiation of constant function, but

these definitions require that the function should be smooth
and differentiable [8-11]. Recently, Jumarie derived defini-
tions for the fractional integral and derivative called modified
Riemann-Liouville [12-15], which are suitable for continuous
and nondifferentiable functions and give differentiation of
a constant function equal to zero. The modified Riemann-
Liouville fractional definitions are used effectively in many
different problems [16-20].

It was shown that non-integer derivatives in the La-
grangian describe non-conservative forces. Riewe [21, 22]
derived a method using a fractional Lagrangian that
leads to a fractional Euler-Lagrange equation that is, in some
sense, equivalent to the desired equation of motion. Hamil-
ton’s equations are derived from the Lagrangian and are equiv-
alent to the Euler-Lagrange equation. Further study of the frac-
tional Euler-Lagrange can be found in the works of Agrawal
[23-25]. He presented generalized Euler-Lagrange equations
for unconstrained and constrained fractional variational prob-
lems. Baleanu and coworkers [26, 27] used the fractional
Euler-Lagrange equation to model fractional Lagrangian and
Hamiltonian formulations. El-Wakil et al derived the time
fractional forms of some mathematical-physics equations
[28] using Agrawal’s variational method [23-25] and used
them to describe the electrostatic potential in some plasma
systems [29].
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Several methods have been used to solve fractional dif-
ferential equations such as: Laplace transformation method,
Fourier transformation method, iteration method, and oper-
ational method [8-11, 30]. However, most of these methods
are suitable for special types of fractional differential equa-
tions, namely the linear with constant coefficients. However,
some papers deal with the existence and multiplicity of so-
lution of the nonlinear fractional differential equation using
techniques of nonlinear analysis such as: Adomian decompo-
sition method [31], homotopy perturbation method [32] and
variational iteration method [33].

It is common knowledge that many physical problems
(such as non-linear shallow-water waves and wave motion
in plasmas) can be described by the KdV-type equations.
The KdV-type equations also have applications in quantum
field theory, plasma physics and solid-state physics. For ex-
ample, the kink soliton can be used to calculate energy, mo-
mentum flow and topological charge in the quantum field.
In order to study the problems of the flow of liquids contain-
ing gas bubbles, the fluid flow in elastic tubes, etc., the control
equation can be reduced to the so-called KdV-Burgers equa-
tion. This equation is equal to the KdV equation if a viscous
dissipation term is added. The KdV-Burgers equation can be
thought of as a generalization of the KdV and Burgers equa-
tions. This equation combines nonlinearity, linear dissipation
and dispersion terms. This is a well known nonlinear model
of viscous elastic medium and is found in many physical
phenomena. The Burgers equation is a special case of the
KdV-Burgers equation has been found to describe various
kinds of phenomena such as a mathematical model of turbu-
lence and the approximate theory of flow through a shock
wave traveling in viscous fluid.

In this paper, the space-time fractional KdV-Burgers equa-
tion is derived using Agrawal’s technique [23-25] and the
modified Riemann-Liouville derivative [12-15], and solved
by the improved fractional sub-equation method [34, 35].

The modified Riemann-Liouville fractional derivative
Dα
xf(x) is defined in the form [12-15]

Dα
x [f(x)−f(a)] =

1

Γ(−α)

∫ x

a

dξ f(ξ)/(x−ξ)α+1, α < 0,

(1a)

Dα
xf(x) =

1

Γ(1− α)

× d

dx

{∫ x

a

dξ[f(ξ)− f(a)]

(x− ξ)α

}
, 0 < α < 1,

(1b)

Dα
xf(x) =

dn

dxn
{
Dα−n
x f(x)

}
, n ≤ α < n+ 1, n ≥ 1.

(1c)
Some properties of the modified Riemann-Liouville

(mRL) fractional derivative were summarized in [12-15], use-
ful formulae include

Dα
xC = 0, α > 0, C is a constant, (2a)

Dα
xx

γ =
Γ(1 + γ)

Γ(1 + γ − α)
xγ−α, γ > 0, (2b)

Dα
x [u(x) v(x)] = Dα

x [u(x) ]v(x) + u(x)Dα
x [v(x)], (3)

Dα
xf(u(x)) = Dα

xu(x)

(
df

du

)
, (4a)

= Dα
uf(u)

(
du

dx

)α
, (4b)∫ b

a

(dx)αu(x)Dα
xv(x) = α![u(x)v(x)

∣∣∣b
a

−
∫ b

a

(dx)αv(x)Dα
xu(x),

u(x), v(x) ∈ [a, b], 0 < α < 1.

(5)

v(x) is non-differentiable, u(x) is non-differentiable in (3)
and (4a) and differentiable in (4b), and f(u(x)) is differen-
tiable in (4a) and non-differentiable in (4b).

II. SPACE-TIME-FRACTIONAL KDV-BURGERS
EQUATION FORMULATION

The space-time-fractional KdV-Burgers (STFKdV-Burgers)
equation in (1+1)-dimension can be formulated as follows:
The regular KdV-Burgers equation has the form

∂

∂t
u(x, t) +Au(x, t)

∂

∂x
u(x, t)

+B
∂2

∂x2
u(x, t) + C

∂3

∂x3
u(x, t) = 0.

(6)

Using the potential function U(x, t) where u(x, t) =
Ux(x, t) gives the potential equation of the regular KdV-
Burgers equation in the form

Uxt(x, t) +AUx(x, t)Uxx(x, t)

+Buxx(x, t) + CUxxxx(x, t) = 0,
(7)

where the subscripts denote partial differentiation of the func-
tion with respect to the parameter. The Euler-Lagrange equa-
tion of the regular KdV-Burgers equation can be derived using
the semi-inverse method [36, 37] as follows:
The functional of the potential equation can be represented
by

J(U) =

∫
R

dx

∫
T

dtU(x, t)
{
c1Uxt(x, t) + c2AUx(x, t)

×Uxx(x, t) + c3Buxx(x, t) + c4CUxxxx(x, t)
}
,

(8)

where c1, c2, c3 and c4 are constant Lagrangian multipliers.
Here R refers to the boundaries of the space domain, while
T denotes to the initial and final values of the time. Inte-
grating (8) by parts where Ux|R=Ut|T=Uxx|R=0, uxx(x, t)
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is considered as a fixed function and applying the variation
of this functional with respect to U(x, t) lead to

δJ(U) =

∫
R

dx

∫
T

dt

{
− c1

[
Ut(x, t)δUx(x, t)

+Ux(x, t)δUt(x, t)
]
− 3

2
c2A[Ux(x, t)]2δUx(x, t)

+c3Buxx(x, t)δU(x, t) + 2c4C [Uxx(x, t)δUxx(x, t)]

}
.

Integrating by parts using Ux|R = Ut|T = Uxx|R = 0 and
optimizing this variation, δJ(U) = 0, give

2c1Uxt(x, t) + 3c2AUx(x, t)Uxx(x, t)

+c3Buxx(x, t) + 2c4CUxxxx(x, t) = 0.

Comparing the above equation with (7) gives constant La-
grangian multipliers as

c1 =
1

2
, c2 =

1

3
, c3 = 1, c4 =

1

2
.

The functional relation yields directly the Lagrangian of the
potential equation as

L(U,Ut, Ux, Uxx) =
1

2
Ut(x, t)Ux(x, t)

+
1

6
A [Ux(x, t)]

3 −BU(x, t)uxx(x, t)− 1

2
C [Uxx(x, t)]

2
.

(9)

Similarly, the Lagrangian of the space-time-fractional version
of the KdV-Burgers equation could be written in the form

F (U,Dα
t U, D

β
xU, D

ββ
x U) =

=
1

2
Dα
t U(x, t)Dβ

xU(x, t) +
1

6
A[Dβ

xU(x, t)]3

−BU(x, t)Dββ
x u(x, t)− 1

2
C[Dββ

x U(x, t)]2,

(10)

where Dγγ
z f(z) = Dγ

z [Dγ
z f(z)] while the fractional deriva-

tive Dγ
z f(z) is the mRL fractional derivative [12-15] defined

by (1). The functional of the STFKdV-Burgers equation takes
the form

JF (U) =

∫
R

(dx)β
∫
T

(dt)α F
(
U,Dα

t U, D
β
xU, D

ββ
x U

)
.

(11)
The variation of this functional with respect to U(x, t) leads
to

δJF (U) =

∫
R

(dx)β
∫
T

(dt)α
{(

∂F

∂U

)
δU +

(
∂F

∂Dα
t U

)
×δDα

t U +

(
∂F

∂Dβ
xU

)
δDβ

xU +

(
∂F

∂Dββ
x U

)
δDββ

x U

}
.

(12)

Integrating this equation by parts using the definition (5) and
optimizing this relation, δJF (U) = 0, the Euler-Lagrange
equation for the STFKdV-Burgers equation has the form(

∂F

∂U

)
−Dα

t

(
∂F

∂Dα
t U

)
−Dβ

x

(
∂F

∂Dβ
xU

)
+Dββ

x

(
∂F

∂Dββ
x U

)
= 0,

(13)

with the constraints that δU |R=δU |T=0.
Substituting the Lagrange of STFKdV-Burgers (10) into this
Euler-Lagrange formula gives

−BDββ
x u(x, t)−Dα

t [Dβ
xU(x, t)]

−1

2
ADβ

x [Dβ
xU(x, t)]2 − CDββ

x [Dββ
x U(x, t)] = 0.

(14)

Substituting u(x, t) = Dβ
xU(x, t) and using formula (3)

lead to

Dα
t u(x, t) +Au(x, t)Dβ

xu(x, t)

+BDββ
x u(x, t) + CDβββ

x u(x, t) = 0,
(15)

which is the space-time-fractional Koreweg-de Vries-Burgers
equation.

III. SPACE-TIME-FRACTIONAL KDV-BURGERS
EQUATION SOLUTION

In this section, the STFKdV-Burgers equation will be
solved using a fractional sub-equation method [34, 35].

Considering the traveling wave transformations u(x, t) =
Φ(ξ), ξ = x+ vt, (15) can be reduced to the following non-
linear fractional ordinary differential equation (FODE) using
relation (4) for the case of β = α:

vαDα
ξ Φ(ξ) +AΦ(ξ)Dα

ξ Φ(ξ)

+BDαα
ξ Φ(ξ) + CDααα

ξ Φ(ξ) = 0.
(16)

The fractional sub-equation method [34, 35] assumes so-
lution of this equation as

Φ(ξ) =

n∑
k=0

akϕ
k(ξ), (17)

where ϕ(ξ) satisfies the following fractional Riccati equation:

Dα
ξ ϕ(ξ) =

m∑
j=0

bjϕ
j(ξ), (18)

where ak, k = 0, ..., n are constant coefficients to be deter-
mined later and bj , j = 0, ..., m are arbitrary coefficients.

Balancing the highest order derivative term and nonlinear
term in (16) the value of n can be determined, which has in
this problem the value n = 2.
We suppose that (16) has the following formal solution:

Φ(ξ) = a0 + a1ϕ(ξ) + a2[ϕ(ξ)]2, (19)
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where a0, a1 and a2 are constant coefficients to be determined
and ϕ(ξ) satisfies the following fractional Riccati equation:

Dα
ξ ϕ(ξ) = b0 + b2ϕ

2(ξ), (20)

where b0 and b2 are arbitrary coefficients.
Using the generalized Exp-function method via Mittag-
Leffler functions, Zhang et al [38] first obtained the following
solution of the fractional Riccati equation (20)

ϕ1(ξ) = −
√
−b0 tanhα(

√
−b0ξ), b0 < 0, b2 = 1,

(21a)

ϕ2(ξ) = −
√
−b0 cothα(

√
−b0ξ), b0 < 0, b2 = 1,

(21b)

ϕ3(ξ) =
√
b0 tanα(

√
b0ξ), b0 > 0, b2 = 1,

(21c)

ϕ4(ξ) = −
√
b0 cotα(

√
b0ξ), b0 > 0, b2 = 1,

(21d)

ϕ5(ξ) = −Γ(1 + α)/(ξα + ω), b0 = 0, b2 = 1,

ω = constant,
(21e)

with generalized hyperbolic and trigonometric functions

tanhα(x) = sinhα(x)/ coshα(x),

cothα(x) = coshα(x)/ sinhα(x),
(22a)

sinhα(x) = [Eα(x)− Eα(−x)]/2,

coshα(x) = [Eα(x) + Eα(−x)]/2,
(22b)

tanα(x) = sinα(x)/ cosα(x),

cotα(x) = cosα(x)/ sinα(x),
(22c)

sinα(x) = [Eα(ix)− Eα(−ix)]/(2i),

cosα(x) = [Eα(ix) + Eα(−ix)]/2,
(22d)

where i =
√
−1 and Eα(x) is the Mittag-Leffler function

defined by

Eα(x) =

∞∑
k=0

xk

Γ(1 + kα)
. (22e)

Substituting (17) along with (18) and setting the coefficient
of ϕk(ξ) equal to zero lead to a set of algebraic equations in
terms of coefficients a0, a1, a2, b0 and b2. Solving the alge-
braic set of equations by Maple gives the following cases:

Case 1: In this case, A and B are arbitrary while C = 0.
This case describes the Burgers equation. The coefficients
of (19), using the Maple package, have the forms:

b0 = arbitrary, b2 = 1, a0 = −vα/A,
a1 = −2B/A, a2 = 0,

(23)

where A 6= 0, the solutions of the STFKdV-Burgers equation
using the fractional Riccate equation solutions (21) are as
follows:

Φ11(ξ) = −vα/A+ (2B/A)
√
−b0 tanhα(

√
−b0ξ), b0 < 0,

(24a)

Φ12(ξ) = −vα/A+ (2B/A)
√
−b0 cothα(

√
−b0ξ), b0 < 0,

(24b)

Φ13(ξ) = −vα/A− (2B/A)
√
b0 tanα(

√
b0ξ), b0 > 0,

(24c)

Φ14(ξ) = −vα/A+ (2B/A)
√
b0 cotα(

√
b0ξ), b0 > 0,

(24d)

Φ15(ξ) = −vα/A+ (2B/A)Γ(1 + α)/(ξα + ω), b0 = 0,

ω = arbitrary constant.
(24e)

Case 2: The second case has A and C arbitrary while B = 0.
This describes the KdV equation. The set of coefficients of
the solution of (19) using the Maple package is

b0 = arbitrary, b2 = 1, a0 = −(8b0C + vα)/A,

a1 = 0, a2 = −12C/A,
(25)

where A 6= 0, these coefficients lead to the second set of
solutions of the STFKdV-Burgers equation in the following
forms

Φ21(ξ) = −(8b0C + vα)/A

+(12C/A)b0

[
tanhα(

√
−b0ξ)

]2
, b0 < 0, (26a)

Φ22(ξ) = −(8b0C + vα)/A

+(12C/A)b0

[
cothα(

√
−b0ξ)

]2
, b0 < 0, (26b)

Φ23(ξ) = −(8b0C + vα)/A

−(12C/A)b0

[
tanα(

√
b0ξ)

]2
, b0 > 0, (26c)

Φ24(ξ) = −(8b0C + vα)/A

−(12C/A)b0

[
cotα(

√
−b0ξ)

]2
, b0 > 0, (26d)

Φ25(ξ) = −(8b0C + vα)/A

−(12C/A)[Γ(1 + α)/(ξα + ω)]2, b0 = 0,

ω = constant. (26e)

Case 3: The third case has A, B and C arbitrary, which de-
scribe the KdV-Burgers equation. The set of coefficients of
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(a) 3-dimensions, α = 0.5 (b) 2-dimensions

Fig. 1. The solution Φ11(ξ), ξ = x+ vt for A = 0.1, B = 0.6, C = 0, b0 = −1, v = 0.2

(a) 3-dimensions, α = 0.5 (b) 2-dimensions

Fig. 2. The solution Φ21(ξ), ξ = x+ vt for A = 0.1, B = 0, C = 0.6, b0 = −1, v = 0.2

the solution of STFKdV-Burgers equation is given by

b0 = − B2

100C2
, b2 = 1, a0 =

3B2 − 25vαC

25AC
,

a1 = −12B

5A
, a2 = −12C

A
,

(27)

where AC 6= 0. As the coefficient b0 is negative, therefore
the solutions corresponding to this set of coefficients are two
solutions only and represented by the following forms:

Φ31(ξ) =
3B2 − 25vαC

25AC
+

6B2

25AC
tanhα

(
B

10C
ξ

)
− 3B2

25AC

[
tanhα

(
B

10C
ξ

)]2
.

(28a)

Φ32(ξ) =
3B2 − 25vαC

25AC
+

6B2

25AC
cothα

(
B

10C
ξ

)
− 3B2

25AC

[
cothα

(
B

10C
ξ

)]2
.

(28b)
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IV. RESULTS AND DISCUSSION

The real world physical processes are modeled by nonlin-
ear partial differential equations. First order nonlinear partial
differential equations model nonlinear waves and arise in gas
dynamics, water waves, elastodynamics, chemical reactions,
transport of pollutants, flood waves in rivers, chromatography,
traffic flow, and a wide range of biological and ecological
systems. Second order partial differential equations govern
nonlinear diffusion processes, including thermodynamics,
chemical reactions, dispersion of pollutants, and population

dynamics, the simplest and best understood is Burger’s equa-
tion. Third order partial differential equations arise in the
study of dispersive wave motion as the KdV equation, in-
cluding water waves, plasma waves, waves in elastic media.
A generalization of these two equations (KdV and Burgers)
known as the KdV-B equation is very useful approximation to
describe phenomena in fluid mechanics and plasma physics.

The real world physical processes can be better modeled
by fractional differential equations rather by integer-order dif-
ferential equations. The space-time fractional KdV-Burgers’
equations are derived using Agrawal’s technique [23-25] and

(a) 3-dimensions, α = 0.5 (b) 2-dimensions

Fig. 3. The solution Φ31(ξ), ξ = x+ vt for A = 0.1, B = 0.6, C = 0.6, b0 = − B2

100C2 , v = 0.2

(a) 3-dimensions, α = 0.5 (b) 2-dimensions

Fig. 4. The solution Φ32(ξ), ξ = x+ vt for A = 0.1, B = 0.6, C = 0.6, b0 = − B2

100C2 , v = 0.2
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the modified Riemann-Liouville derivative which were de-
fined by Jumarie [12-15], and solved at different three cases.
The first case takes the dissipation coefficient equal to zero,
which tends to Burgers’ equation, the second case takes the
dispersion coefficient equal to zero, which tends to KdV equa-
tion, and the third case takes the dispersion and dissipation
coefficient arbitrary that are not equal to zero, using the frac-
tional sub-equation method [34, 35].

Fig. (1a) shows the solution Φ11(ξ) in 3-dimensions
where a shock wave formulated as the dispersion term in
the KdV-Burgers equation equals to zero, and Fig (1b) shows
the relation of Φ11(ξ) and the position at different values of
the fractional parameter α, where as shown as α increase
the amplitude of the shock wave increase. If the dissipation
coefficient in the KdV-Burgers equation equals to zero this
equation tends to KdV equation, where a soliton solution will
be obtained as shown in Fig (2a) the relation betweenΦ21(ξ),
position, and time. Fig. (2b) shows the relation of Φ21(ξ)
and the position at different values of the fractional parame-
ter α, where a bell shape formulated which increased in the
amplitude and width as the fractional parameter increased.
Figures (3) and (4) show that at dispersion and dissipation
coefficients are not equal to zero, where Fig (3) shows the
relation between Φ31(ξ) and the position in 3-dimensions
and 2-dimensions at different values of fractional parameter,
respectively. Fig. (4) shows the relation between Φ32(ξ) and
the position in 3-dimensions and 2-dimensions at different
values of fractional parameter, respectively when the balance
between nonlinear and dispersion effect is strong and can
result in the formation of explosive waves which appear in
different fields as tsunami.
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