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Percolation in Systems Containing Ordered Elongated Objects
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Abstract: We studied the percolation and jamming of elongated objects using the Random Sequential Adsorption (RSA)
technique. The objects were represented by linear sequences of beads forming needles. The positions of the beads were
restricted to vertices of two-dimensional square lattice. The external field that imposed ordering of the objects was intro-
duced into the model. The percolation and the jamming thresholds were determined for all systems under consideration.
The influence of the chain length and the ordering on both thresholds was calculated and discussed. It was shown that for
a strongly ordered system containing needles the ratio of percolation and jamming thresholds cp/cj is almost independent
on the needle length d.
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I. INTRODUCTION

The process of percolation in complex molecular systems
attracts researchers’ attention for its importance in porous
media, alloys and composites [1]. Percolation can occur in
two-component systems, e.g. polymer-solvent. From the point
of view of one component a site on a substrate is occupied
or non-occupied. Neighboring objects form a cluster and if
this cluster becomes infinitely spanned (in the case of sim-
ulations this cluster is finite but it spans from one border
of the system to another) then the percolation occurs in the
system. The theory of percolation has many applications in
physics, especially in disordered systems and porous media.
The percolation phenomena in systems containing carbon
nanotubes were studied experimentally. In systems contain-
ing composites of carbon nanotubes and liquid crystals the
percolation process was studied by the measurements of elec-
trical conductivity [2]. Recent development in nanotubes and
block copolymers containing styrene derivatives show that
the mixing conditions have an important influence on the
conductivity of carbon natonube polymer composites [3].
The critical behavior of long straight rods was discussed in

the paper of Nieto and coworkers who studied the transition
between ordered and isotropic phases [4-7].

The most popular method of studying the percolation
process is the Random Sequential Adsorption (RSA) tech-
nique [8-9]. In this process objects are placed subsequently on
a substrate and then immobilized; the overlapping of objects
was forbidden. An alternative methodology is based on the
classical Metropolis scheme: the system contained the objects
at a given density and their configuration was modified and
the probability of percolation was determined [10, 11].

The non-spherical objects were also studied by the RSA
method [8-9, 12-18] and in theoretical considerations [19-23].
The lattice representation of the studied objects was applied
much more frequently. Discretization of the space enables
one to study considerably larger systems at higher time scale.
It was shown that the percolation threshold in such systems
did not change monotonically with the length of needles.
For short objects the threshold decreases rapidly and then it
started to increase moderately. This non-monotonic behavior
of the percolation threshold is quite different from that of
nonlinear objects (T-shaped and crosses), where the decrease
of the threshold occurs for all sizes of objects. Introduction of
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flexibility into linear elongated objects which can be treated
as a model of polymer chains did not change qualitatively the
behavior of the percolation threshold but shifted the thresh-
old towards slightly higher densities. The behavior of the
jamming threshold differed for flexible chains significantly
as decreased with the chain length very rapidly. It was also
shown that contrary to other non-linear objects local ordering
had an impact on the percolation and jamming of systems
containing needles: highly ordered clusters of needles were
observed.

When dealing with stiff elongated objects (needles) the
question appears what happens to the percolation and jam-
ming when the probability of taking horizontal and vertical
orientation is not the same. In other words, is the influence
of the global ordering of the system on percolation and jam-
ming? It was recently shown that in the case of dimers perco-
lation had the maximum value for non-aligned systems [24].
The problem of percolation of ordered systems is strongly
connected to the phenomenon of the nematic-disordered
phase transition which was studied by Ramirez-Pastor and
coworkers [6-7] and Ghosh and Dhar [25]. The authors found
that for the rigid rods of length k ≥ 7 one observes nematic-
disordered phase transition depending on the density of the
system. The recent paper of Kählitz and Stark [26] presents
the simulations of hard needles on a quasi-crystalline sub-
strate. They found that the size of the oriented domains de-
pends on the length of the needles. The phase diagrams pre-
senting the nematic ordering for short and long needles are
presented. The structure of the systems containing needles
in the external field was recently studied by Tarasevitch et al.
[27,28]. They introduced a new simulation method – the Ran-
dom Relaxation Sequential Adsorption (RRSA). The authors
presented the percolation study of linear k-mers forming the
structures of different ordering, from isotropic to completely
ordered states, and proposed the fitting formula for the perco-
lation threshold depending on anisotropy of the system.

In this work we present a study of the percolation in sys-
tems containing extended objects (needles) located in an or-
dering external field. The aim of this study was to investigate
a structure of strongly adsorbed polymer films and therefore
we used a 2-dimensional model. In the 2-dimensional model
the excluded volume effect strongly influences the properties
of the objects under consideration. The lattice representation
of objects was employed in order to speed up the calculations.
The RSA method was applied to determine both percolation
and jamming thresholds.

II. THE MODEL AND THE SIMULATION METHOD

The objects used in our simulations were linear sequences
of beads forming a rod (needle). Each needle consisted of
d = 2, 5, 10, 20, 40, 60, 80 or 100 beads. The simula-
tions were carried out for the Monte Carlo box the square

lattice L× L with L = 50, 100, 200, 500 and 1000 lattice
units with hard boundary conditions (HBC). The simulations
were performed using the Random Sequential Adsorption
(RSA) procedure [8-9]. As we mentioned in the previous
chapter, the RRSA method results from the final distribution
of the orientation of object that is the same as assumed. In the
RSA method the final distribution of the orientation of the
objects differs from the assumed one since the presence of
the already deposited needles block the free sites. The differ-
ences between these two methods can be interpreted as the
strength of binding. In our RSA method the basic requirement
of adding the objects on the substrate was the presence of
an excluded volume effect which prohibited any intersection
of the added needle with any other object placed previously.
The second condition was an irreversible adsorption, i.e. the
added objects stayed in their positions to the end of the pro-
cess and their orientations also remained unchanged during
the simulation. The objects were subsequently added to the
system at a random knot of the lattice and placed in one of
the allowed directions: horizontally or vertically with respect
to the x axis. The orientations were taken with the probability
ε, which was varied from 0 to 1 and was constant at given
simulation run, which enabled us to obtain the fully oriented
system (for ε = 1 or 0) or the random placement of objects
(ε = 0.5), respectively. The ordering parameter ε played
a role of an external field which was present during the simu-
lation run and thus enabled us to determine the effect of the
field strength on the percolation of the system. The process
of adding objects was carried out up to the stage in which
adding a needle to the system was not possible because all
possible free sites were occupied, i.e. the jamming threshold
cj was reached. The end of simulation was assumed when
in 100 consecutive cycles no new object could be added to
the system. The percolation threshold cp, which was obvi-
ously smaller than cj was also determined during the course
of the simulation using an algorithm based on the Hoshen-
Kopelman scheme [18, 29]. In order to check the repeatability
of the calculation method and to minimize the fluctuations
in simulation results we performed from 100 (large systems)
to 1000 (small systems) simulation runs for each set of data
and then the results were averaged. In order to determine the
percolation threshold for the infinite system a scaling analysis
was performed: the values of the threshold were extrapolated
according to the scaling law

|cp(L)− cp(∞)| ∼ L−1/ν , (1)

where cp(L) and cp(∞) are percolation thresholds for the
Monte Carlo box L × L and for an infinite system, respec-
tively, and n is a critical exponent (theoretical predictions
give n = 4/3) [1]. A finite size scaling analysis according
to Eq. (1) was done. In the next section we will discuss the
results determined for the infinite system. The universality
of Eq. 1 has been confirmed since it is obeyed for all length
of needles we used. The standard error of the thresholds was
of order 0.001.
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III. RESULTS AND DISCUSSION

In order to investigate the results of the simulations we
analyzed the data showing the percolation thresholds cp and
jamming thresholds cj for each set of input data such as
the length of the needles, size of the system and orientation
parameter ε. In order to present the relation between the per-
colation threshold cp and the order parameter we introduced
the order parameter P2, which is the second-rank orientation
order parameter in two dimensions and was defined as

P2 = 〈2 cos2 Θ− 1〉, (2)

where q is the angle between a needle and the y axis. The av-
eraging was performed over all objects and all simulation
runs. In the case of a square lattice and the only two possible
orientations of needles are only allowed (q = 0 or q = p/2)
and therefore the relation (2) can be reduced to

P2 =
(
N| −N_

)
/
(
N | + N_

)
, (3)

where N| and N_ are the numbers of needles oriented verti-
cally and horizontally with respect to the x axis.
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Fig. 1. The percolation threshold cp as a function of the length of
needle d. The values of the order parameter are given in the inset

Figure 1 presents the values of the percolation thresholds
cp as a function of the length of the needles d. Each curve was
obtained from the simulations performed at different values
of ε. The presented plots form a family of curves which have
the common course – as the needle length increases the values
of cp decreases and after that stage increases depending on
the values of the ordering parameter. The curve obtained for
ε = 0.5 shows the fully random orientation of needles and
therefore can be a reference for the systems which are formed
in an orienting external field. One can notice that the percola-
tion threshold decreases along with the increase of the needle

length with the exception of cases for vertical needles ε ≥ 0.2

for which one can observe the minimum on the curves. The in-
fluence of the ordering for short needles is the strongest for
the intermediate length of chain (d = 5 to 40) with the ex-
ception for dimers (d = 2) where the influence of ordering is
rather small and the percolation threshold is within the range
cp = from 0.56 to 0.58. The changes of cp for dimers is almost
the same as found recently by Ramirez-Pastor et al. [30]. It is
also interesting that cp is more sensitive on the field strength
in its intermediate values (0.1 to 0.3) where it changes the
percolation threshold the most. This effect can be explained
that for the random orientations of needles the elongation of
the objects blocks certain areas making then inaccessible for
adding new needles via the RSA process.

In Figure 2 we present the changes of the jamming thresh-
old cj as a function of length of needles d at given orientation
parameter ε. One can notice that similarly to the percola-
tion threshold for stronger ordering the jamming threshold is
larger than for the randomly positioned rods, i.e. for ε = 0.
One can also observe that the curves are almost parallel and
exhibit strong decrease of cj for short objects (up to d = 10)
with the length of objects. This effect does not depend on
the strength of the ordering field ε since short objects can be
placed in both directions forming the relatively dense struc-
ture, while for longer objects (d > 20) the presence of the
strong ordering field leads to higher values of cj comparing it
with more random positioning of rods mutually blocking the
positions, which leads to more empty sites in a jammed sys-
tem. One can notice that for stronger ordering of the system
the jamming threshold values increase because the ordered
system can adsorb more objects which form parallel struc-
tures than the random one.
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Fig. 2. The jamming threshold cj as a function of the length of
needle d. The values of the order parameter are given in the inset



118 P. Romiszowski, A. Sikorski

0.0 0.2 0.4 0.6 0.8 1.0
P2

0.45

0.50

0.55

0.60

cp
2
5
10
20
40
60
80
100

Fig.3

Fig. 3. The percolation threshold cp as a function of the order para-
meter P2. The lengths of needles are given in the inset
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Fig. 4. The jamming threshold cj as a function of the order parameter
P2. The lengths of needles are given in the inset

The effect of ordering the system on both the percolation
and jamming thresholds for different rod length d is presented
in Figures 3 and 4. The percolation threshold increases along
with the increase of order parameter P2 for shorter needles
(up to d = 20), while for longer objects the curves show
shallow minima at vicinity of P2 = 0.8 and then the increase
of cp as P2 approaches 1. One can notice that the curve for
dimers shows a weak dependence on P2 comparing that ten-
dency for longer chains, which is especially visible for strong
ordering. This result was reported for the percolation thresh-
old cp for dimers by Tarasevich and coworkers who com-
pared the values of fully ordered and disordered systems [28].
The jamming threshold for dimers exhibits a slow decrease
when the ordering in the system becomes larger while for
all longer needles (d ≥ 5) cj values increase slightly with
the ordering. However, for high ordering (P2 > 0.8) this
increase becomes more rapid. Comparing both figures one
can notice that the percolation threshold depends more on
the order parameter than the jamming threshold does, and

this effect is more pronounced for medium length needles
(5 ≥ d ≥ 20). These results are in agreement with previous
findings for dimers [28]. One should also notice that the case
of dimers (d = 2) is much less sensitive on the ordering than
longer objects, which shows that dimers form relatively dense
jammed systems almost independently of the value of order-
ing field. This is evident if one realizes that empty space left
by oriented or disordered dimers does not differ very much
since the small size of the objects enables achieving a dense
packing while in the case of longer needles the presence of
empty space is more pronounced. One should notice that the
results of Tarasevich et al. [28] are very close to our findings
despite the fact that we used a different simulation method
(RSA vs. RRSA). This is not a surprise while the percolation
of the system is reached for relatively low densities for which
the insertion of a new needle to the system does not need
attempts. The differences between our results for jamming
threshold and the findings of Tarasevitch et al. [27] is more
pronounced for longer and strongly oriented needles.
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Fig. 5. The ratio cp/cj as a function of the length of needle d.
The values of the order parameter are given in the inset

The ratio of both thresholds cp/cj is widely used as a pa-
rameter that describes the structure of adsorbed objects. In our
study we plotted cp/cj as a function of both the rod length
d (Figure 5) and order parameter P2 (Figure 6). Figure 5
presents the dependence of the ratio cp/cj as a function of
object length d for different field strength. One can notice
that for a strong ordering field the cp/cj increases rapidly
for short needles and then it becomes rather stable at level
0.68-0.70 with slight growth for long objects. This shows
that for strongly ordered objects the properties of the systems
scale almost independently of the length of objects d – the
parallel objects have similar properties since the long needle
can be treated (to some extent) as the sum of shorter nee-
dles. The weaker field (0.3 ≥ ε ≥ 0.5) shows quite different
behavior: the ratio cp/cj increases gradually from 0.62 to
almost 0.72 along the whole range of object length used in
the simulations.
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Fig. 6. The ratio cp/cj as a function of the order parameter P2.
The lengths of needles are given in the inset

An interesting observation is that there is a common region
of intersection of all curves at d ≈ 40. The relation between
cp/cj and P2 plotted in Figure 6 shows that for strongly or-
dered systems the cp/cj ratio goes to the vicinity of ca. 0.7
independently of the rod length – some curves for longer nee-
dles decrease while those for shorter rods increase along with
the order parameter. This effect is the consequence of the ap-
proximation which enables one to treat the long parallel nee-
dles as the sum of shorter objects resulting from the proximity
of points in a common plot. One can observe that the curve
for d = 40 is almost independent on P2 which is shown in
Figure 5 as one common region of intersections of all curves.
This effect can be explained if one notices that for shorter
needles the plots cp/cj vs. P2 increase while for longer nee-
dles they decrease along with the values of P2 – in such case

there must be a curve which is almost independent on P2.
The results concerning the ratio cp/cj which were obtained
for the systems without the ordering field (e = 0) are close to
those obtained by Vandewalle et al. [14] where this parameter
fluctuated near 0.62 for short needles (d ≥ 10). We do not
confirm the results obtained by Tarasevitch et al. [28] where
the strongly ordered systems exibit a plateau in the ratio cp/cj
for longer neeedles (d > 8).

In Figures 7-8 we present typical snapshots of the sys-
tem under consideration showing the structure of adsorbed
needles at the percolation threshold. Figures 7a-c show the
snapshots of the percolation of a system of short needles
(d = 10) at different values of the ordering field strength
ε = 0.05, 0.20 and 0.50, respectively. As one can notice,
the percolation cluster became larger as the rods were less
ordered. The set of Figures 8a-c shows the changes in per-
colation clusters as the length of the needles increased for
d = 5 (a), 20 (b) and 80 (c) lattice units at the same moderate
value of ordering parameter ε = 0.30, respectively. One can
notice that the shorter the objects, the more complicated frac-
tal structure of the percolation cluster was obtained. As the
length of needles increases a noticeable number of vacancies
in the system can be observed. This is in full agreement with
the data plotted in Figure 2.

IV. CONCLUSIONS

The lattice approximation of elongated objects was used
in order to simulate the Random Sequential Adsorption (RSA)
process. The parameters that characterized the systems under
consideration such as the percolation and jamming thresholds
as well as the order parameter of the resulting systems were
determined. The finite size scaling analysis was done in order

(a) (b) (c)

Fig. 7. The snapshots of the system containing needles d = 10 at the percolation threshold for the ordering field ε = 0.05 (a), 0.10 (b)
and 0.50 (c), respectively. The percolation clusters are marked in red, while all other clusters are colored in blue
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(a) (b) (c)

Fig. 8. The snapshots of the system at the percolation thresholds for needles d = 5 (a), 20 (b) and 80 (c) for the ordering parameter ε = 0.30.
The percolation clusters are marked in red, while all other clusters are colored in blue

to estimate the calculated parameters for the infinite system.
It was shown that the presence of ordering field ε changes

the values of cp and cj but this influence depends not only
on the field’s strength but also on the length of the rods.
For short as well as long rods the system is less sensitive
to the presence of ordering field while for intermediate rod
length (d = 10 to 40) the changes of percolation threshold cp
are more pronounced.
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