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Abstract: Thermal radiation effects on unsteady flow past an oscillating semi-infinite isothermal vertical plate with uniform
mass flux have been studied. The fluid considered here is a gray, absorbing-emitting radiation but non-scattering medium. The
dimensionless governing equations are solved by an efficient, more accurate, and unconditionally stable and fast converging
implicit scheme. The effect of velocity and temperature for different parameters like thermal radiation, Schmidt number,
thermal Grashof number and mass Grashof number are studied. It is observed that the velocity decreases in the presence of
thermal radiation.
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I. INTRODUCTION

Radiative heat and mass transfer play an important role in
manufacturing industries for the design of reliable equipment.
Nuclear power plants, gas turbines and various propulsion
devices for aircraft, missiles, satellites and space vehicles
are examples of such engineering applications. Radiative
convective flows are encountered in countless industrial and
environment processes e.g. heating and cooling chambers,
fossil fuel combustion energy processes, evaporation from
large open water reservoirs, astrophysical flows, solar power
technology and space vehicle re-entry.

England and Emery [1] have studied the thermal radiation
effects of a optically thin gray gas bounded by a stationary
vertical plate. Soundalgekar and Takhar [2] have considered
the radiative free convective flow of optically thin gray-gas
past a semi-infinite vertical plate. Radiation effect on mixed
convection along an isothermal vertical plate were studied
by Hossain and Takhar [3]. In all above-mentioned studies,
the stationary vertical plate is considered. Raptis and Perdikis
[4] have studied the effects of thermal radiation and free
convection flow past a moving infinite vertical plate. Again,
Raptis and Perdikis [5] studied thermal radiation effects on

a moving infinite vertical plate in the presence of mass diffu-
sion. Radiation effects on a moving infinite vertical plate with
variable temperature were studied by Muthucumaraswamy
and Ganesan [6]. The dimensionless governing equations
were solved by the placeLaplace transform technique.

The flow of a viscous, incompressible fluid past an in-
finite isothermal vertical plate, oscillating in its own plane,
was solved by Soundalgekar [7]. The effect on the flow past
a vertical oscillating plate due to a combination of concen-
tration and temperature differences was studied extensively
by Soundalgekar and Akolkar [8]. The effect of mass transfer
on the flow past an infinite vertical oscillating plate in the
presence of constant heat flux has been studied by Soundal-
gekar et al. [9].

A numerical solution on natural convection along an
oscillating isothermal vertical plate under the combined
buoyancy effects of heat and mass diffusion in the presence of
thermal radiation has not received attention of any researcher.
This study was found useful in distribution of cooling in
a closed environment. Hence, the present study is to investi-
gate the unsteady flow past an oscillating semi-infinite vertical
plate with thermal radiation by an implicit finite-difference
scheme of Crank-Nicolson type.
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II. MATHEMATICAL FORMULATION
OF THE PROBLEM

A transient, laminar, unsteady natural convection flow
of a viscous incompressible fluid past an oscillating semi-
infinite isothermal vertical plate in the presence of thermal
radiation has been considered. It is assumed that the concen-
tration C ′ of the diffusing species in the binary mixture is
very little in comparison to the other chemical species which
are present. Here, the x-axis is taken along the plate in the
vertically upward direction and the y-axis is taken normally
to the plate. The physical model of the problem is shown in
Figure 1.

Fig. 1. Physical model of the problem

Initially,it is assumed that the plate and the fluid are of
the same temperature and concentration. At time t′ > 0,
the plate starts oscillating in its own plane with frequency
ω′ against gravitational field. The temperature of the plate
is raised Tw and the concentration level near the plate is
raised at a constant rate. The fluid considered here is a gray,
absorbing-emitting radiation but a non-scattering medium
and the viscous dissipation is assumed to be negligible. Then
under the above assumptions, the governing boundary layer
equations of mass, momentum and concentration for free con-
vective flow with usual Boussinesq’s approximation are as
follows (Gebart and Pera [10]):
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The initial and boundary conditions are

t′ ≤ 0 :

u = 0, v = 0, T ′ = T∞, C
′ = C ′∞

t′ > 0 :
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(5)
In the case of an optically thin gray gas the local radiant

absorption is expressed by
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We assume that the temperature differences within the
flow are sufficiently small such that T 4 may be expressed as
a linear function of the temperature. This is accomplished
by expanding T 4 in a Taylor series about T∞ and neglecting
higher-order terms, thus
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By using equations (6) and (7), equation (3) reduces to
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Equations (1) to (4) are reduced to the following non-
dimensional form
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= 0, (10)



Numerical Solution of Unsteady Radiative Flow Past an Oscillating Semi-Infinite Vertical Plate with Uniform Mass Flux 25
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The corresponding initial and boundary conditions in non-
dimensional quantities are

t ≤0 :

U = 0, V = 0, T = 0, C = 0,

t >0 :

U = cosωt, V = 0, T = 1,

∂C

∂Y
= −1

 at Y = 0,

U = 0, T = 0, C = 0, at X = 0,

U → 0, T → 0, C → 0, as Y →∞.
(14)

III. NUMERICAL TECHNIQUE

In order to solve the unsteady, non-linear coupled equa-
tions (10) to (13) under the conditions (14), an implicit fi-
nite difference scheme of Crank- Nicolson type has been
employed. The finite difference equations corresponding to
equations (10) to (13) are as follows
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The concentration boundary condition at Y = 0 in the finite
difference form is
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Here the region of integration is considered as a rectan-
gle with sides Xmax(= 1) and Ymax(= 20), where Ymax
corresponds to Y = ∞ which lies very well outside both
the momentum and energy boundary layers. The maximum
of Y was chosen as 20 after some preliminary investigations
so that the last two of the boundary conditions (14) are sat-
isfied with in the tolerance limit 10−5. After experimenting
with a few sets of mesh sizes have been fixed at the level
∆X = 0.05, ∆Y = 0.25, with time step ∆t = 0.01. In this
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case, the spatial mesh sizes are reduced by 50% in one direc-
tion, and later in both directions, and the results are compared.
It is observed that, when the mesh size is reduced by 50% in
the Y−direction, the results differ in the fifth decimal place
while the mesh sizes are reduced by 50% in X-direction or in
both directions; the results are comparable to three decimal
places. Hence, the above mesh sizes have been considered
as appropriate for calculation. The coefficients Uni,j and V ni,j
appearing in the finite difference equation are treated as con-
stants at any one time step. Here i-designates the grid point
along the X- direction, j along the Y - direction and k to the
t-time. The values of U, V and T are known at all grid points
at t = 0 from the initial conditions.

The computations of U, V, T and C at time level (n+ 1)
using the values at previous time level (n) are carried out as
follows: The finite-difference equations (18) and (21) at every
internal nodal point on a particular i-level constitute a tridiag-
onal system of equations. The system of equations is solved
by using Thomas algorithm as discusses in Carnahan et al.
[11]. Thus, the values of C are found at every nodal point for
a particular i at (n+ 1)th time level. Similarly, the values of
T are calculated from equation (17). Using the values of C
and T at (n+ 1)th time level in the equation (16), the values
of U at (n + 1)th time level are found in a similar manner.
Thus, the values of C, T and U are known on a particular
i-level. Finally, the values of V are calculated explicitly using
the equation (15) at every nodal point at particular i-level
at (n+1)th time level. This process is repeated for various
i-levels. Thus the values of C, T, U and V are known, at all
grid points in the rectangle region at (n+ 1)th time level.

In a similar manner computations are carried out by mov-
ing along i-direction. After computing values corresponding
to each i at a time level, the values at the next time level are
determined in a similar manner. Computations are repeated
until the steady-state is reached. The steady-state solution is
assumed to have been reached, when the absolute difference
between the values of U , and as well as temperature T and
concentration C at two consecutive time steps are less than
10−5 at all grid points.

IV. STABILITY ANALYSIS

The stability criterion of the finite difference scheme
for constant mesh sizes are examined using Von-Neumann
technique as explained by Carnahan et al.[10]. The general
term of the Fourier expansion for U, T and C at a time
arbitrarily called t = 0, are assumed to be of the form
exp(iαX) exp(iβY ) (here i =

√
−1). At a later time t, these

terms will become,

U = F (t) exp(iαX) exp(iβY ),

T = G(t) exp(iαX) exp(iβY ),

C = H(t) exp(iαX) exp(iβY ).

(22)

Substituting (22) in Equations (16) to (18); under the as-
sumption that the coefficients U , T and C are constants over
any one time step and denoting the values after one time step
by F ′, G′ and H ′. After simplification, we get
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Equations (23) to (25) can be rewritten as,
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After eliminatingG′ andH ′ in Equation (26) using Equations
(27) and (28), the resultant equation is given by,
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(1 +A)F ′ = (1−A)F +G
Gr∆ t

(1 +B)
+H

Gc∆ t

(1 + E)
. (29)

Equations (27) to (29) can be written in the matrix form as
follows:
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where, D1 =
Gr∆t

(1 +A)(1 +B)
and D2 =

Gc∆t

(1 +A)(1 + E)
Now, for stability of the finite difference scheme, the modu-
lus of each eigen value of the amplification matrix does not
exceed unity. Since the matrix equation (30) is triangular, the
eigen values are its diagonal elements. The eigen values of the
amplification matrix are, (1−A)/(1 +A), (1−B)/(1 +B)
and (1−E)/(1 + E). Assuming that, U is everywhere non-
negative and V is everywhere non-positive, we get

A = 2a sin2

(
α∆X

2

)
+ 2c sin2

(
β∆Y

2
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+ i (a sinα∆X − b sinβ∆Y ) ,

(31)
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, b =

|V |
2

∆ t

∆Y
, c =

∆ t

(∆Y )2
.

Since the real part of A is greater than or equal to zero,
|(1−A)/(1+A)| ≤ 1 always. Similarly, |(1−B)/(1+B)| ≤
1 and |(1− E)/(1 + E)| ≤ 1.
Hence the finite difference scheme is unconditionally stable.
The local truncation error is O(∆t2 + ∆Y 2 + ∆X)and it
tends to zero as ∆t, ∆X and ∆Y tend to zero. Hence the
scheme is compatible. Stability and compatibility ensures
convergence.

V. RESULTS AND DISCUSSION

The numerical values of the velocity, temperature and
concentation are computed for different parameters like ra-
diation parameter, Schmidt number, phase angle, thermal
Grashof number and mass Grashof number. The purpose
of the calculations given here is to assess the effects of the
parameters ω, t, R, Gr, Gc and Sc upon the nature of the
flow and transport. The value of Prandtl number Pr is chosen
so that they represent air (Pr = 0.71) and the Schmidt
number Sc = 0.6 (Water vapour).
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Fig. 2. Steady state velocity profiles for different values of ωt

The steady-state velocity profiles for different phase angle
are shown in Figure 2. The velocity profiles presented are
those at X = 1.0. It is observed that for different phase angle
(ω t = 0, π /6, π/3, π/2), Gr = 5 = Gc and R = 2 the ve-
locity decreases with an increasing phase angle. Here ωt = 0
represents vertical plate and note that the velocity profile
grows from U = 1 and ω t = π/2 refers horizontal plate
and the velocity profiles starting with U = 0. The numerical
value satisfies with the prescribed boundary conditions. It
is also observed that the time taken to reach steady-state is
more in the case of vertical plate than horizontal plate.
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Fig. 3. Steady state velocity profiles for different values of Gr & Gc

In Figure 3, the velocity profiles for different ther-
mal Grashof number (Gr = 2, 5), mass Grashof number
(Gc = 2, 5), ωt = π/6 and R = 2 are shown graphically.
This shows that the velocity increases with increasing ther-
mal Grashof number or mass Grashof number. As thermal
Grashof number or mass Grashof number increases, the
buoyancy effect becomes more significant, as expected; it
implies that, more fluid is entrained from the free stream
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due to the strong buoyancy effects. The effect of velocity for
different radiation parameter (R = 0.2, 2, 5), ωt = π/6 and
Gr = Gc = 5 are shown in Figure 4. It is observed that the
velocity increases with decreasing radiation parameter. This
shows that velocity decreases in the presence of high thermal
radiation.
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Fig. 4. Velocity profiles for different values of R
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Fig. 5. Velocity profiles for different values of Sc

The steady-state velocity profiles for a different Schmidt num-
ber (Sc = 0.16, 0.3, 0.6, 2.01), Gr = Gc = 5, ωt = π/6
and R = 2 are shown in Figure 5. The presented velocity
profiles presented are those atX = 1.0. It is observed that the
velocity decreases with an increasing Schmidt number and
the steady-state value increases with an increasing Schmidt
number. The velocity boundary layer seems to grow in the
direction of motion of the plate. It is observed that near the
leading edge of a semi-infinite vertical plate moving in a fluid,
the boundary layer develops along the direction of the plate.
However, the time required for the velocity to reach steady-
state depends upon the Schmidt number. This shows that

the contribution of mass diffusion to the buoyancy force in-
creases the maximum velocity significantly. The temperature
profiles for different values of the thermal radiation parameter
(R = 0.2, 2, 5, 10) are shown in Figure 6. It is observed that
the temperature increases with decreasing R. This shows that
the buoyancy effect on the temperature distribution is very
significant in air (Pr = 0.71). It is known that the radiation
parameter and Prandtl number plays an important role in flow
phenomena because, it is a measure of the relative magnitude
of viscous boundary layer thickness to the thermal boundary
layer thickness. The concentration profiles for different val-
ues of the Schmidt number (Sc = 0.16, 0.3, 0.6, 2.01) are
shown in Figure 7. It is observed that the plate concentration
increases with decreasing Sc.
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Fig. 6. Temperature profiles for different values of R
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Fig. 7. Concentration profiles for different values of Sc

Knowing the velocity and temperature field, it is custom-
ary to study the skin-friction, Nusselt number and Sherwood
number. The local as well as average values of skin-friction,
Nusselt number and Sherwood number in dimensionless form
are as follows:
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The derivatives involved in the equations (32) to (37)
are evaluated using five-point approximation formula and
then the integrals are evaluated using Newton-Cotes closed
integration formula.
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Fig. 8. Local skin friction

The local skin-friction, Nusselt number and Sherwood
number are plotted in Figures 8, 9 and 10, respectively. Local
skin-friction values for a different phase angle are evaluated
from equation (32) and plotted in Figure 8 as a function of the
axial coordinate. The local wall shear stress increases with
a decreasing phase angle. The trend shows that the wall shear
stress is more in the case of vertical plate than horizontal
plate. The local Nusselt number for different thermal radia-
tion parameter is presented in Figure 9 as a function of the
axial co-ordinate. The trend shows that the Nusselt number
increases with increasing values of the thermal radiation pa-
rameter. It is clear that the rate of heat transfer is more in the
presence of thermal radiation. The local Sherwood number
for different values of the Schmidt number are shown in Fig-
ure 10. As expected, the rate of mass transfer increases with

increasing values of the Schmidt number. This trend is just
reversed as compared to the concentration field for a different
Schmidt number given in Figure 7.
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Fig. 10. Local Sherwood number
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Fig. 13. Average Sherwood number

The average values of the skin-friction, Nusselt number and
Sherwood number are shown in Figures 11, 12 and 13, re-
spectively. The effects of the different phase angle on the
average values of the skin-friction are shown in Figure 10.
The average skin-friction decreases with decreasing with in-
creasing values of the phase angle. Figure 11 illustrates the
average Nusselt number increases with increasing radiation
parameter. From the Figure 12, it is observed that the average
Sherwood number increases with increasing values of the
Schmidt number.

VI. CONCLUSIONS

The numerical study has been carried out for thermal radi-
ation effects on unsteady flow past an oscillating semi-infinite
isothermal vertical plate with prescribed uniform mass flux.
The dimensionless governing equations are solved by an im-
plicit scheme of Crank-Nicolson type. The effect of velocity,

temperature and concentration for different parameter are
studied. The local as well as average skin-friction, Nusselt
number and Sherwood number are shown graphically. It is
observed that the contribution of mass diffusion to the buoy-
ancy force increases the maximum velocity significantly. It is
also observed that the velocity decreases in the presence of
thermal radiation. The study shows that the number of time
steps to reach steady-state depends strongly on the radiation
parameter.

Symbols

a∗ absorption constants
C ′ species concentration in the fluid
C dimensionless concentration
C ′w concentration of the plate
C ′∞ concentration in the fluid far away from the plate
Cp specific heat at constant pressure
D mass diffusion coefficient
Gc mass Grashof number
Gr thermal Grashof number
g acceleration due to gravity
k thermal conductivity
R thermal radiation parameter
Pr Prandtl number
Sc Schmidt number
M magnetic field parameter
Nux dimensionless local Nusselt number
Nu dimensionless average Nusselt number
Shx dimensionless local Sherwood number
Sh dimensionless average Sherwood number
T temperature of the fluid near the plate
T ′ temperature
T ′w temperature of the plate
T ′∞ temperature of the fluid far away from the plate
t′ time
u0 velocity of the plate
u, v velocity of the components of the fluid in X, Y- direc-

tions, respectively
x coordinate along the plate
y coordinate axis normal to the plate
X dimensionless coordinate along the plate
Y dimensionless coordinate axis normal to the plate
α thermal difusivity
β volumetric coefficient of thermal expansion
β∗ volumetric coefficient of expansion with concentra-

tion
µ coefficient of viscosity
ω′ frequency of oscillation
ω dimensional frequency of oscillation
ω′t′ phase angle
ωt dimensional phase angle
ν kinematic viscosity
σ electric conductivity
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ρ density of the fluid
θ dimensionless temperature
τx dimensionless local skin friction
τ̄ dimesionless average skin friction
w conditions at the wall
∞ free stream conditions
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