
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Special Issue 2010, 135-145

I. INTRODUCTION

 The development of the Internet as well as ubiquitous
access to easy-to-use penetration testing tools combined
with anonymity in the net, results in a situation where
every machine exposed to the Internet is sooner or later
going to be attacked. If the corporate network is well
managed and secured, most of the attack attempts are
unsuccessful but this is not always the case. Modern IT
systems act almost like living creatures: new modules are
used, patches are applied, configuration is changed, new
users are added, etc. This results in the situation when
a perfectly secure system, if managed improperly, suddenly
becomes vulnerable and a random cracker can exploit this
opportunity to gain access to the corporate network.

To deal with that problem, Intrusion Detection Systems
are used more and more often – an additional security layer
which can help with the intrusion investigation process (so
called digital forensics).

A system administrator is supposed to constantly
monitor running services; in most cases this comes down to
log analysis (for example, for an HTTP server, ftp,
firewall, etc.). The problem with the log review is that logs
are stored in separate files and located all over the hard
drive. This complicates the task and makes log-information
correlation even more difficult. Besides, it is very time
consuming and requires thorough knowledge of different

attacks to be able to filter out the important information
from/out of the rest. Intrusion Detection Systems can help
the administrator with that task: constant automatic
monitoring system with centralized database containing
information in a unified format is a great improvement
itself. What is even more helpful, an IDS system itself
analyzes logs and discovers security incidents.
 A standard host-based Intrusion Detection System
works on a single machine and therefore is unable to detect
more sophisticated attacks which were performed using
many machines located in different parts of the corporate
network. For example, an IDS installed on the Samba
server will not be able to raise an alarm when the following
attack is performed:

1. HTTP Server port scanning.
2. Samba Server port scanning (from the HTTP Server).
3. A successful login to the Samba server from the HTTP

Server.
 Port scanning is an activity which may be considered
malicious, but not necessarily implicates a successful break
in if we consider every port scanning event as a high alarm,
we would end up with a lot of false positives. A successful
login to a Samba server is not suspicious at all, but if we
add up those two events, the real situation will appear and
it can be quite important to notice that.
 The present article describes the Distributed Intrusion
Detection System “MetaIDS” [1] developed within the

Distributed Intrusion Detection Systems
– MetalDS case study

Marcin Jerzak, Mariusz Wojtysiak

Poznań Supercomputing and Networking Center, ul. Noskowskiego 12/14, 61-704 Poznań, Poland

e-mail: marcin.jerzak@man.poznan.pl

(Received: 27 September 2010; revised: 8 November 2010; published online: 23 November 2010)

Abstract: The “Defence in depth” strategy for securing computer systems claims that technologies used to protect a network should
fulfill the “Protect, Detect and React” paradigm. “This means that in addition to incorporating protection mechanisms, organizations
need to expect attacks and include attack detection tools” [1]. This paper presents MetaIDS – the Intrusion Detection System developed
in Poznań Supercomputing and Networking Center. It detects both attack attempts and successful attacks to the system. The paper
highlights typical problems with intrusions detection, principle of the MetaIDS work and real attack example seen from the perspective
of MetaIDS.
Key words: security, intrusion detection, Intrusion Detection System, MetaIDS

user
Tekst maszynowy
CMST SI(1) 135-145 (2010)

user
Tekst maszynowy
DOI:10.12921/cmst.2010.SI.01.135-145

user
Tekst maszynowy

user
Tekst maszynowy

M. Jerzak, M. Wojtysiak 136

Polish Platform for Homeland Security (PPHS) (2) in
Poznań Supercomputing and Networking Center. PPHS
brings together universities, research centers, companies
and institutions promoting public safety in order to create
advanced, integrated tools supporting work of law
enforcement body and administration of justice.

MetaIDS is able to detect intrusions and intrusion
attempts based on information from many resources all
over the corporate network. The system has a modular
architecture: if there is a need to add a new information
source (for example, a new log source), an administra-
tor/developer can implement the new module and just plug
it in. The system consists of two basic components: the
MetaIDS Server and the MetaIDS Sensor. Sensors are
lightweight, stateless applications that are running on an
unprivileged account on monitored machines. Sensors
collect data and communicate with Server periodically in
order to send specified information as well as check for
updates, etc. The MetaIDS Server gathers information from
every sensor, located all around the network, analyzes it and
makes appropriate decisions. All computationally heavy
operations are performed on the MetaIDS Server. It requires
that the server is run on an efficient machine, but causes that
agents running on monitored systems do not lower their
availability and performance. A modular architecture design
has been applied to both Server and Sensor. Therefore, new
modules or new signatures can be developed and imported
into the system without significant effort.

In this article we will attempt to explain the basic
functionality of our system, starting with the MetaIDS
Sensor. Every module has been described separately in the
order determined by a logical path of data flow within the
monitored infrastructure. The following chapters, for
example, describe monitoring, parsing and filtering parts of
the system – those modules are invoked in this particular
order during the intrusion discovery process. This is the
exact path that each separate small event has to pass before
it is processed by the MetaIDS Server correlation engine,
where all the data are aggregated and normalized.

II. MetalDS COMPONENTS

II.1. Sensor

 The MetaIDS sensor is a program working on a secured
computer in the background. The sensor monitors the
security state of that computer and sends information about
suspicious events to the MetaIDS server .

The sensor consists of the modules shown in Fig. 1.
Monitoring, parsing, filtering and communication

modules work in a pipeline by passing results of their work

Fig. 1. MetaIDS sensor schema

Fig. 2. Sensor modules working in a pipeline

Distributed Intrusion Detection Systems – MetalDS case study 137

to the next module. This pipeline is shown in Fig. 2. Sensor
modules working in a pipeline and each phase of work are
described below.

II.2. Monitoring module

 The monitoring module periodically checks the secured
service to find information about new events in the system.
Detected events are sent to the parsing module.
 The monitoring module works on a data source, from
which it reads information related with security. The most
common data source is the log file of the monitored
service. But there may also exist other data sources like
Windows Event Log, or just a device. In such case the
module monitors directly the device and detects events
unassisted. For example, the module may automatically
detect new Wi-Fi networks, to which the monitored
computer has been connected.

II.3. Parsing module

 The main task of the parsing module is to interpret data
from the monitoring module for further processing.
 For example, a typical entry in the system log looks like:
Mar 11 14:49:59 apollo sshd[6968]: Failed password
for root from 192.168.1.1 port 39986 ssh2

and is interpreted by the parsing module in the following
way:
date: 2010-03-11 14:49:59
host: apollo
program: sshd
pid: 6968
$CONTEXT: Mar 11 14:49:59 apollo sshd[6968]:
Failed password for root from 192.168.1.1 port 39986
ssh2

 As a result, the parsing module creates in memory an
event described by the occurrence date and other attributes
containing event details like source address, user name,
process identifier etc. In this phase the module is not aware
if this event has any impact on security of the monitored
system. Therefore, the event has not got its name yet (has
not been classified).
 Attributes describing the event consist of pairs: name,
value (e.g. <program, su>).
 The parsing module automatically creates a special
attribute called “$CONTEXT”. This attribute contains the
unparsed text representing the event. For example, the
module parsing the Linux syslog file creates attribute
“$CONTEXT” containing one entry from the syslog file.
The IDMEF module creates “$CONTEXT” containing the
whole XML document representing the event described in
the IDMEF format. The “$CONTEXT” attribute allows
further to process an event that is not only based on parsed
attributes, but also using the unprocessed event description.

The parsing module is strictly associated with the data
source format: every type of a log file has its own type of
the parsing module. Therefore, one sensor monitoring
many log files may contain many parsing modules,
depending on the set of services protected by the sensor.
 Parsing modules are dynamically configurable. Therefore:

• module parameters for all sensors may be modified in
one central point on the MetaIDS server,

• it is possible to modify module parameters without
restarting the module or the sensor.

II.4. Filtering module

 Not all events detected by previous modules are sent to
the MetaIDS server. The filtering module separates events
taken out from the data source, choosing only those events
which have impact on security.
 For example, the following events may be sent to the
server:

• unsuccessful login attempt,
• creation of a new user account in the system,
• abnormal program termination.

 In turn, the following unimportant events are ignored:
• start of SCSI driver,
• unmount of USB device,
• problems with sound in the system.

 Events are filtered basing on filter rules associated with
the module. No events are automatically sent to the
MetaIDS server. If an event has to be sent to the server,
there must exist a proper filter rule which recognizes that
event and classify it by assigning a name to that event.
Besides assigning a name, the filter rule may also attach
additional attributes to the event.
 For example, a parsed event containing attributes:
date: 2010-03-11 14:49:59
host: apollo
program: sshd
pid: 6968
$CONTEXT: Mar 11 14:49:59 apollo sshd[6968]: Failed
password for root from 192.168.1.1 port 39986 ssh2

after processing by the filtering module, the following
attributes may be attached:
name: authentication_failed
reason: invalid password

 A filter rule contains a condition, deciding if the parsed
event should be sent to the MetaIDS server. The condition
may test the parsed event attributes using standard
operators like =, <, >, <>, <= and => or may scan the
unparsed event description (obtained from the $CONTEXT
attribute), using regular expressions.
 For example:
program = "sshd” AND $CONTEXT match "Failed password

for"

M. Jerzak, M. Wojtysiak 138

 The above condition causes sending to the server all
events from the sshd process that contain the string “Failed
password for”.
 Every module has an own set of filter rules.
 Rules, similar to parsing modules, are dynamically con-
figurable and may be modified without restarting a sensor.

II.5. Communication module
 All events which have passed the filtering module are
moved to the local events queue on the sensor. An
independent thread, responsible for the communication
with the MetaIDS server, gets events from the queue and
sends it to their destination (Fig. 3).

III. MetaiDS SERVER

Fig. 4. MetaIDS server components

 The MetaIDS server is a computer dedicated to ana-
lyzing events sent by sensors. It consists of three compo-
nents: the database, the administration panel (Graphical
User Interface for an administrator) and the heart of the
system: MetaIDSServer program analyzing events and
communicating with sensors (Fig. 4).

III.1. Events analyzer

 The most important function of MetaIDS is the analysis
of events reported by sensors in order to detect break-in
attempts and other security incidents. This analysis is
performed by searching for dangerous events sequences.
 A typical events sequence suggesting that successful
break-in attempt might have occurred consists of a se-
quence of many failed login attempts. All logins are done
from the same IP address. The last login was successful:
auth_failed → auth_failed → auth_failed → … →
auth_success.

 Of course, a legitimate user might also have forgotten
her/his password, make many failed login attempts and
finally login successfully. However, a real user would
make only a couple of login attempts, whereas a “brute-
force” attack makes dozens of login attempts in a short
time interval.
 The events analyzer searches for dangerous events
sequences using signatures of known attacks, stored in the
database. A signature contains the sequence of event names
with conditions which must be fulfilled by the analyzed
event in order to be matched to the given signature.
 For example, the signature that detects a successful
“bruteforce” attack may be similar to:
first_authentication: auth_failed()
5 minutes
auth_failed(src_addr =
first_authentication.src_addr) {9 times 5 minutes}
5 minutes

Fig. 3. Communication module sends to the MetaIDS server parsed and filtered events described by attributes

Distributed Intrusion Detection Systems – MetalDS case study 139

auth_success(src_addr =
first_authentication.src_addr)

 The above signature matches with at least ten failed login
attempts (event: auth_failed) followed by one successful
login (event: auth_success). All matched events have to
originate from the same IP address (condition: src_addr =
first_authentication.src_addr). The time between two follow-
ing matched events cannot be longerthan 5 minutes.
 Signatures have to contain the maximum interval
between two consecutive events in a sequence. It is signifi-
cant because of the following reasons:

• there is low probability that two events between
which a long time passed are associated with the
same attack. Thus, defining the maximum interval
between events helps to reduce the number of false
alarms triggered by IDS (false positives),

• events are sent to the server from distributed
sensors, not necessarily in the order of their
occurrence. Events very often match the signature
only partially. For example, 9 events match the
signature which expects 10 events. But after
a moment the 10-th event may appear and make
this sequence complete. That is why the same
events have to be analyzed many times, as long as
there are chances that any sensor sends an event,
which finally will make this “partial” sequence
a completely matched one. The maximum interval
between events helps to decide how long those
partially matched events should be analyzed by
the server.

 When events completely match the signature, a new
event is created, and matched events are marked as
correlated with the new event. The new event is assigned
a new name and is described by a new set of attributes.
 For example, 10 failed login attempts followed by
a successful login create a new event named “brute-
force_success” with attributes: src_addr (the attacker's IP
address) and service (the name of the attacked service like
“ftp”, “ssh”, etc).
 The described functionality of searching events sequen-
ces is used for two tasks:

• event correlations – a connection of all events
which are results of the same attack,

• detection of break-in attempts and other security
incidents.

III.1.1. Correlation engine

 Events are sent from a bulk of sensors. A single
attack, like scanning of the service in order to find

a vulnerability, may generate hundreds of events. In such
case the knowledge about each single event is not
important. More significant is information that the
scanning was done, the scanned service name, the source
IP address and the scanning time.
 During the correlation stage, all events which are
a consequence of a specified action performed by an
intruder are grouped and marked as correlated with a new
event describing the attacker's action.
 For example, a sequence of requests for nonexistent
resources to the Apache HTTP/http server are changed to
a “service scanned” event. A sequence of failed login
attempts from the same address are changed to a “brute-
force” event.
 Sometimes events sent by a sensor have an important
attribute missing. For example, an event auth_success from
a PostgreSQL database does not contain the IP address,
from which the login to the database originated. However,
the source address is stored in another event originating
from PostgreSQL: new_connection. In such case the cor-
relation may be used to complete a missing attribute by
combining two events: new_connection and auth_success
into one event: auth_success.

III.1.2. Intrusion detector

 MetaIDS has to inform an administrator about a break-
in to her/his system. But how to detect break-ins?
 As a consequence of the attack, the intruder gets access
to the system. MetaIDS must then monitor all authorization
operations. The problem is how to differentiate between
a successful authorization done by a legitimate user and by
the intruder. In most cases during a break-in attempt the
intruder performs operations which would rather not be
performed by a standard user. For example, the intruder
checks what services are running on the system, sends
malformed requests to services, tries to guess passwords,
etc. If MetaIDS is able to match a successful login with
other suspicious actions made during break-in attempts,
then the attack will be appropriately detected.
 The association between a successful authentication and
a suspicious action may be done basing on the source
address of those events. For example, a malicious user logs
in to the service from the same IP address, from which s/he
scanned the service earlier.
 However, advanced hackers are aware of the existence
of Intrusion Detection Systems. If they have a farm of
compromised computers under their control, they are able
to send every request from a different IP address, thus
making a distributed attack.

M. Jerzak, M. Wojtysiak 140

 In such case the most obvious attribute that might
associate events into a sequence – the event source IP
address – is useless and MetaIDS has to use other
attributes like:

• user name – for example, a distributed attack at
one username and a successful login with this
username during this attack,

• process identifier – for example a successful login
in the process in which the exploit execution was
detected.

 Both the correlation engine and the intrusion detector
work in the same way: they search event sequences based
on signatures. The only difference is the importance of
generated events: the intrusion detector creates security
incidents which should be reported to the administrator,
whereas events created by the correlation engine do not
have to be noticed by the administrator.
 Because of those similarities, both modules were imple-
mented using the same mechanism.

III.2. Communication module

 The communication module is responsible for com-
munication between the MetaIDS server, sensors and the
database. The communication is always initiated by the
sensor. When the connection between the sensor and the
server is established and both sides authenticated each
other using the SSL protocol, the server checks if the
sensor is registered in the MetaIDS database using the
sensor's certificate.
 The following requests are supported by the MetaIDS
server:

• get all modules and filter rules connected to the
given sensor,

• get new/modified modules and filter rules con-
nected to the given sensor,

• send new events detected by the sensor,
• send errors occurred during the sensor work.

III.3. Sensors manager

 This module keeps an eye on assigning proper modules
to sensors. Every sensor has been defined a different set of
modules, depending on services monitored by the sensor.
Additionally, the same module may have a different con-
figuration on particular sensors (for example, the same log
file may be placed in different directories on computers in
the protected network).
 The sensor manager is responsible for sending a proper
set of modules (together with appropriate parameters) to

the sensor. It is implemented by changing a general defini-
tion of the module to the form specified for the given
sensor.

III.4. Alarms module

 The alarms module goal is to execute a proper action
when the intrusion detector detects a new attack. First of
all, the alarms module creates a new event in the database
in order to store information about the detected incident. In
the context of this new event, an administrator may see all
details about the attack, s/he can trace elementary steps
made by the intruder during the attack, when and how long
they took place, etc.
 Besides the creation of the new event, it is possible to
define other actions like the creation of an e-mail/sms to an
administrator, or execution of any external program. Such
an action may be assigned to the signature and as soon as
events completely match to this signature, assigned actions
will be executed automatically.

III.5. Administration panel

 The administration panel is a Web-based application
which plays the role of the MetaIDS graphical user
interface (GUI). An administrator executes this application,
using a Web browser on any computer having access to the
MetaIDS server.
 The administration panel consists of the reporting
module, the configuration module and the sensors
monitor.
 The reporting module is the main page which is seen by
a user after logging to the administration panel. It contains
recently detected security incidents and the sensors list
together with the status of each sensor.
 In the reporting module the user may see very detailed
information about each detected event. It is possible to see
all attributes describing the event and the list of events
(elementary steps of an attack), which caused the detection
of that incident. The incident may be explored on different
levels of details, descending (?) to an entry log describing
a single event in the system log.
 The configuration module, among others, allows to
register a sensor in MetaIDS to assign modules to the
sensor to modify filter rules and signatures.
 The sensors monitor stores in its database all problems
reported by sensors and the time of the latest connection of
the particular sensor with the server. It helps to figure out
the correctness of sensors work.

Distributed Intrusion Detection Systems – MetalDS case study 141

Fig. 5. MetaIDS administration panel

IV. EXAMPLE OF ATTACK ANALYSIS

Fig.6. Actions made by an intruder, events detected by the sensor and incidents detected by the MetaIDS server

M. Jerzak, M. Wojtysiak 142

 In this paragraph a simple attack will be presented
together with an analysis how it is detected by MetaIDS.
An exemplary network contains a database server with two
services available from the Internet: SSH and database
engine. Both services are monitored by a MetaIDS sensor.
The MetaIDS server is installed on a separate machine.
 Figure 6 shows the schema of the example network
together with requests sent by the intruder's computer and
events detected by MetaIDS components.

IV.1. Processing events on a sensor

 The network described above was compromised by the
intruder. It means that the attacker performed a lot of
actions, finished with a successful login to the database and
exporting sensitive data. The critical action which makes
the system compromised is the correct login to the database
system (“login ok” in Fig. 6).
 After the execution of that action, the following entry
was appended to the database system log file:
Mar 25 10:46:49 database_server postgres[2105]:
[3-1] LOG: connection authorized: user=postgres
database=Users_salaries host=10.0.0.32

 That entry would not generate any interest of a system
administrator reviewing that log file. It looks like any other
standard login action to the system. However, MetaIDS
classifies it as a successful attack and sends an SMS to the
administrator. Let us analyze the way data are processed by
MetaIDS and what decides that this login action is treated
as compromitation of the monitored system.
 The monitoring module on the sensor detects a new log
entry and passes it to the parsing module which interprets it
by creating following attributes:
time: 010-03-25 10:46:49 GMT+1
hostname: database_server
process: postgresql
process_id: 2105
CONTEXT: Mar 25 10:46:49 database_server
postgres[2105]: [3-1] LOG:
connection authorized: user=postgres
database=Users_salaries host=10.0.0.32

 In such a form the event is moved to the filtering
module which contains a set of rules. One of these rules has
the following definition:
<rule>
 <name>postgres_auth_success</name>
 <description>Successful login to PostgreSQL
database</description>
 <condition>
 program = "postgres"
 AND $CONTEXT match "connection authorized:"
 </condition>
 <eventname>auth_success</eventname>

 <attributes>
 <attribute>
 <name>username</name>
 <type>string</type>
 <regexp>user=([^[:space:]]+)</regexp>
 </attribute>
 <attribute>
 <name>service</name>
 <type>string</type>
 <value>postgresql</value>
 </attribute>
 <attribute>
 <name>session</name>
 <type>string</type>
 <regexp>\[([^\]]+)\]</regexp>
 </attribute>
 <attribute>
 <name>src_addr</name>
 <type>string</type>

 <regexp>host=\[?([^[:space:]]+)\]?</regexp>
 </attribute>
 </attributes>
</rule>

 The analyzed event was signaled for the “postgres”
program. Additionally, the unparsed text describing the
event (attribute $CONTEXT) contains the “connection
authorized:” string. Thus this event matches to the follow-
ing rule condition:
program = "postgres" AND $CONTEXT match "connection

authorized:"

 The filtering module assigns the “auth_success” name
to the analyzed event and appends new attributes to it: user-
name, service, session, src_addr.
 Now the event is ready to be sent to the MetaIDS
server:
name: auth_success
time: 2010-03-25 10:46:49 GMT+1
hostname: database_server
process: postgresql
process_id: 2105
username: postgresql
service: database
session: 2105
src_addr: 10.0.0.32
CONTEXT: Mar 25 10:46:49 database_server
postgres[2105]: [3-1] LOG: connection authorized:
user=postgres database=Users_salaries host=10.0.0.32

 The communication module sends the event during its
next connection with the MetaIDS server.

IV.2. Processing events on the MetaIDS server
 An event sent from a sensor is processed by the com-
munication module in order to check if this event is a new
one or if it has already been stored in the database. All
events signaled by sensors are stored in the MetaIDS server
database.

Distributed Intrusion Detection Systems – MetalDS case study 143

 During the described example of an attack, an intruder
performs the following actions:

IV.2.1. Services scanning
 The attack begins with a network scan: the intruder
wants to check version numbers and current configuration
of installed services in order to find known vulnerabilities.
S/he uses one of many available network scan tools. Such a
tool sends a lot of requests to the attacked service. Figure 5
contains two of them: scan probes to ports 22 and 5432.
 Both events are detected by the filtering module and as
a result the sensor sends “scanned” events to the server.

IV.2.2. Bruteforce attack

 The intruder found an installed PostgreSQL database
system, but s/he could not find a vulnerability which could
be directly used to break-in the system. Therefore, the
attacker decided to run a typical “bruteforce” attack. The
attacker runs a program which attempts to login to the
database many times, using a standard username “postgres”
and passwords from a dictionary.
 This action generates a lot of login request events (“login
trial”). Every request is detected by the filter module and the
sensor sends a lot of “auth_fail” events to the server.

IV.2.3. Login to the database system

 When the password for the standard “postgres” user is
found in a dictionary, the bruteforce tool successfully
connects to the database system. This request is also
recognized by the filter module and the sensor sends an
“auth_succ” event to the server.
 Events from sensors are stored in a database on the
MetaIDS server and are analyzed periodically in the order
of their occurrence. The intrusions detector tries to match
events from the database to known attack signatures.
 For example, events “auth_fail” from the described sce-
nario will be matched to the following signature:
failures:auth_fail(src_addr=failures:src_addr AND
service=failures:service)
{5 times 5 minutes}

 The signature above arranges the sequence of five or
more “auth_fail” events originating from the same IPcor-
relation_algorytm.c# address and affecting the same service.
The maximum time between two consecutive events has
been defined as 5 minutes.
 As a result, all “auth_fail” events generated during the
attack are aggregated to one “bruteforce” event:
eventname: bruteforce
description: Bruteforce attack from one IP
address to one service

start_time: 2010-03-25 10:05:49 GMT+1
end_time: 2010-03-25 10:40:49 GMT+1
src_addr: 10.0.0.32
service: ssh

 Afterward, the incident detector analyzes events: “brute-
force” and “auth_succ” and matches them to the following
signature:
brute:bruteforce()
5 minutes
success:auth_succ(src_addr = brute:src_addr)

 That signature checks if the bruteforce attack originat-
ing from one IP address has finished with success.
 As a result, a new event is created and stored in the
database:
eventname: compromised
start_time: 2010-03-25 10:05:49 GMT+1
end_time: 2010-03-25 10:40:51 GMT+1
src_addr: 10.0.0.32
service: ssh
username: postgres
description: successful bruteforce attack from
the same IP. 99% server is compromised!

 In that moment a text message containing information
about the detected incident is sent to an administrator's cell
phone. A successful attack is detected!
 The MetaIDS role does not finish here. The above event
means that the monitored computer and username
“postgres” were compromised. MetaIDS contains signa-
tures which especially track actions performed from the
compromised machine or using the compromised user-
name. Those signatures report to administrator every use of
a compromised resource in order to monitor if the com-
promitation spreads in the monitored network.

V. COOPERATION WITH OTHER INTRUSION
DETECTION SYSTEMS

 MetaIDS is able to cooperate with other Intrusion De-
tection Systems. Communication may occur in two directions:
IDS → MetaIDS and MetaIDS → IDS.
 In the first case MetaIDS reads events detected by
another IDS, so the other IDS plays the role of a rich
sensor.
 Such a configuration is especially valuable when
MetaIDS cooperates with a network-based IDS, for
example Snort IDS [3]. MetaIDS sensors monitor events
occurring in services running on servers, so it acts like
a host-based IDS. Snort monitors events on a lower level
– a network one – so it is able to detect another type of
events which are not available for host-based systems. By
combining information from host and network sensors,
MetaIDS may detect many more attacks.

M. Jerzak, M. Wojtysiak 144

 Communication IDS → MetaIDS is made by a special
module monitoring another IDS. This module filters generated
events and translates them to the form used in MetaIDS.
 Currently MetaIDS may read events reported from:

• Snort IDS
• Ossec IDS [4],
• any other IDS supporting events in IDMEF [5] format

– for example, Prelude IDS [6].
 The Intrusion Detection Message Exchange Format
(IDMEF) [5], described in RFC 4765, is a standard that
defines the format in which Intrusion Detection Systems
may exchange information about detected incidents. Many
IDSs are able to report events in the IDMEF format, some
of them are able to read events in that format. MetaIDS
also uses the IDMEF format.
 Communication in the opposite direction MetaIDS →
foreign IDS is also possible. In such case MetaIDS stores
detected incidents in a file using the IDMEF format. The
foreign IDS may read that file and use it for further
analysis. If there is a need to “push” events directly to the
foreign IDS (without the intermediate IDMEF file), it is
possible to configure a MetaIDS action which will automa-
tically send an IDMEF message using an external program.

VI. MetalDS DEPLOYMENT

 The first deployment of MetaIDS was made in Poznań
Supercomputing and Networking Center.
 Two servers hosting HTTP and SSH services were
monitored by MetaIDS. Both services were available from
the Internet.
 During one month, 15 000 events were reported by two
sensors. 59 incidents were detected. The majority of them
were “bruteforce” attacks and scans of the HTTP server.
 Additionally, a few test attacks were performed by
PSNC Security Team, some of them finished with success
(our attacker has got a correct password from the
administrator). All attacks were detected by MetaIDS.

A relatively short period of deployment of MetaIDS in
a real working environment, resulted with several
interesting conclusions. It may be confirmed that it is
crucial to constantly improve the system signatures
database, especially during the first months of deployment.
Due to the heterogeneity of our network, as well as
constantly changing system code (some of the applications
are considered to be still a work in progress) the main
problem were false positives. In order to keep their rate
relatively low at the beginning of deployment, a person
dedicated to manual resolving of some of the issues is
essential. We have encountered several situations with an

application logging some errors to a logfile and causing
multiple events to be considered malicious. In the majority
of cases the problem was the application itself or an
application misconfiguration, but it is actually impossible
to predict those situations during the development phaze –
therefore, it has to be adjusted during the deployment.

We also had an opportunity to test MetaIDS using log
files from a real compromised system. Tests in this case
were performed offline on a single log file. This type of
analysis can provide additional forensics information about
a system that did not have a MetaIDS sensor installed on it
during the attack.

The attack scenario was very simple: an intruder
injected an SQL query to an HTTP request and stole
usernames from the database. Then, using gathered user-
names, a lot of “bruteforce” attacks were performed, some
of which finished with success. This is a very common way
of attacking Web applications, that is mostly performed by
automated scripts run from compromised machines.

MetaIDS in that case successfully detected an SQL
Injection. Unfortunately, this event was classified by the
MetaIDS correlation engine as an incident. We used this
case to elevate the severity of this type of incident and to
write a new signature, detecting a successfully executed
SQL Injection, returning usernames or passwords. The
described case shows that, when dealing with constantly
changing software and attack techniques, a regular mainte-
nance is crucial.

VII. CONCLUSION

 Our current experience with MetaIDS working in pro-
ductive environments has proved that it fulfills its require-
ments: detects incidents, triggers alarms, allows to work
temporarily in the offline mode, when a sensor cannot
connect to the MetaIDS server. The reporting module helps
an administrator to understand the given incident by
allowing to go deep into detail on the level of a single log
entry.
 In a few months' time we expect to perform several
consecutive deployments of MetaIDS in networks outside
PSNC. Other productive environments will help us to
extend modules and the filter rules set used by MetaIDS.
Additionally, logs from post-attack investigations perfor-
med by PCNS Security Team will be used to test MetaIDS
efficiency in attacks detection and to allow to create new
signatures.

Advantages of applying MetaIDS should be considered
in terms of an additional protecting mechanism as well as

Distributed Intrusion Detection Systems – MetalDS case study 145

a seful forensics tool. When combined with the existing
Intrusion Detection Systems, MetaIDS helps with better
attack vector coverage, aggregation and filtration of data.
Users may implement signatures dedicated for specific
environments, which may help reduce the number of false
positives. What is especially important when talking about
future improvement of MetaIDS is the possibility of adding
new elements included “by design” into almost every
module within the system.

References

[1] Agency, National Security. Defense in Depth. A practical
strategy for achieving Information Assurance in today’s

highly networked environments. [Online]
http://www.nsa.gov/ia/_files/support/defenseindepth.pdf.

[2] Distributed Intrusion Detection System. [Online]
http://ppbw.pcss.pl/en/dids.html.

[3] Polish Platform for Homeland Security. [Online]
http://ppbw.pcss.pl/en/.

[4] An open source network intrusion prevention and detection
system (IDS/IPS). [Online] http://www.snort.org/.

[5] An Open Source Host-based Intrusion Detection System.
[Online] http://www.ossec.net/.

[6] The Intrusion Detection Message Exchange Format.
[Online] http://www.ietf.org/rfc/rfc4765.txt.

[7] Agentless, universal, security information management.
[Online] http://www.prelude-technologies.com/.

[8] PSNC Securiy Team. [Online] http://security.psnc.pl/en.

MARCIN JERZAK works on several security-related R&D projects in PSNC (Poznań Supercomputing and
Networking Center) Security Team. Currently his leading project is MetaIDS – Distributed Intrusion
Detection System. He also helps in protecting the infrastructure of the Polish NREN – PIONIER optical
network, POZMAN network and securing PSNC servers and systems. He conducts software security
research and penetration tests. Marcin got his M.Sc. degree from Poznan University of Technology in 2007.

MARIUSZ WOJTYSIAK graduaded Poznań University of Technology in 2002 with M.Sc. in Computer
Science. For 5 years were working as developer and project manager for IN-Software company producing
software for building firms. Since 2007 he is working in Poznan Supercomputing and Networking Center as
developer with projects g-Eclipse (grid technologies) and MetaIDS (security). He also cooperates with other
companies as independent software developer and consultant. Mariusz is enthusiast of software engineering
technologies allowing to produce high quality, stable and easy to maintenance software.

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Special Issue 2010, 135-145

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

