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Abstract: In this article, we construct one-sided cumulative sum (CUSUM) control charts for controlling the parameters of a
random variable with erlang-truncated exponential distribution. The rejection of the Wald’s sequential probability ratio test
(SPRT) is viewed as the decision lines of a CUSUM control chart for which the variate is a quality characteristic. Parameters
of the CUSUM chart, e.g. lead distance and mask angle, are presented. The results show that the Average Run Length (ARL)
of the resulting control charts changes substantially for a slight shift in the parameters of the distribution.
Key words: Sequential Probability Ratio Test (SPRT), Cumulative Sum (CUSUM) Control Chart, Average Run Length
(ARL), erlang-truncated exponential distribution

I. INTRODUCTION

In statistical quality control the cumulative sum control
charts (CUSUM Charts) have found importance as a parallel
process control technique to the well-known Shewhart control
charts. An alternative method for testing statistical hypoth-
esis parallel to Neyman’s theory is the popular sequential
probability ratio test (SPRT) due to Wald (1942). Page (1954,
1961) suggested the cumulative sum charts which are more
effective than Shewhart control charts in detecting small and
moderate size departures from a simple acceptable quality
level [Montgomery (2001)]. In this article we develop one-
sided CUSUM control charts for erlang-truncated exponential
distribution to detect the shift of the process parameters. We
have also examined how the parameters of the V-mask are
influenced by the probability of defectives departure from its
target value and the average run length (ARL) of the CUSUM
scheme. Johnson (1961) introduced this method of construc-
tion of the CUSUM chart. Johnson and Leone (1962) made
use of simultaneous applications of SPRT to test a simple H0

against two separate simple alternative hypotheses on either
side of the null hypothesis. The concerned decision lines for
both cases of alternative hypotheses to come to the respec-

tive rejection of the null hypothesis are taken to construct a
cumulative sum control chart for a process variate assumed
to follow a normal distribution. Johnson (1966) extended
the same procedure to a CUSUM chart for the Weibull pro-
cess variate. Nabar and Bilgi (1994) extended the CUSUM
chart procedure to the case of inverse Gaussian distribution.
Kantam and Rao (2006) studied the cumulative sum control
chart for log-logistic distribution. Chakraborty and Khurshid
(2011) constructed one-sided cumulative sum (CUSUM) con-
trol charts the zero-truncated binomial distribution.

The rest of the paper is organized as follows: the CUSUM
chart for control of parameter λ when ν is known along with
ARL is given in Section 2. The CUSUM chart for control of
parameter ν when λ is known along with ARL is shown in
Section 3, and conclusions are listed in Section 4.

II. THE CUSUM CHART FOR CONTROL
OF PARAMETER λ WHEN ν IS KNOWN

The Erlang-truncated exponential (ETE) distribution was
introduced and studied by El-Alosey (2007), Mohsin (2009)
and Mohsin et al (2010). The erlang-truncated exponential
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distribution has the following density function

f(x; ν, λ) = ν(1−e−λ) exp
[
−νx(1− e−λ)

]
; for x > 0

(1)
and the distribution function

F (x; ν, λ) = 1− exp
[
−νx(1− e−λ)

]
; for x > 0. (2)

Here ν > 0 and λ > 0 are the shape and scale parame-
ters, respectively. Now onwards ETE distribution with the
shape parameter ν and scale parameter λ will be denoted by
ETE(ν, λ).
The mean and variance of ETE (ν, λ) are

[
ν(1− e−λ)

]−1

and
[
ν(1− e−λ)

]−2
, respectively.

If we assume that X1, X2, ...Xm be i.i.d. random variables
taken from ETE distribution with the probability density
function (1). The likelihood ratio to test the null hypothe-
sis H0 : λ = λ0 against the alternative hypothesis H1 : λ =
λ1 (> λ0) with known ν is given by

L1

L0
=
fX1,X2,...Xm(x1, x2, ...xm;λ1, ν)

fX1,X2,...Xm(x1, x2, ...xm;λ0, ν)
=

=

(
1− e−λ1

1− e−λ0

)m
exp

[
ν
(
e−λ1 − e−λ0

) m∑
i=1

xi

] (3)

The continuation region of the sequential probability ratio
test (SPRT) discriminating between the two hypotheses is
given by

ln

(
β

1− α

)
< m ln

(
1− e−λ1

1− e−λ0

)
+ν
(
e−λ1 − e−λ0

) m∑
i=1

xi < ln

(
1− β

α

) (4)

where α and β are the probability of Type I and Type II errors,
respectively.
If β = 0 then the right side of inequality in (4) becomes

m∑
i=1

xi <
lnα+m ln

(
1−e−λ1
1−e−λ0

)
ν (e−λ0 − e−λ1)

(5)

The cumulative sum (CUSUM) control chart (as shown in
Fig. 1) is constructed as follows: The CUSUM control chart is

formed by plotting the sum Sm =
m∑
i=1

xi against the number

of observationsm. A visual procedure with aid of the V-Mask
is sometimes used to determine whether the process is under
control or out of control (see Fig. 1). A V-Mask is an overlay
shape in the form of a V on its side that is superimposed on
the graph of the cumulative sums. The origin point of the
V-Mask (see Fig. 1) is placed on top of the latest cumulative
sum point and past points are examined to see if there was
any fall above or below the sides of the V. As long as all the

previous points lie between the sides of the V, the process
is in control. Otherwise (even if one point lies outside) the
process is suspected of being out of control. Suppose here O
is the last plotted point, P is the vertex of the mask and the
point Q is obtained by drawing a perpendicular to the line
OP. A small shift in the value of λ from λ0 to λ1 is indicated
if any plotted point falls below the line PQ. Lucas (1982)
proposed a control chart which consists of control lines rather
than a V-mask, in our study; we prefer to use the original
V-mask procedure.

Fig. 1. Cumulative sum control chart

The parameters d and θ of V-mask from Fig. 1 are
given by

d =
− lnα

ln
(

1−e−λ1
1−e−λ0

) (6)

and

θ = tan−1

 ln
(

1−e−λ1
1−e−λ0

)
ν (e−λ0 − e−λ1)

 (7)

II. 1. Average Run Length (ARL)

In general, the average number of trials required for de-
tecting a shift in the process average for the first time is called
the average run length (ARL). If α is the producer’s risk then
the approximate formula for ARL for the CUSUM control
chart [see also Johnson (1961), Johnson and Leone (1962)]
detecting a shift of the parameter from λ0 to λ1 is given by

ARL =
− logα

E (logZ)λ=λ1

,

where Z =
f(x;λ1)

f(x;λ0)
. Thus, we get

ARL =
− logα

ln
(

1−e−λ1
1−e−λ0

)
−
(
e−λ0−e−λ1
1−e−λ1

) (8)

The parameters of the V-mask of the one-sided CUSUM chart,
such as the lead distance d and the angle θ, are calculated
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for a number of combinations of the values of λ, ν and α
for controlling parameters λ when ν is known. The obtained
values of d, θ and ARL for controlling parameter λ when ν
is known are displayed in the Tab. 1, 2 and 3 respectively.

III. THE CUSUM CHART FOR CONTROL OF THE
PARAMETER ν WHEN λ IS KNOWN

The CUSUM chart to control parameter ν when λ is
known is constructed in the following procedure. The approx-
imate likelihood ratio for detecting a shift in the value of ν
from ν0 to ν1 (> ν0)is given by

L1

L0
=
fX1,X2,...Xm(x1, x2, ...xm; ν1, λ)

fX1,X2,...Xm(x1, x2, ...xm; ν0, λ)
=

=

(
ν1
ν0

)m
exp

[
−(ν1 − ν0)

(
1− e−λ

) m∑
i=1

xi

] (9)

Proceeding like in Section 2, we get the inequality below hold
true for ν

m∑
i=1

xi <
lnα+m ln (ν1/ν0)

(ν1 − ν0) (1− e−λ)
(10)

The CUSUM chart is constructed in the similar manner as we
explained in Section 2 for change of ν from ν0 to ν1 (> ν0).
The parameters of the V-mask (the lead distance d and the
angle θ) are given by

d =
− lnα

ln (ν1/ν0)
(11)

and

θ = tan−1

[
ln (ν1/ν0)

(ν1 − ν0) (1− e−λ)

]
(12)

III. 1. Average Run Length (ARL)

The ARL for detecting a change in ν from ν0 to ν1 (> ν0)
is approximately given by

ARL =
− logα

E (logZ)ν=ν1
,

where Z = f(x;λ,ν1)
f(x;λ,ν0)

. Thus, we get

ARL =
− logα

ln (ν1/ν0) +
ν0
ν1

− 1
. (13)

The parameters of the V-mask of the one-sided CUSUM
chart, such as lead distance d and angle θ are calculated for
a number of combinations of the values of λ, ν and α for
controlling the parameters ν when λ is known. The obtained
values of d, θ and ARL for controlling the parameter ν when
λ is known are displayed in the Tab. 4, 5 and 6 respectively.

IV. CONCLUSIONS

It is noticeable from Tab. 1 for all the combinations of
λ and fixed α that the values of d are independent from
shape parameter ν and decrease as the ratio λ1/λ0 increases,
whereas for constant ratio λ1/λ0, the values of d increases
as α increases for controlling parameter λ. Tab. 2 indicates
that angle θ of the V-mask decreases as the ratio λ1/λ0 in-
creases and for constant ratio λ1/λ0 the angle decreases as ν
increases for controlling parameter λ.

Tab. 1. Values of d for controlling parameter λ when ν is known

λ0 λ1
α

0.05 0.025 0.01 0.005 0.001

0.50 0.55 41.33 50.89 63.53 73.09 95.30

0.50 0.60 21.89 26.95 33.64 38.71 50.47

0.50 0.65 15.40 18.96 23.68 27.24 35.51

0.50 0.70 12.16 14.97 18.69 21.50 28.03

0.50 0.75 10.21 12.57 15.70 18.06 23.54

0.50 0.80 8.91 10.97 13.70 15.76 20.55

0.50 0.85 7.99 9.83 12.28 14.12 18.41

0.50 0.90 7.29 8.98 11.21 12.89 16.81

0.50 0.95 6.75 8.31 10.38 11.94 15.57

0.50 1.00 6.32 7.78 9.71 11.18 14.57

Tab. 3 depicts the values of ARL (an average number of
observations required to detect the shift of the process param-
eter) for different combinations of α, ν, λ0 and λ1. Here it is
interesting to note that ARL is independent of shape parame-
ter ν, similar as in the case of lead distance d. It seems to be
evident from Tab. 3 that for fixed α and λ0 the ARL decreases
as λ1 increases (or the ratio increases), and for fixed values
λ0 and λ1 the ARL increases as α decreases for controlling
parameter λ.

Tab. 4 shows that for all the combinations of ν and fixed α,
the values of d are independent of scale parameter λ and de-
crease as the ratio ν1/ν0 increases, whereas for constant ratio
ν1/ν0, the values of d increases as α increases for control-
ling parameter ν. Tab. 5 indicates that angle θ of the V-mask
decreases as the ratio ν1/ν0 increases and for constant ra-
tio ν1/ν0 the angle decreases as λ increases for controlling
parameter ν.

Tab. 6 describes the values of ARL (an average number
of observations required to detect the shift of the process pa-
rameter) for different combinations of α, λ, ν0 and ν1. Here
also ARL is independent of scale parameter λ, similar as in
the case of lead distance d. It is clearly evident from Tab. 6
that for fixed α and ν0 the ARL decreases as ν1 increases (or
the ratio increases), and for fixed values ν0 and ν1 the ARL
increases as α decreases for controlling parameter ν.

Moreover, in comparison to angle θ, the ARL and the val-
ues of d for controlling λ differ from those for controlling ν.
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From Tables 1 and 4, we have observed that the values of d
for controlling the parameter λ, when ν is known, and we
have concluded that d follows the same trends as in the case
of controlling ν when λ is known but that the values of d for
controlling ν are smaller than for controlling λ. The similar

trend follows for angle θ and also the ARL values. Among
these two CUSUM control charts the values of parameters d,
θ and ARL for controlling ν are uniformly smaller than for
controlling λ.

Tab. 2. Values of θ for controlling parameter λ when ν is known

λ0 λ1
ν

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.50 0.55 76.24 75.14 74.06 72.98 71.92 70.87 69.83 68.81 67.80

0.50 0.60 75.80 74.67 73.56 72.45 71.36 70.28 69.22 68.17 67.14

0.50 0.65 75.39 74.23 73.09 71.96 70.84 69.74 68.65 67.58 66.52

0.50 0.70 75.01 73.83 72.65 71.50 70.36 69.23 68.12 67.03 65.95

0.50 0.75 74.66 73.45 72.25 71.07 69.91 68.76 67.63 66.52 65.43

0.50 0.80 74.33 73.09 71.87 70.67 69.49 68.32 67.17 66.04 64.94

0.50 0.85 74.01 72.76 71.52 70.30 69.10 67.91 66.75 65.60 64.48

0.50 0.90 73.72 72.45 71.19 69.95 68.73 67.53 66.35 65.19 64.05

0.50 0.95 73.45 72.16 70.88 69.62 68.39 67.17 65.98 64.80 63.65

0.50 1.00 73.19 71.88 70.59 69.32 68.06 66.83 65.63 64.44 63.28

Tab. 3. Values of ARL for controlling parameter λ when ν is known

λ0 λ1
α

0.05 0.025 0.01 0.005 0.001

0.50 0.55 1167.98 1438.22 1795.47 2065.71 2693.20

0.50 0.60 334.53 411.93 514.25 591.65 771.38

0.50 0.65 168.79 207.84 259.47 298.53 389.21

0.50 0.70 106.94 131.69 164.40 189.14 246.60

0.50 0.75 76.57 94.29 117.71 135.43 176.56

0.50 0.80 59.13 72.81 90.90 104.58 136.35

0.50 0.85 48.06 59.17 73.87 84.99 110.81

0.50 0.90 40.51 49.88 62.27 71.64 93.40

0.50 0.95 35.08 43.20 53.93 62.05 80.90

0.50 1.00 31.03 38.21 47.70 54.88 71.56

Tab. 4. Values of d for controlling parameter ν when λ is known

ν0 ν1
α

0.05 0.025 0.01 0.005 0.001

0.60 0.65 37.43 46.09 57.53 66.19 86.30

0.60 0.70 19.43 23.93 29.87 34.37 44.81

0.60 0.75 13.43 16.53 20.64 23.74 30.96

0.60 0.80 10.41 12.82 16.01 18.42 24.01

0.60 0.85 8.60 10.59 13.22 15.21 19.83

0.60 0.90 7.39 9.10 11.36 13.07 17.04

0.60 0.95 6.52 8.03 10.02 11.53 15.03

0.60 1.00 5.86 7.22 9.02 10.37 13.52
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Tab. 5. Values of θ for controlling parameter ν when λ is known

ν0 ν1
λ

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.60 0.65 76.19 75.20 74.26 73.38 72.54 71.76 71.02 70.32 69.66 69.04 68.45

0.60 0.70 75.68 74.65 73.69 72.77 71.91 71.10 70.34 69.62 68.94 68.31 67.70

0.60 0.75 75.18 74.13 73.13 72.19 71.30 70.47 69.69 68.95 68.25 67.60 66.98

0.60 0.80 74.70 73.61 72.58 71.62 70.71 69.86 69.05 68.29 67.58 66.91 66.28

0.60 0.85 74.23 73.11 72.06 71.07 70.13 69.26 68.43 67.66 66.93 66.24 65.60

0.60 0.90 73.77 72.62 71.54 70.52 69.57 68.67 67.83 67.04 66.29 65.59 64.93

0.60 0.95 73.32 72.14 71.03 70.00 69.02 68.11 67.25 66.44 65.68 64.96 64.29

0.60 1.00 72.88 71.67 70.54 69.48 68.49 67.55 66.67 65.85 65.08 64.35 63.17

Tab. 6. Values of ARL for controlling parameter ν when λ is known

ν0 ν1
α

0.05 0.025 0.01 0.005 0.001

0.60 0.65 960.28 1182.47 1476.19 1698.38 2214.29

0.60 0.70 265.26 326.64 407.77 469.15 611.66

0.60 0.75 129.44 159.39 198.98 228.93 298.47

0.60 0.80 79.50 97.89 122.21 140.61 183.32

0.60 0.85 55.28 68.07 84.98 97.77 127.48

0.60 0.90 41.53 51.14 63.84 73.45 95.77

0.60 0.95 32.88 40.49 50.54 58.15 75.82

0.60 1.00 27.03 33.29 41.55 47.81 62.33
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