
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 17(1-2), 53-62 (2011) 
 

I.  INTRODUCTION 
 
 In this paper, the problem of scheduling workflow 
applications in a grid environment is considered. Workflow 
applications can be viewed as complex sets of various 
precedence-related transformations (tasks) performed on 
certain data. They are mostly scientific, data-intensive 
applications which, due to large amounts of computations 
and data involved, require high computing power to be 
executed efficiently. This power can be delivered by a grid, 
an infrastructure consisting of many distributed compu-
tational resources connected by a fast network. 
 The problem of allocating distributed grid resources, 
located in many sites, to workflow application tasks is very 
complex, especially when the network capacity varies 
between the sites. In addition, the information about the 
tasks is often incomplete. Obtaining a performance model 
of a task is not trivial. In particular, the processing times of 
all tasks on different computer systems (grid resources) are 
difficult to evaluate. Also, other parameters (e.g. band-
width, resource availability) may change quite rapidly in 
grid environments. Thus, generally, many problem parame-
ters are dynamic and/or uncertain.  

 As was stressed, e.g. in [5], the majority of centralized 
grid environments are based on the so-called two-level 
hierarchy scheduling. This is a consequence of the layered 
architecture of the grid. A grid consists of many nodes, 
each of which is usually managed by some local scheduling 
system, such as Condor [7], Load Sharing Facility (LSF) 
[8], Portable Batch System (PBS) [9], Sun Grid Engine 
(SGE) [10]. Thus, in the first step, the grid broker assigns 
submitted jobs to remote resources, and local schedulers 
subsequently generate their schedules for the resources they 
manage. This concept is very natural, since a grid broker 
neither possesses complete knowledge of the local resource 
load, nor has overall control of the resource. On the other 
hand, the local scheduler is unaware of any other grid jobs 
and other resources available to these jobs. Examples of two-
level hierarchy grids with a central grid broker are, among 
others, the European EGEE Grid [11], and Clusterix in 
Poland [12]. Let us emphasize the difference between re-
source allocation and scheduling. Resource allocation con-
sists in assigning tasks to resources, whereas scheduling goes 
one step further and consists in allocating resources to tasks 
over time, i.e. defining the starting time of each task for the 
resource to which it has been assigned. 

Computational Experiments for Scheduling Workflow 
Applications in Grid Environment 

 

Marek Mika1, Wojciech Piątek2, Grzegorz Waligóra1, Jan Węglarz1,2 

 
1Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland 

e-mail: {marek.mika/grzegorz.waligora/jan.weglarz}@cs.put.poznan.pl 
2Poznan Supercomputing and Networking Center, Noskowskiego 12/4, 61-704 Poznań, Poland 

e-mail: piatek@man.poznan.pl 
 

(Received: 17 November 2011; accepted: 5 December 2011; on-line: 23 December 2011) 

 
Abstract: The problem of scheduling workflow applications in a grid environment is considered. The problem is divided 
into two stages: (i) resource allocation, which consists in allocating distributed grid resources to tasks of a workflow in such 
a way that the resource demands of each task are satisfied, and (ii) scheduling performed by local grid schedulers. Grid 
resources are divided into computational and network resources. Computational and transmission workflow tasks are 
distinguished. A computational experiment is presented in order to show the importance of resource allocation, as well as 
examine the influence of the local scheduling policy. Certain conclusions and directions for future research are given. 
Key words: grid, workflow, resource allocation, scheduling 
 
 

user
Tekst maszynowy
CMST 17(1) 53-62 (2011)

user
Tekst maszynowy
DOI:10.12921/cmst.2011.17.01.53-62

user
Tekst maszynowy



M. Mika, W. Piątek, G. Waligóra, J. Węglarz 54

 Due to the two-level hierarchy scheduling, the first 
stage, i.e. the grid resource allocation, is of crucial impor-
tance, in particular when it concerns workflow applications 
requiring substantial computational effort and can run for 
hours, days, or even weeks. 
 In [6], we proposed a model of the problem where the 
network is a resource for which tasks must apply. Con-
sequently, we distinguished transmission tasks as a separate 
type of tasks which can compete for the same network 
connection. More precisely, bandwidth is a network re-
source which can be divided among many transmission 
tasks. Thus, on a grid, there are network resources along 
with computational resources. A mathematical model of the 
problem was presented along with all the parameters of the 
problem. However, in [6] we focus only on resource 
allocation, and present algorithms for finding feasible 
resource allocations. In this paper, we go one step further 
and perform certain computational experiments concerning 
scheduling workflows on a grid. The main goal of this 
paper is to show the importance of resource allocation on 
the quality of the obtained schedules, as well as examine 
the influence of the local scheduling policy. 
 The paper is organized as follows. In Section II, we 
define the problem and recall its parameters introduced in  
[6]. Section III discusses the phases of resource allocation 
and local scheduling. In Section IV, we describe the 
computational experiments and analyze the results. The 
final section is devoted to conclusions and describes poten-
tial directions for future research. 
 
 

II.  PROBLEM  FORMULATION 
 
II.1. Problem description 

 In many scientific areas, such as high-energy physics, 
bioinformatics, astronomy and others, we encounter appli-
cations involving numerous simpler components that 
process large data sets, execute scientific simulations, and 
share both data and computing resources. Such data-inten-
sive applications consist of multiple components (tasks), 
which may communicate and interact with each other over 
the course of the application [2]. The tasks are very often 
precedence-related, and the precedence constraints usually 
follow from the data flow between them, i.e. data files 
generated by one task are often needed to start another task 
(an output of one task becomes an input for the next task). 
Although this is the most common situation, the prece-
dence constraints may be dictated by other considerations, 
for instance, they may be arbitrarily defined by the user. 
Such complex applications consisting of various prece-

dence-related transformations (tasks) performed on certain 
data between which data files have to be transmitted very 
often are called workflow applications. In general, two 
types of workflows can be distinguished: data-intensive, 
where file transfer times dominate task computing times, 
and compute-intensive, for which the situation is opposite. 
For efficient execution of both types of workflows, high 
computing power is required, due to a large amount of 
computations and data involved. This computational power 
can be provided by a grid. 
 In [3], a grid was defined as an infrastructure for coor-
dinated resource sharing and problem solving in dynamic, 
multi-instrumental virtual organizations. More recently, the 
Network of Excellence CoreGRID [13] defined a grid as 
“a fully distributed, dynamically reconfigurable, scalable 
and autonomous infrastructure to provide location inde-
pendent, pervasive, reliable, secure and efficient access to 
a coordinated set of services encapsulating and virtualizing 
resources (computing power, storage, instruments, data, 
etc.) in order to generate knowledge”. 
 Since workflow applications are usually very time-
consuming (even if single tasks are  short) and input/output 
data files for tasks can be large, the problem of scheduling 
such applications on a grid has nowadays become a signi-
ficant challenge of great practical importance. As it was 
mentioned in the Introduction, resource allocation must 
precede scheduling. Allocation of grid resources to a work-
flow whose component tasks are known but have not been 
scheduled yet is an important topic in grid computing due 
to its impact on the efficiency of workflows, which can 
generate great amounts of data and occupy resources for 
longer periods of time. 
 In general, the problem consists in allocating distributed 
grid resources to heterogeneous tasks. Users submit their 
jobs (in this case, workflow applications) to a grid. Work-
flows consist of multiple tasks. A task can be anything that 
requires a resource, e.g. schedulable computation, band-
width request, data access or access to a remote resource, 
such as remote instruments, databases, humans in the loop, 
etc. A resource is anything that can be allocated to a task, 
i.e. a processor, disc space, bandwidth, machine, device, 
person, etc. In this research, we divide grid resources into 
two types: computational resources and network resources. 
Computational resources are all resources required for 
computational tasks to be computed, i.e. not only proces-
sors, but also memory, disc space, various devices, etc. 
Network resources are resources required for transmission 
tasks to be executed, i.e. necessary for the data files to be 
transmitted. Obviously, the basic network resource is 
bandwidth. 



Computational Experiments for Scheduling Workflow Applications in Grid Environment 55

 There are at least several approaches to grid resource 
allocation. They differ from one another depending on the 
grid architecture, objectives of a particular grid, and grid 
management policies. Depending on the architecture, two 
types of grids can be distinguished: peer-to-peer grids, 
where all services are equal and communicate using a peer-
to-peer model; and centralized grids, where a grid resource 
management system plays a central role and is surrounded 
by many other grid services structured in a layered archi-
tecture. In such grids, there is usually one common, central 
grid broker that serves all users and their jobs. Such a si-
tuation is considered in this paper. 
 
II.2.  Problem parameters 

 In this section we briefly recall the main assumptions 
underlying the model presented in [6], as well as present all 
the parameters of the formulated model. 
 A grid is a set of nodes connected by fast network links. 
There are two types of nodes in the network: resource 
nodes (containing computational resources) and non-re-
source nodes (considered only with respect to the network 
topology). The bandwidth between each two connected 
nodes is given, and it is identical in both directions. 
Between two given nodes, there can be more than one 
network link, and these links may have different para-
meters. However, these are alternative links and they 
cannot be merged in order to increase the bandwidth. The 
bandwidth within a given node is unlimited. The processors 
in resource nodes are divided into different types, 
depending on their power. The power (processing speed) of 
each processor is a multiple of some standard unit. Here, 
a processor with a speed factor of 1 is termed a standard 
processor. 
 A workflow consists of many tasks. There are two types 
of tasks: computational tasks and transmission tasks. The 
structure of a workflow is represented by a directed acyclic 
graph (DAG), where each vertex corresponds to a com-
putational task, and each arc represents a precedence 
relation between two computational tasks. Each arc cor-
responds to a transmission task, i.e. represents a data trans-
mission between two successive computational tasks. 
Computational tasks are non-preemptable, i.e. once started, 
they must be completed without interruptions or changes in 
resource allocation. Each computational task may be exe-
cuted in exactly one node, and is characterized by three 
values: size (the execution time on a standard processor or 
processors), number of processors required for its exe-
cution, and the minimum required speed factor of the 
processors. The actual processing time of a task is calcu-
lated by dividing its size by the speed factor of the pro-

cessor (processors) on which this task is scheduled. Trans-
mission tasks are also non-preemptable, and they are 
characterized by two values: the size of the data file (files) 
to be transmitted, and the required bandwidth between the 
two nodes between which the transmission is to take place. 
Transmission time (i.e. the execution time of a transmission 
task) can take one of two values: the data file size divided 
by the bandwidth, when successive computational tasks are 
executed in different resource nodes; or zero, when they are 
executed in the same resource node. 
 Below we summarize all the parameters of the model: 
 
A) Grid 

( , )NΓ Ψ – undirected multigraph representing the network 
topology of a grid; 
N – set of all (resource and non-resource) nodes in the 
network, N X Π= ∪  
X – set of resource nodes; 
Π – set of non-resource nodes; 
Ψ – set of edges (links) between nodes, i.e. set of pairs 
( ), : , , 1,2...v v Nψμ μ ψ∈ =  (ψ denotes alternative links 
between a given pair of nodes); 
Xχ – resource node , 1, 2, ..., ;Xχ χ =  
Πη – non-resource node , 1,2, ..., ;η η Π=  

κϖ – speed factor for processors of type κ, κ = 1, 2 ... ;  
Pκχ – number of processors of type κ, κ = 1, 2 ... (i.e. pro-
cessors with the same speed factor κϖ  in resource node Xχ; 

vμ
ψΨ – bandwidth of the link ( ), , 1,2, ... ;v ψμ Ψ ψ∈ =  

 

B) Workflow 

W(V, E) – directed acyclic graph representing the structure 
of the workflow; 
V  – set of vertices of graph W representing computational 
tasks; 
E – set of arcs ( , )i jv v  of graph W representing precedence 
constraints between computational tasks , ,i jv v V∈  i.e. 
transmission tasks; 
 
Computational tasks 

vi – computational task , 1, 2, ..., ;i i V=  
pi – size of computational task vi (expressed in assumed com-
putational units, e.g. MIPS or similar),  1, 2, ..., ;i V=  
ri – number of processors required for the execution of 
computational task , 1, 2, ..., ;iv i V=  

iω – minimum speed factor of the processor (processors) re-
quired for the execution of computational task 1,2,..., ;i V=  

( )i i kf p ϖ, – function defining the actual execution time 
of computational task vi ( 1,2,..., )i V=  on processor (pro-



M. Mika, W. Piątek, G. Waligóra, J. Węglarz 56

cessors) with speed factor ( );iκ κϖ ϖ ω≥  we assume that 
/ ,i i kf f p ϖ= = ( 1,2,..., ; 1, 2, ...)i V κ= = ; 

 
Transmission tasks 

( , )i jv v  – task of transmitting output data of computational 
task vi, which is at the same time the input data for compu-
tational task ( , ) ;j i jv v v E∈  
Fij

 – size of data file (files) transmitted as a result of the 
execution of transmission task ( ), ;i jv v  
Bij – minimum required bandwidth of the connection 
between resource nodes in which computational tasks vi 

and vj are executed; 
( ),ij ijg F B  – execution time of transmission task ( , )i jv v  

i.e. the time of data transmission from the resource node in 
which computational task vi is executed to the resource 
node in which computational task vj is performed. We 
assume that ( ), / ,ij ij ij ijg F B F B=  if tasks vi and vj are exe-
cuted in different nodes; or is equal to 0, if they are 
executed in the same node. 
 
 

III.  RESOURCE  ALLOCATION  
AND  SCHEDULING 

 
 As it was mentioned before, scheduling in grid environ-
ments consists of two stages: 
  (i) resource allocation performed by a central grid broker 

on the set of all resources available in the grid 
  (ii) scheduling performed by local schedulers on their 

local resources. 
 The problem of resource allocation in grids was exten-
sively studied in [6], where a mathematical model of the 
problem was formulated and algorithms for finding a feasi-
ble resource allocation were proposed. The most important 
issues raised in [6] are briefly recalled in Sections III.1. and 
III.2, which concern the second (scheduling) stage, as well 
as describe how this stage was realized in the Grid 
Scheduling Simulator (GSSIM). 
 
III.1. Resource allocation 

 By feasible resource allocation we understand such an 
allocation of resource nodes to computational tasks of 
a workflow that: 
    – each computational task is assigned resource nodes 

containing a computational resource capable of exe-
cuting this task, 

    – for each transmission task there exists a path in the 
grid over which the required transmission can be 
performed (i.e. a path of the required bandwidth). 

 In order to analyze and correctly define feasible re-
source allocations, a concept of a tri-task was introduced in 
[6]. A tri-task ,i jv v  is a triple ( ){ }, , ,i i j jv v v v  i.e. two 
computational tasks and a transmission task between them. 
Therefore, feasible resource allocation ijRA  for a tri-task 

,i jv v  is a pair of nodes ( ), ,X Xχ θ  so that the task iv  
can be performed in node ,X χ task jv  can be performed in 
node Xθ, and the transmission task ( ),i jv v  can be per-
formed between nodes X χ  and Xθ. In [6], an algorithm 
was presented for finding the set ijA  of all feasible 
resource allocations for a tri-task ,i jv v  if at least one 
such allocation exists. This algorithm was termed the RATT 
algorithm. Subsequently, another algorithm was proposed, 
which uses the RATT algorithm as a sub-algorithm for 
finding feasible resource allocation RAW for the entire 
workflow W. A feasible resource allocation RAW is defined 
by a function w assigning exactly one node to each 
computational task in such a way that each tri-task of the 
workflow is assigned a pair of nodes which is a feasible 
resource allocation for this particular tri-task. w( j) = θ 
means that a computational task vj has been assigned 
a resource node Xθ. The above-mentioned algorithm for 
finding feasible resource allocations for workflow W was 
termed the RAW algorithm. It was proved in [6] that the 
RAW algorithm can always find a feasible resource 
allocation if it exists, regardless of which pair of prece-
dence-related computational tasks is allocated first. More-
over, finding one such allocation (out of many possible) 
can be done in polynomial time. 
 
III.2. Scheduling in the GSSIM environment 

 Different approaches to the problem of grid resource 
allocation must be carefully studied and tested before they 
find application in a production environment. However, 
experiments aimed at evaluating and comparative analysis 
of these scenarios are often  impossible to perform. This is 
caused by the difficulties in obtaining access to a large-
scale infrastructure with its dynamic nature. In addition, 
carrying out such tests is expensive and time-consuming. 
Hence, simulations are a common tool for researching 
various solutions. Also, they facilitate the evaluation of 
different configurations and management issues together 
with suitable “what-if” analyses. 
 The Grid Scheduling Simulator (GSSIM) is a simula-
tion framework developed at the Poznan Supercomputing 
and Networking Center. It is a comprehensive and ad-
vanced simulation tool for distributed computing problems, 
which allows the users to perform experiments related to 
grid resource management, and enables experimental 
studies of various scheduling algorithms. GSSIM focuses 



Computational Experiments for Scheduling Workflow Applications in Grid Environment 57

on flexible and automated management of a research ex-
periment, including inserting scheduling algorithms into 
the simulated environment, modeling realistic workloads 
and adopting real traces, as well as configuring the environ-
ment topology, both on the logical and physical level. 
Simulating a network based on flows with advance reserva-
tion functionality allows researchers to examine existing 
and future network models. GSSIM also allows modeling 
the topology and performance characteristics of jobs, which 
is essential for optimizing the execution of complex and 
demanding real-world applications. 
 In general, GSSIM can model two generic types of 
scheduling entities: global and local schedulers. It provides 
interfaces that allow researchers to insert their specific 
global scheduling algorithms and local scheduling policies 
into the simulation environment. A global scheduler is 
responsible for scheduling jobs to resources distributed 
among different administrative domains (sites). To this 
end, it must interact with multiple sites, including retriev-
ing information about resources and submitting jobs. 
A common example of a global scheduler is the grid 
broker. Local schedulers are responsible for managing 
resources that belong to a single site. They retrieve tasks 
and schedule them to particular subcomponents of a given 
site. Thus, they correspond to the functionality of popular 
local scheduling systems, such as LSF, PBS, SGE. Their 
implementation may imitate the behavior of these well-
known systems. On the other hand, they may simulate 
other, possibly hypothetical, systems and resources. The 
goal of a local scheduling plugin is either to execute an 
appropriate task (which has just arrived from the queue) or 
to put the task into the queue, according to the 
implemented policy. In this manner, the starting time of 
each task is defined. Scheduling can be performed de-
pending on specific events that occur in the system. GSSIM 
is able to handle a wide variety of events, including the 
arrival of a new task, completion of the previously 
performed task, periodic events, etc. This allows to apply 
various scheduling strategies: off-line scheduling for entire 
sets of incoming jobs, dynamic scheduling based on speci-
fic events, and periodic rescheduling. For further details of  
the GSSIM framework cf. [1] and [4]. GSSIM is comple-
mented by a portal [14], which enables online access to the 
simulator through a user-friendly experiment editor, work-
load generator and an experiment repository. 
 
 

IV.  COMPUTATIONAL  EXPERIMENTS 
 
 In the following two sections we discuss the experi-
ments concerning scheduling in grid environments. Sec-

tion IV.1 describes an experiment which demonstrates the 
importance of the resource allocation stage. Section IV.2 
concerns the influence of the local scheduling policy on the 
quality of the obtained schedules. For experimental pur-
poses, the overall workflow completion time (makespan) is 
considered as the evaluation criterion. 
 We shall first discuss the parameters of the experi-
ments. 
 The grid topology considered in the experiments is 
illustrated in Fig. 1. In order to perform comprehensive and 
reliable studies, all experiments were carried out many 
times and the obtained results were averaged. In the first 
phase, the RA-W algorithm was used to find a feasible 
resource allocation. To avoid the influence of the choice of 
the pair of precedence-related computational tasks which 
were allocated first on the obtained resource allocation (see 
Section III.1), all test were performed by iterating over all 
tri-tasks and selecting each of them as the starting one. For 
each tri-task, tests were repeated 20 times. Hence, the total 
number of conducted experiments may be calculated as the 
product of the total number of pairs of precedence-related 
computational tasks and of the number of repetitions. Thus, 
the number of performed experiments, which aims at 
a single configuration evaluation of a particular environ-
ment, was equal to 1040 in Section IV.1, and 360 in Sec-
tion IV.2. The detailed characteristics of the tasks and 
resources are described in the next two sections. 
 

 
Fig. 1. Grid environment 

 
 
IV.1. Heuristic approach 
 
 According to the proposed model, in order to find a fea-
sible resource allocation for the entire workflow (function 
w), it suffices to select a random feasible resource allo-
cation from the set of all feasible resource allocations for 
a given tri-task (although for the subsequent tri-tasks this 
set is limited by previous choices). However, a random 



M. Mika, W. Piątek, G. Waligóra, J. Węglarz 58

choice stands a poor chance of leading to an optimal 
solution. Hence, we propose a simple modification to the 
basic version of the RA-W algorithm. This new heuristic 
algorithm for finding a feasible resource allocation assumes 
a local minimization of the execution time of the consid-
ered tri-task. To this end, from a set of all feasible resource 
allocations for tri-task ,i jv v  a pair of resource nodes 
(Xχ, Xθ) is chosen so as to minimize the sum of the exe-
cution time of transmission task ( ),i jv v  between nodes 
(Xχ, Xθ) and of the execution time of computational task vj 
on resource Xθ. The major hypothesis to verify is that 
deliberate selection of a resource allocation for a given tri-
task improves the overall performance with respect to the 
evaluation criterion. 
 The structure of the grid environment considered in this 
experiment is shown in Fig. 1. The characteristics of the 
two evaluated computational resource configurations are 
given in Tables 1 and 2, and the parameters of the network 
resources are presented in Table 3. 
 
 

Table 1. Computational resource configuration 1 

Resource Number of processors 
 Pκχ  

Processor speed 
 kϖ  

compRes1 16 1 
compRes2 4 4 
compRes3 8 2 

Table 2. Computational resource configuration 2 

Resource Number of processors  
Pκχ  

Processor speed 
 κϖ  

compRes1 16 1 
compRes2 4 2 
compRes3 8 4 

 

 
Table 3. Network resource configuration 

Link ( ), v ψμ  Bandwidth vμ
ψΨ   

R1_R2 1 Gb/s 

R2_R3 1 Gb/s 

R1_R3 100 Mb/s 

R1_compRes1 1 Gb/s 

R2_compRes2 1 Gb/s 

R3_compRes3 1 Gb/s 
 
 
 Each computational resource is controlled by a queueing 
system with a single queue available. To select processing 
resources for tasks at the local level, the well-known “first-
come, first-served” (FCFS) policy was applied, so that the 
tasks are taken from a queue in the order of their arrival. 
 Table 4 contains the characteristics of the two types of 
workflows used in the experiment. 

 
Table 4. Workflow characteristics 

Parameter 
Number of 

computational tasks 
V  

Required number 
of processors  

ir  

Min. speed 
factor iω  

Number of 
transmission tasks 

E  

Required 
bandwidth ijB  

[Mb/s] 

Size of data file  
ijF   

[GB] 
Workflow W1 W2 W1 W2 W1 W2 W1 W2 W1 W2 W1 W2 
AVG 40 40 7 7 1 1 52 52 100 100 107,5 215 
STDEV 40 40 5 5 1 1 52 52 100 100 13,4 26,8
MIN 40 40 1 1 1 1 52 52 100 100 80 160 
MAX 40 40 16 16 1 1 52 52 100 100 120 240 

 
 

Table 5. Experimental results for random and heuristic strategies (makespan [s]) 

Selection Random Optimized 
Workflow W1 W2 W1 W2 
ResConf Conf1 Conf2 Conf1 Conf2 Conf1 Conf2 Conf1 Conf2 
AVG 409 091 407 366 508 366 503 025 40 1258 392 800 484 008 477 283 
STDEV 16 391 17 219 22 756 27 211 17 474 20 635 32 480 37 969 
MIN 369 600 364 600 446 600 428 600 368 600 351 600 412 600 385 600 
MAX 448 600 442 600 572 600 559 600 447 600 436 600 560 600 556 600 



Computational Experiments for Scheduling Workflow Applications in Grid Environment 59

 As it was mentioned in Section II, the actual execution 
time of a computational task is calculated as / ,ip κϖ  
whereas the execution time of a transmission task – as 

/ .ij ijF B  
 Table 5 shows the results obtained for random and 
heuristic strategies of resource allocation, for two types of 
workflows (W1 and W2) and two computational resource 
configurations (Conf1 and Conf2). This table shows the 
completion times of the workflows (makespan) – the aver-
age, minimum and maximum makespan, as well as the 
standard deviation. The heuristic strategy significantly out-
performed the basic approach – the overall completion time 
is visibly lower in the case of reasonable selection. This 
confirms our basic assumption that it is worthwhile to 
optimize the selection process, even for a single tri-task. 

 
IV.2. Influence of local scheduling policy 

 Local schedulers manage resources within a single 
administrative domain, and schedule jobs to local resour-
ces. Therefore, one of their main goals is to minimize 
resource starvation. Generally, it is reasonable to compare 
different scheduling strategies when the sets of tasks to be 
scheduled are identical. However, since we find a feasible 
resource allocation by assuming a simple random selection 
algorithm and a random selection of the start task, it 
becomes difficult to obtain the aforementioned result at the 
local scheduler level. Therefore, this experiment focuses on 
showing the impact of local policies on the execution start 
time of both computational and transmission tasks, and 
thus on the completion time of the entire workflow, rather 
than on a comparison of scheduling algorithms. 
 The structure of the grid environment considered in this 
experiment is shown in Fig. 1. The characteristics of com-
putational and network resources are presented in Tables 6 
and 7, respectively. 
 
 

Table 2. Characteristic of computational resources 

Resource Number  
of processors Pκχ  

Processor  
speed κϖ   

compRes1 16 1 
compRes2 4 1 
compRes3 8 1 

 
 
 The workflow topology is illustrated in Fig. 2. Table 8 
gives the characteristics of the computational tasks. The 
same parameters were assumed for all transmission tasks, 
i.e. the size of the data file Fij = 50 GB, and the required 
bandwidth Bij = 100 Mb/s. 

Table 3. Characteristic of network resources 

Link ( ),v ψμ  Bandwidth  
vμ

ψΨ  

R1_R2 1 Gb/s 

R2_R3 1 Gb/s 

R1_R3 100 Mb/s 

R1_compRes1 1 Gb/s 

R2_compRes2 1 Gb/s 

R3_compRes3 1 Gb/s 

 
 

 

Fig. 2. Workflow topology 
 
 

Table 4. Characteristics of computational tasks 

Computational 
task vi 

Size pi  
Required number  
of processors ri  

Min. speed 
factor ωi  

1 7 200 4 1 
2 14 400 8 1 
3 14 400 8 1 
4 7 200 4 1 
5 21 600 12 1 
6 18 000 10 1 
7 7 200 4 1 
8 14 400 8 1 
9 7 200 4 1 

10 25 200 14 1 
11 28 880 16 1 
12 14 400 8 1 
13 7 200 4 1 
14 7 200 4 1 

 
  
 Since we assumed homogeneous resources at each re-
source provider, the processing time for each task is iden-
tical on each computing node. The characteristics of 
computational tasks as well as the grid topology were 
analytically determined and adjusted in order to demon-



M. Mika, W. Piątek, G. Waligóra, J. Węglarz 60

strate the impact of local scheduling strategies on the 
completion time of the workflow. The experiments were 
performed using two local scheduling policies: shortest job 
first (SJF) and longest job first (LJF). At the local level, we 
performed off-line scheduling by invoking both evaluated 
strategies every 1000 seconds. Moreover, a feasible re-
source allocation for the entire workflow (function w) was 
found by random selection of particular feasible resource 
allocations. Table 9 shows the makespan for both local 
policies. 
 
 

Table 5. Results of the experiment for SJF and LJF policies 
(makespan [s]) 

Policy SJF-1000 LJF-1000 

AVG 159 885 181 442 

STDEV 16 281 8 983 

MIN 133 600 171 200 

MAX 180 200 201 200 

 
 
 The SJF algorithm turned out to be more effective than 
the LJF algorithm in terms of the overall completion time. 
Figures 3 and 4 show examples of schedules obtained with 
the SFJ and LJF policies. The arrow in Fig. 4 indicates the 
task (task 6) responsible for the differences in performance 
between these two algorithms in a significant number of 
schedules. 
 Considering the structure of the workflow (cf. Fig. 2), 
we suspect that task 8 is a possible bottleneck. Its execution 
depends on the completion of three transmission tasks 
related to the preceding computational tasks. However, all 
transmission tasks have to be completed before task 8 can  
 
 

 

Fig. 3. Schedule obtained with SJF 

 

Fig. 4. Schedule obtained with LJF 
 
 
be started. Therefore, due to the delayed execution of task 6, 
tasks 8 and 9 are delayed as well, even though remaining 
precedence constraints have already been satisfied. Trans-
mission tasks can also be considered as possible com-
munication bottlenecks. Large data files are time-consum-
ing and therefore require a large amount of bandwidth in 
order to be performed efficiently. Hence, such data files 
should be transmitted first in order to allow the execution 
of dependent computational tasks. This confirms the im-
portance of an efficient resource allocation in a grid 
environment, particularly in the case of workflow appli-
cations. 
 
 

V.  CONCLUSIONS  AND  FUTURE  RESEARCH 
 

 In this paper, the problem of scheduling workflow 
applications in a grid environment was considered. Grid 
resources were divided into two types: computational 
resources and network resources. Accordingly, computa-
tional tasks of the workflow as well as transmission tasks 
were distinguished. The problem can be decomposed into 
two subproblems: (i) how to find a feasible resource 
allocation of distributed grid resources for tasks of the 
workflow in such a way that the resource demands of all 
tasks (both computational, and transmission) are satisfied, 
and (ii) how to schedule computational tasks on local 
resources managed by local grid schedulers. The objective 
is to minimize the total completion time of the workflow, 
i.e. the makespan. Computational experiments were per-
formed to justify the importance of the resource allocation 
stage, as well as examine the influence of the local schedul-
ing policy. The experiments showed that even a small 



Computational Experiments for Scheduling Workflow Applications in Grid Environment 61

improvement in resource allocation, as compared to ran-
dom allocation, can result in significantly improved sched-
ules. This confirms our hypothesis about the importance of 
the resource allocation stage (Section IV.1). As far as local 
scheduling policies are concerned, the SJF algorithm 
produced slightly better results than the LJF algorithm. 
However, the main goal of the second experiment was to 
demonstrate the influence of the local scheduling policy in 
the context of the resource allocation stage This was 
analyzed and discussed in Section IV.2. 
 In the future, we intend to perform comprehensive com-
putational experiments concerning the problem of schedul-
ing workflows on a grid. In these experiments we hope to 
show that efficient heuristic (or metaheuristic) algorithms 
used at the level of global scheduling can significantly 
improve the quality of the obtained schedules, particularly 
in the case of workflow applications. 
 
 
Acknowledgements 
 
This work has been funded by the Polish Ministry of 
Science and Higher Education as a research project in 
2010-2012 under grant No. N N519 579038. 
 
 

References 

   [1] S. Bąk, M. Krystek, K. Kurowski, A. Oleksiak, W. Piątek, 
J. Węglarz, GSSIM – a Tool for Distributed Computing Ex-
periments. Scientific Programming 19(4), 231-251 (2011). 

  [2]  E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, 
K. Vahi, K. Blackburn, A. Lazzarini, A. Arbree, R. Ca-
vanaugh, S. Korranda, Mapping abstract complex work-
flows onto Grid environments. Journal of Grid Computing 
1(1), 25-39 (2003)  

   [3] I. Foster, C. Kesselman, Computational Grids, in: I. Foster 
and C. Kesselman (eds.) The Grid: Blueprint for a New 
Computing Infrastructure, San Francisco: Morgan Kauf-
mann 15-52 (1999). 

   [4] K. Kurowski, J. Nabrzyski, A. Oleksiak, J. Węglarz, GSSIM – 
Grid Scheduling Simulator. Computational Methods in 
Science and Technology 13(2), 121-129 (2007). 

   [5] K. Kurowski, J. Nabrzyski, A. Oleksiak, J. Węglarz, Multi-
criteria approach to two-level hierarchy scheduling in 
Grids. Journal of Scheduling 11(5), 371-379 (2008). 

   [6] M. Mika, G. Waligóra, J. Węglarz, Modelling and solving 
grid-resource allocation problem with network resources 
for workflow applications. Journal of Scheduling 14(3), 
291-306 (2011). 

   [7] http://www.cs.wisc.edu/condor/ 
   [8] http://www.platform.com/ 
   [9] http://www.pbsgridworks.com/ 
 [10] http://gridengine.sunsource.net/ 
 [11] http://www.eu-egee.org/ 
 [12] http://clusterix.pcz.pl/ 
 [13] http://www.coregrid.net/ 
 [14] http://www.gssim.org 
 
 

 
 
 

 

MAREK MIKA, PhD, graduated from the Poznan University of Technology in Computing Science in July 1994. 
He obtained his PhD degree in computing science at the Poznan University of Technology in 2001. Since 1994, 
he has worked at the Institute of Computing Science, in the Laboratory of Operational Research and Artificial 
Intelligence at the Poznan University of Technology. Since 2001, he has worked as an assistant professor. His 
main areas of interest are: resource-constrained project scheduling, metaheuristic algorithms, resource manage-
ment and scheduling in computational grids. He authored or co-authored over 60 scientific publications in 
international journals, monographs and conference proceedings published by Springer, Elsevier, Kluwer, etc. 
He was involved in several research projects. The results of his works were presented during over 30 domestic 
and international scientific conferences and workshops. As a reviewer, he contributes to several international 
journals in the field of decision science. He is currently working on his habilitation thesis. 
 

 

 
WOJCIECH PIĄTEK received his M.Sc. degree in Computer Science from the Poznan University of Technology 
in 2010. His master’s dissertation concerned the management of computational and network resources on 
a grid. Since 2008, he has worked in the Applications Department in the Poznan Supercomputing and Network-
ing Center (PSNC) as a system analyst and developer. He participated in the PL-Grid project, and he is cur-
rently involved in the CoolEmAll project. He is also one of the developers of the Grid Scheduling Simulator 
(GSSIM). During the summer of 2010, he was a member of the HPC research group in the Center for Research 
Computing at the University of Notre Dame. His research activities concern distributed computing, particularly 
scheduling and resource management in grids, clouds and HPC systems. Additionally, his research interests are 
focused on mathematics and algorithms. 
 



M. Mika, W. Piątek, G. Waligóra, J. Węglarz 62

 

 
GRZEGORZ WALIGÓRA, DSc, graduated from the Poznan University of Technology in Computing Science in 
July 1994. Since 1994, he has worked at the Institute of Computing Science, in the Laboratory of Operational 
Research and Artificial Intelligence at the Poznan University of Technology. Currently he is an assistant 
professor. In 2000 he received his PhD degree in Computing Science from the Poznan University of 
Technology. He published his habilitation thesis on discrete-continuous project scheduling in 2009. His main 
areas of interest are: project and machine scheduling, discrete-continuous scheduling, combinatorial opti-
mization, metaheuristic algorithms, resource management and scheduling in computational grids. He has 
authored or co-authored over 70 scientific publications in international journals, monographs and conference 
proceedings, and presented his results during 40 domestic and international scientific conferences and work-
shops. He was awarded the Prize of the Foundation for Polish Science for Young Researchers (1999) and the 
Prime Minister’s Award for his PhD Thesis (2000). 
 

  
JAN WĘGLARZ, professor (PhD 1974, DSc 1977), between 1978 and 1983 he was an associate professor and 
then professor at the Institute of Computing Science, Poznan University of Technology. He has been a full 
member of the Polish Academy of Sciences (PAS) since 1998 (a corresponding member since 1991), director of 
the Institute of Computing Science at the Poznan University of Technology since 1987, director of the Poznan 
Supercomputing and Networking Center since 1997, president of PAS (Poznan branch) in 2002-2010, president 
of the Committee for Computer Science of PAS since 2007, founder and chairman of the EURO Working 
Group on Project Management and Scheduling, principal editor of the Foundations of Computing and Decision 
Sciences, and a member of several editorial boards, among others: European Journal of Operational  Research 
and International Transactions in Operational Research. He represented Poland in the Board of Representatives 
of IFORS and in EURO Councils (president of EURO Council in 1997-98). He is a member of several 
professional and scientific societies, among others: the American Mathematical Society and the Operations 
Research Society of America. His major research areas include: scheduling (project, machine, production), grid 
resource management systems, energy-aware computing. He authored and co-authored 15 monographs, 
3 textbooks, and over 200 papers in major professional journals and conference proceedings. He is a frequent 
visitor to major research centers in Europe and in the USA. He is a co-laureate of the State Award (1988) and 
the EURO Gold Medal (1991), a laureate of the Prize of the Foundation for Polish Science (2000). He received 
honorary degrees from: Technical University of Szczecin (2001), Academy of Mining and Metallurgy (2002), 
Technical University of Czestochowa (2005), Poznan University of Technology (2006), Gdansk University of 
Technology (2008), University of Silesia (2009), and University of Zielona Gora (2009). 

 
 
  
 
  
 

 
 

                                                 
 
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 17(1-2), 53-62 (2011) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




