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Abstract: We apply Maxwell and Cattaneo’s relaxation approaches to the analysis of strong shockwaves in a two-dimensional
viscous heat-conducting fluid. Good agreement results for reasonable values of Maxwell’s relaxation times. Instability results
if the viscous relaxation time is too large. These relaxation terms have negligible effects on slower-paced subsonic problems,
as is shown here for two-roll and four-roll Rayleigh-Bénard flow.
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I. INTRODUCTION

In 1867 James Clerk Maxwell [1] noted that an initial
shear stress in a dilute gas, (like air) when unsupported by an
underlying shear motion, will decay with a relaxation time
7 = (n/P) (about 200 picoseconds for air), where 7 is the
shear viscosity and P the pressure. His governing relaxation
equation for the shear stress modifies Newton’s ¢ = 7é to
read

o+ T0 =né.

Here o is the stress, 7 the viscosity, and ¢ the strain rate. The
superior dots represent comoving time derivatives.

Nearly a century later Carlo Cattaneo [2] argued that
Fourier’s law for heat conduction should be similarly mo-
dified, in order to avoid the supersonic heat flow implied
by a parabolic (diffusion equation) transport law. One could
equally well argue that a heat flux, when unsupported by
a temperature gradient, would decay with a microscopic re-
laxation time 7 like Maxwell’s. Cattaneo’s approach can be
written in a form like Maxwell’s, but with a partial (fixed
in space) rather than a comoving time derivative:

Q+7(0Q/0t) = —kVT .

Cattaneo’s rationale for using a partial time derivative rather
than one fixed in the material is unclear. Here () is the heat
flux, T the temperature, and « the heat conductivity. With
Cattaneo’s relaxation assumption, “heat waves” can propa-
gate at about the speed of sound [3]. On physical grounds
Maxwell’s approach, with the comoving time derivative,
seems more “realistic” than Cattaneo’s. Cattaneo’s form for
the relaxation time makes no contribution at all in stationary
steady-state problems such as the structure of a steady fluid
shockwave.

Oddly enough, modern treatments of time delay [3, 4]
often use Cattaneo’s partial-derivative formulation rather than
Maxwell’s comoving time derivative. The purpose of the
present work is to elucidate the usefulness of the relaxation
concept and to explore its limits in applications of fluid
mechanics. In the following Sections we consider the rela-
tively fast-paced steady shockwave problem as well as the
slower-paced steady convective Rayleigh-Bénard flow. A fi-
nal Section summarizes our findings. For simplicity we use
units in which the Boltzmann constant and atomic mass are
both equal to one.
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II. STRONG DENSE-FLUID SHOCKWAVES

The structure of strong shockwaves has long served as
a testing ground for continuum models like the Navier-Stokes-
Fourier equations (here given for a two-dimensional fluid with
vanishing bulk viscosity, ny = 0):

p=-pV-v; p0=-V-P;pé=-Vv:P-V-Q;
P =1[Peq+nV-v]—nVo+Vo']; Q= —kVT.

The time derivatives, here as before indicated by the superior
dot, are all comoving derivatives, like Maxwell’s, time rates of
change in a coordinate frame moving with the fluid velocity
v. Solving the three differential equations for the density p,
velocity v, and energy e requires a knowledge of the pressure
tensor P and heat flux vector ). The simplest models are
shown here, with two transport coefficients, the Newtonian
shear viscosity 7 and the Fourier heat conductivity x defined
in the usual way. [ is the unit tensor, with I, = I, = 1 and
Ipy = Iy, = 0.

Landau and Lifshitz’ analytic solution of the shockwave
structure for a gas with constant transport coefficients and
a shockwidth A provides a useful initial condition for both
macroscopic continuum and microscopic molecular dynamics
simulations [5]:
pcefm/)\ + pHeJra:/)\
p(JU) = e—T/A + etz/A

— {v(), Pea(7), Qu(z) } -

Their solution smoothly interpolates the density between cold
fluid, with density pc, and hot fluid, with pg.

Molecular dynamics shockwave simulations [6—15] have
been carried out in the two different ways shown in Figure 1:
(1) by following the two moving waves generated by the in-
elastic collision of two blocks of material; (2) by studying
the single stationary wave formed with two boundary “tread-
mills” — on the left boundary cold fluid is introduced at the
“shock speed” v, while at the right boundary hot fluid is ex-
tracted at the slower speed v, — v, where v), is the “particle
speed”. In either case, in a coordinate frame centered on the
shockwave the mass, momentum, and energy fluxes are all
constant:

{pv, Pra+ pv*, pvle+ (Poa/p) + (v°/2)] + Qa}
constant for all = .

For “weak” shocks the Navier-Stokes-Fourier description is
“good” [16]. For “stronger” shocks (twofold compression) sev-
eral contradictions to this simple description arise [§—15]. To
illustrate these points typical mechanical and thermal shock-
wave profiles are shown in Figure 2.
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Fig. 1. Two colliding fluid blocks generate symmetric shockwaves
(velocities +vp) as the blocks, moving at +[vs — vp] collide and
come to a stop (shown above). Two treadmill boundaries, one fast
(velocity vs) and one slow (velocity vs — v;,), maintain a single
stationary shockwave in the center of the system (shown below)

+3.5 3.5 < x < +3.5

-3.5 < x <

Fig. 2. Density, pressure, internal energy, temperature tensor, and
heat flux in a strong shockwave simulation using molecular dynam-
ics. In the cold unshocked material the nearest-neighbor spacing is
unity. The hot shocked fluid has a density exactly twice that of the
cold material. Figure based on data described in reference [14]

First, the local longitudinal and transverse tempera-
tures differ, often by more than a factor of two (see
Figure 2). Second, as is also shown in Figure 2, the shear
stress (P, — Py,)/2 and the heat flux @), both lag behind
the velocity gradient (dv,,/dz) and the temperature gradi-
ents (d1,/dx) and (dT), /dx), suggesting the presence of
Maxwell-type relaxation times [12, 15]. Third, the fact that
temperature is so very anisotropic makes it necessary to con-
sider separate xz and yy contributions to the heat flux [8—15]:

Qw = —KRgg vawm - K‘y’UV1T7/U :

Fourth, the same anisotropicity also suggests including asym-
metric divisions of the work and heat contributions (indicated
by D) to the thermal energy change:
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(pCV/Q) Tza: D) [—aVv : Prhermal — 6v . Q] ;

(pCV/Q) Tyy D) [—(1 - Oé)v'U : Prhermal — (1 - ﬂ)v : Q] :

Fifth, a mechanism for the decay of temperature anisotropy
must also be included:

[Tow — Tyy] D 2[Tyy — Tl /7 .

Last, the molecular dynamics results imply that a bulk vis-
cosity 7y, approximately equal to the shear viscosity, must be
included [12]. Though a continuum model incorporating all
of these ideas is necessarily relatively complex, a successful
implementation of all six of these additions to the Navier-
Stokes-Fourier model is described in References [11], [13],
and [14].

In those works all of the continuum field variables were
derived from molecular dynamics simulations using a short-
ranged repulsive pair potential,

p(r < 1) = (10/7)(1 —r)3.

The prefactor (10/7) was chosen to give a potential energy
integral of unity for a random particle distribution at unit
density:

/01 2rrgp(r) =1.

The initial zero-pressure zero-temperature state was com-
pressed twofold to obtain a hot dense fluid state. Lucy’s nor-
malized weighting function [17, 18] was used to compute
spatial averages of the various field variables:

w(r < h) = (5/7h*)[1 — (r/R)]*[1 +3(r/h)] —
h
= [ 2mrw(r)=1.
0
The smooth-particle average of the particle quantity f; is
given by a weighted sum,

<P00f00>::§:7nmﬂ“4”*6);PU?EEE:”%UKT*TH-

This smooth-particle definition has two advantages: (1) all of
the field variables defined in this way have two continuous
space derivatives; (2) the continuity equation (with f; equal
to the particle velocity v;) is satisfied exactly:

(o= mjulr =) po =3 musulr = ;) } —

— p=—pV-v.

Here p and pv are defined everywhere in this way, not just
at the particle locations. The range h of the “weighting func-
tion” w(r < h) is typically chosen so that about 20 particles
contribute to field-point averages. With this approach the mi-
croscopic pressure tensor and heat flux vector at any point

in space are expressed in terms of nearby individual particle
contributions to these nonequilibrium fluxes [19, 20].

To appreciate the effect of the various modifications of
the Navier-Stokes-Fourier model we next study the stabil-
ity of solutions using a continuum model which is a rough
representative of the molecular dynamics results [10-12].

ITII. STABILITY STUDIES WITH AN IDEALIZED
GRUNEISEN MODEL

For stability studies we choose an equilibrium equation
of state based on Griineisen’s separation of the energy and
pressure into cold and thermal parts:

Peq = pe = (p*/2) +2pT ; e = (p/2) + 2T .

A shockwave satisfying all the conservation laws results
when a cold fluid is compressed to twice its initial density
by a shockwave moving toward that fluid at twice the parti-
cle velocity (v, = 2v, = 2). In this case the constant mass,
momentum, and energy fluxes are respectively

{pv=2; Puw+pv* = (9/2);
pvle + (Prz/p) + (0*/2)] + Q, =6 } .

The various hydrodynamic variables then cover the following
ranges within the shockwave:

[2>0(z) >1]; [1<plr) <2];

[(1/2) <e(x) < (5/4)];
[(1/2) < Peq < (5/2)]; [0 < Teq < (1/8) ]

(Note that T}, can exceed the “hot” value of (1/8) within the
shockwave.) The details of the shockwave structure depend
upon the nonequilibrium constitutive relations for the shear
stress and the heat flux. Next, we summarize two separate sit-
uations, (1) vanishing conductivity with a scalar temperature;
(2) tensor conductivity, with separate longitudinal and trans-
verse temperatures, with different contributions from work
and heat. Both these models lead to the conclusion that the
mechanical relaxation time cannot be too large. By contrast,
the thermal relaxation time can be either “small” or “large”.

II1. 1. Relaxation without heat conduction

The simplest case results when both heat conductivity and
thermal anisotropy are omitted. Then the density and energy
can both be eliminated from the three flux equations,

pv =23 (pe) —o +2v=(9/2);
2le +e— (v/2)o + (v?/2)] =6,

giving the shear stress,

U:(Pyy_wa)/sze_waa
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as a function of velocity:
o=B/v)v-1)(v—-2)<0.

Evidently the viscous stress is everywhere negative (com-
pressive). If we introduce Maxwell’s idea of comoving stress
relaxation,

o+ 76 =0+ Tv(do/dx) = o + Tv(do/dv)(dv/dx)
= n(dv/dz) ,

we find that the velocity gradient (dv/dzx) diverges unless the
ratio (7/n) is sufficiently small:

7o < (1/3) .

It is physically reasonable that too long a memory can lead to
instability in fast-paced complex flows like shockwaves. On
the other hand the relaxation equation by itself, with a smooth
strain increment localized near zero time (¢ = 0),

) 1
o+T0O = et + +] ,
provides smooth solutions even for large 7 [13, 14]. The
present analytic shockwave limit on 7, < (n/3) is in full
accord with two kinds of numerical simulations. First, the
stationary flux equations can be solved for the temperature
and stress fields, just as was indicated above for the case of
vanishing conductivity. Second, it is possible to solve the
dynamical equations for

{ (Op/0t), (90/0t), (De/0t) }

{ (9p/0x), (9v/0x), (9e/dx) }

starting with the Landau-Lifshitz profile. The two methods
agree. They show that the stress relaxation time in shock-
waves must be sufficiently small, 7, < (1/3) for stability.

We next extend the thermal constitutive model to include
tensor temperature with anisotropic heat conduction. We also
include separate relaxation times for the longitudinal and
transverse heat fluxes, and the separation of work and heat
into longitudinal and transverse parts [11, 13].

IIL. 2. Lack of relaxation without viscosity

Viscosity, as opposed to heat conduction, is essential to
the shock process. To appreciate this need, consider the con-
servation equations for our simple model without viscosity
and with the heat conductivity equal to unity:

e=(p/2)+2T; pv=2; pe+ pv*> = (9/2) ;
pv[2e 4 (v?/2)] — (dT/dz) =6 .

According to the first three equations the temperature has its
maximum value of (T,ax = 0.238 > Tj,or = 0.125) within
the shock:

{p,v, T} = {1.4436,1.38545,0.23800} for T = T -

But the fourth (energy-flux) equation gives (dT'/dx) =
= 0.7106 for that thermodynamic state, contradicting the
presence of a maximum. Thus this model, lacking viscosity,
cannot sustain a stationary shockwave.

Exactly this same conclusion follows also for the inviscid
ideal gas, with twofold compression from unit density, pres-
sure, and temperature, with vg = /8 and the wholly thermal
pressure P = pe = pT'. Because heat conductivity in the
absence of viscosity is not enough to provide a shockwave,
the relaxation effects are quite different for conductivity and
viscosity, as we show next.

I1IL. 3. Relaxation with tensor temperature, apportioned
work and heat

The analysis becomes more complicated when heat flow
is included, along with relaxation and separated contributions
of the heat and work to the longitudinal and transverse tem-
peratures. Here the heat flux evolves following the tensor
relaxation equation:

The divergence of the heat flux provides net heating and is
apportioned between the longitudinal and transverse tempera-
tures:

pTow D —B(dQq/dx) ; pTyy D —(1 — B)(dQ./dx) .

The contributions of the heat flux divergence V - @ to heat-
ing are indicated by the inclusion symbol, “D”. We include
also an analogous separation of the thermodynamic work into
longitudinal and transverse parts:

psz 2 _aPThermal : VU; pTyy ) _(1_a>PThermal :Vo.

Finally, the two temperatures necessarily relax toward one
another:

Tow D (Tyy — Tua)/7q 5 Tyy D (Tow — Tyy)/7q -
25 0.20
P/ o o015 Toc> Tyy ]
15| P
% 0.10 |
) e 0.05 |
0.5 )
0.00
- o
0.5 e -0.05

Fig. 3. Solution of the continuum model for twofold compres-

sion with the Griineisen equation of state using 7, = (1/10) and

79 = Tr = 1. The mass, momentum, and energy fluxes are

{2,(9/2),6}. Compare with Figure 4 noting particularly the differ-
ences between 717, and T},
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Fig. 4. Solution of the continuum model for twofold compression

with the Griineisen equation of state using 7, = 7¢ = 7r = (1/10).

The mass, momentum, and energy fluxes are {2, (9/2), 6}. Compare
with Figure 3

For simplicity we choose the two thermal relaxation
times [for the heat flux () and the temperature anisotropicity
(Tzw — Tyy)] to have a common value, 7. For illustrative
purposes we emphasize the difference between the two tem-
peratures by choosing the apportionment parameters o, and
B both equal to unity, so that both the work and the heat
aprovide longitudinal heating, with the transverse temperature
lagging behind.

Then straightforward (at least for a computer) algebra
provides solutions of the shockwave problem and reveals not
one, but two restrictions on 7. For stable solutions to exist
we found in this way that the thermal relaxation time must
be either sufficiently small or sufficiently large. Setting the
distance scale of the shockwave with the constant transport
coefficients

N=2Kzs = 2Kyy =1,

computer algebra gives the following restrictions on the re-
laxation times:

0<7,<(1/3); g < (1/8)or7g > (1/4).

Figures 3 and 4 show typical continuum profiles using
these constitutive relations. The continuum profiles were
generated in two quite different ways: (1) solving the time-
dependent equations for {p,v,e,o,Q} starting with the
Landau-Lifshitz approximation; (2) solving the stationary
flow equations for the mass, momentum, and energy fluxes
using a computer algebra program (we used “Maple”). The
latter approach provides page-long formule for (du/dz),
(dTys/dx), and (dT,/dx) as well as numerical solutions.
The stationary equations for the shockwave profile have no
solution if the relaxation time for the shear stress 7, is greater
than (n/3) or if the relaxation time for the heat flux lies
between (k/8) and (k/4).

To summarize, our findings for shockwaves establish that
momentum-flux relaxation has to be “fast” for stability. Ther-
mal relaxation can either be likewise fast or quite slow, with
a window of instability separating these two regimes. Where
the thermal relaxation is slow the shockwave structure is dom-
inated by viscosity rather than conductivity. It is natural to

speculate on the effect of relaxation in ordinary hydrodynamic
situations. In order to see what consequences arise from these
effects in subsonic fluid mechanics we next introduce delay
into the hydrodynamic equations describing a compressible,
conducting, viscous flow, the Rayleigh-Bénard problem.

IV. RAYLEIGH-BENARD FLOW

To investigate the stability of moderate flows to the pres-
ence of viscous and thermal relaxation we revisit some finite-
difference Rayleigh-Bénard simulations of two-roll, four-roll,
and six-roll flows [21, 22]. The simulations picture a viscous
conducting fluid, heated from below in the presence of a ver-
tical gravitational field. Sufficiently strong heating causes
a transition from static heat conduction to one of a number of
nonequilibrium steady states with stationary convection rolls.
Stationary and transient sample flows are shown in Figures 5
and 6.

40 H s

T /-
Vo SR
Y SR
EL I ERNNE
7 RN

jTFT

e o

<
L

25 H

{ KL T7 7772

20

15 H

T

AL NS
3

2
T
s
W

AR ARG

/ /{ -
WS

’x“\

77
[
N

el
e NN
ot

w
S
I
S
o
o
@
S
~
o
@
S

Fig. 5. Transient flow field for the Rayleigh-Bénard problem at time
= 1000. The initial state was two weakly-rotating rolls. The vis-
cous, heat-conducting, compressible fluid is heated at the bottom
and cooled at the top with a gravitational field directed downward.
The vertical boundaries at the sides are periodic. The number of
computational cells shown here is 80 x 40 = 3200. The transport
coefficients, n = x = (1/5) were selected to give a Rayleigh
number of 40,000. The relaxation times were set equal to unity:
™m=T10 =1

For the Rayleigh-Bénard model we study here (equal kine-
matic viscosity and thermal diffusivity) the transition from
static Fourier conduction to two-roll convection occurs near
a Rayleigh number R of 1750:

R=g(0ImV/oT)pH3AT/(vDr) = H?/(vDr) .

The fluid is confined to a rectangular box, periodic on the
sides, with the gravitational constant g = (1/H) chosen to
give constant density in the nonconvecting case. H is the
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height of the cell, equal here to half the width. AT is the dif-
ference between the hot temperature at the base (T = 1.5)
and the cold temperature at the top of the cell (I = 0.5).
v and Dr (chosen equal, for convenience) are the kine-
matic viscosity and thermal diffusivity (both with units of
[length? /time]). For simplicity we choose all values of the
relaxation times equal and do not distinguish between the
longitudinal and transverse temperatures, 1}, = Ty,. Our
model continuum fluid obeys the ideal gas equation of state:

PquPT:W;77v=0§77=2/‘€m=2/€yy=1~
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Fig. 6. A fully-converged four-roll structure evolved from the flow
field shown in Figure 5. Here the time is 10,000. The Rayleigh
number is 40,000 and the viscosity and heat conductivity, n =
= k = (1/5), have equal relaxation times, 7, = 7¢ = 1. The final
kinetic energy is (K, /N) + (K,/N) = 0.001144 + 0.004133 =
= 0.005277. The number of computational cells is N = 80 x 40

Numerical results for this model are given as a function
of Rayleigh number in References [21] and [22]. Simula-
tions with the various relaxation times all equal to 0.1 repro-
duced this earlier work perfectly. As an example, the two-roll
problem of References [21] and [22], with a Rayleigh num-
ber of 40,000 gives per-cell kinetic energies of (K,/N) +
(K,/N) =0.00373 4+ 0.00357. We carried out many special
cases with a Rayleigh Number of 40,000, which produces sta-
tionary steady states. Whether two-roll or four-roll solutions
are obtained is sensitive to the initial conditions [22]. We
began with a very weak two-roll velocity field as the initial
condition in an H x W box with the coordinate origin at its
center:

vy  sin(2rx /W) sin(2ry/H) ;
vy o cos(2mx /W) cos(my/H) .

We found solutions for 7 = 51 = bk and 7 = 10 = 10k
but instability when 7 was doubled again to 207 = 20k.
These additions of relaxation to the Navier-Stokes-Fourier
equations lowered the horizontal kinetic energy and raised the
vertical, with both effects on the order of parts per thousand.

Thus relaxation in subsonic flows has only relatively small
effects in the regime of stable solutions.

V. CONCLUSIONS

Molecular dynamics simulations have established the
facts that delay times on the order of a collision time, as envi-
sioned by Maxwell, affect shockwave structure in a substan-
tial way. Cattaneo’s approach, with partial time derivatives,
has no effect on shockwave structure. Shockwaves are domi-
nated by viscosity, so that stress relaxation must be relatively
rapid. Thermal relaxation, important for chemical relaxation,
can be either fast or slow.

In ordinary subsonic fluid mechanics the effects of time
delays are relatively small. As a result, thermal anisotrop-
icity is ordinarily ignored in continuum mechanics. It is a
substantial effect in shocks, with repercussions for chemical
reaction rates. In our continuum simulations we have assumed
relaxation equations with comoving time derivatives,

0+ T =1né, Q+710Q=—kVT,

rather than partial derivatives. If ¢ were replaced with
(0o /0t) there would be no relaxation at all in a stationary
problem like the shockwave and Rayleigh-Bénard problems
studied here.

The Maxwellian relaxation times cause no trouble solving
conventional moderate flow problems like Rayleigh-Bénard
convection. The problem areas suggested by this work in-
clude (1) formulating optimum choices for locally-averaged
hydrodynamic variables with the general goal of maximiz-
ing the accuracy of macroscopic descriptions of microscopic
results and (2) developing theoretical models for the estima-
tion of the relaxation parameters measured in the dynamical
simulations.

A logical approach to problem (1) above would use “en-
tropy production” as a tool [23]. In the Rayleigh-Bénard
problem entropy production is proportional to the squares
of the nonequilibrium fluxes, o2 and Q2. If these are com-
puted locally, with a weight function w(r < h) then h can
be chosen such that the internal entropy production matches
the boundary sources and sinks of entropy. Evidently too
small/large an h gives too large/small an entropy production,
so that h can be chosen to be “just right". Problem (2) would
have to begin with some nonequilibrium simulations tailored
to the direct measurement of delay and relaxation.

Finally, the presence of delay has some pedagogical im-
portance. Delay in the results of time-reversible motion equa-
tions (molecular dynamics) breaks the time-symmetry which
would otherwise lead to a logical contradiction between time-
reversible molecular dynamics and conventional irreversible
continuum mechanics [12].
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