
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Special Issue 2009, 57-62  
 

I.  INTRODUCTION 
 

 Researchers at the Naval Research Laboratory often 
initially develop and prototype their algorithms on their local 
PC’s and workstations using high level languages and 
interactive environments (such as MatLab™) that allow 
them to test their ideas and get results faster than by using 
traditional programming languages such as Fortran or 
C/C++. As the research evolves, the data sets grow and the 
algorithms increase in complexity to the point that the local 
available resources are insufficient to handle the increased 
workload and High Performance Computing resources are 
required. This was the situation faced by researchers in the 
Aerosol Optics Section of the Optical Physics Branch. 
A single run with a fixed set of parameters takes over hours 
to run data sets of 109 particles and larger data sets are being 
collected. At this rate, even the use dedicated collections of 
10-20 individual desktop computers is insufficient to make 
adequate progress in the development and optimization of 
classification algorithms. 

 
 

II.  THE  PROBLEM 
 

The development of biological warfare (BW) point 
detection sensors, and to some extent chemical warfare 

(CW) sensors, has incorporated an approach of continuous 
individual aerosol particle measurement since its early 
beginnings around 1994 [1]. This approach is incorporated 
in the currently deployed DoD program of record, the Joint 
Biological Point Detection System (JBPDS). The optimal 
extraction of information from this type of sensor approach 
is to perform “real time” autonomous classification of each 
aerosol particle. NRL is participating in a current program 
for developing advanced BW detection capabilities 
sponsored by the Defense Threat Reduction Agency 
(DTRA) Joint Science and Technology Office (JSTO). 
Multiple competing mathematical approaches for achieving 
that sort of classification capability exist, and each 
approach has some parameters requiring optimisation using 
available experimental data. Existing data sets consist of 
single particle data records with between 7 and 16 meas-
urements (feature dimensions) per particle [2, 3]. Two 
existing ambient background databases are roughly 109 and 
1010 particles respectively in size. New additions to these 
large ambient background data sets are being actively 
acquired. Furthermore, the number of possible agent 
categories is large. For each of these potential threat target 
materials, particle size is a major defining parameter, 
meaning that training data sets for each target material need 
to span a number of different particle sizes. In essence, we 

Development of Biological Warfare Sensors Using SGI  
High Performance Computers 

 
Marco Lanzagorta 1, Jay Eversole 2 and Wendell Anderson 3 

1 ITT Corporation 

2 Naval Research Laboratory (Code 5612) 

3 Naval Research Laboratory (Code 5593) 

(Received: 31 October 2008;  published online: 20 February 2009) 

 
Astract: The Center for Computational Science (CCS) of the US Naval Research Laboratory (NRL) conducts leading edge research in
High Performance Computing. CCS currently has two SGI Altix 3700s, one Altix 4700, and one SGI ICE machine. Recently the center 
has seen an increased interest from scientists at NRL who have been running MatLab™ on their local PC's and workstations but who
need more computational power. One such application is the development of biological warfare point detection sensors where time-to-
solution for a single run can take over 30 hours to complete and many runs are necessary during the development process. This paper
describes the issues that were encountered in the port of this code to the SGI High Performance Computing (HPC) computers at NRL
and provides a paradigm for moving other computationally intensive MatLab™ programs to HPC machines. 
Key words: MatLab™, Octave, OpenMP, parallel methods, biological warfare, optical sensors 
 
 

user
Tekst maszynowy
CMST 15(1) 57-62 (2009)

user
Tekst maszynowy

user
Tekst maszynowy
DOI:10.12921/cmst.2009.15.01.57-62

user
Tekst maszynowy

user
Tekst maszynowy



M. Lanzagorta, J. Eversole and W. Anderson 58

are faced with optimising potentially dozens of specific 
target classifiers and comparing performances for compet-
ing approaches against a continuously growing set of back-
ground clutter. 

In order to meet the increasing computational require-
ments of this problem, the researchers were interested in 
using the SGI High Performance Computers (SGI Altix 
3700s, SGI Altix 4700 and SGI ICE machine) available at 
the Naval Research Laboratory. A summary of the charac-
teristics of these machines is given in Table 1. 

 
Table 1. NRL SGI Computer Specifications 

Machine 3700 4700 ICE 
# of nodes 1 1 8 
Cores per node 256 256 192 
CPU Type Itanium Itanium Xeon 
CPU speed 1.6 1.6 3.0 
L2 cache size 9 MB 18 MB 4 MB 
RAM per core 8G B 4 GB 2 GB 
Memory speed 667 MHZ 667 MHZ 1 333 MHZ 

 
Historically, the algorithm development efforts both at 

NRL and at its collaborators at the Massachusetts Institute 
of Technology – Lincoln Labs (MIT-LL) were initiated in 
MatLab™. The cost of transcribing the algorithms devel-
oped to date into a different programming language is 
prohibitive within the scope of the current program. 
Possible options are further constrained by the requirement 
that code running on the SGI computers had to reproduce 
“exactly” the same results as on the PC’s currently used.  

Three options were considered for running the codes on 
the SGI computers – MatLab™[4], Star-P[5], and Octave 
[6]. MatLab™ while potentially involving the least amount 
of work, is no longer supported on Itaniums and thus was 
not considered a viable option. Star-P did support the 
Itaniums but had a substantial cost, especially if the code 
was to run on three different systems. The third option was 
Octave, an open source environment that will run most 
MatLab™ programs. It does not support the MatLab™ 
toolboxes but in this case the code does not use any of the 
toolboxes. Octave would run on all three of the SGI 
systems, and being Open Source, at no additional financial 
expenditure. Therefore, the decision was made to initially 
try Octave to see if it would meet the project requirements. 

Since a full run of the MatLab™ code for a full run of 
the background data (993 files) took tens of hours, a 16 file 
subset of the data was selected for testing and timing. Each 
file contains eight features for each of approximately 
900 000 particles. The training set size used in the test was 

300. The running time of the test case under MatLab™ was 
estimated to be around 30 minutes. 

 
 

III.  RUNNING  MatLab™  CODE  UNDER  OCTAVE 
 
The first step in the porting process was to run the 

MatLab™ code on a PC using Octave.. Octave was in-
stalled on a PC in the CCS that already had MatLab™. 
Running the code produced the message: 

error: structure has no member `GLOBAL' 

 Further analysis indicated that Octave was not able to 
deal with nested data structures. In order for the code to run 
properly, nested structures had to be changed to simple data 
structures. For example the nested data structure 

 RESULTS{1}.GLOBAL.RUNTIME_START 

was changed to the non-nested data structure 

 RESULTS{1}.GLOBALRUNTIME_START 

 Once this problem was corrected the code ran suc-
cessfully on the test data set. 
 The next step was to determine that the code produced 
the same answer under both environments. An initial 
examination of the output data showed that the answers 
were different. Further analysis revealed that the function 
shuffle that creates a permutation of the simulant data used 
a pseudo random number generator. Since MatLab™ and 
Octave generated different sequences of pseudorandom 
numbers different outputs were generated. To solve this 
problem, the random numbers generated by MatLab™ were 
saved into a file and the saved file was used as the source of 
the random numbers. After this change, the two packages 
gave identical results. Once identical results were being 
produced, the performance of Octave vs. MatLab™ was 
measured. Running the code under Octave took about 14 
times longer than running it under MatLab™ (See Table 2), 
not an auspicious start to reducing the time-to-solution. 

 
Table 2. MatLab™ vs. Octave running times 

Environment Total time 
secs 

Bayesian time 
secs % of total 

MatLab™ 1 694 1 483 87.5 
Octave 22 334 21 788 97.6 

 
 Timers were placed into the code to measure the wall 
clock time required by various parts of the code. Analysis 
of the measured times indicated that most of the time was 
spent in the function bayesian_test_02. This function calls 



Development of Biological Warfare Sensors Using SGI High Performance Computers 59

two other functions: bayesian_zero_mean_unit_stdev to 
transform feature data to have zero mean and unit standard 
deviation and parzen_kernel to calculate density estimates 
based on a Parzen classifier with means from a training 
vector. The first function performs the calculations  

 for i=1:train_particles 

 transformed_data(i,:)=(1./feature_stdev(:)').* 

(feature_data(i,:) - feature_mean(:)'); 

while the second function calculates for each record 

   centers = train_records{i}.transformed_data; 

   sigma = train_records{i}.sigma; 

   sigma_2 = 2*sigma^2; 

  [ncenters nfeatures]=size(centers); 

  particle_table=zeros(ncenters,nfeatures); 

  for k=1:nfeatures 

    particle_table(:,k) = particle(k); 

  end 

  distances = (particle_table - centers)'; 

  distances_2 = sum(distances.^2); 

  exponential_distances = exp(-distances_2/sigma_2); 

  y=sum(exponential_distances)/ncenters; 

 Before porting the code to the SGI computers, several 
modifications were made to improve the performance of 
the codes. A line was added to allocate and zero the matrix 
transformed_data, so that the for-loop could be vectorized. 

transformed_data = zeros(train_particles,train_features); 

for i=1: length(train_records), 

 transformed_data(i,:) =(1./feature_stdev(:)').      

*(feature_data(i,:) - feature_mean(:)'); 

end 

 For the parzen segment of code the kernel function was 
in-lined and the new loop analysed to move common 
calculations outside the loop. The new code is 

    for i=1, length(train_records), 

    centers = train_records{i}.transformed_data; 

    sigma = train_records{i}.sigma; 

    sigma_2 = 2*sigma^2; 

    [ncenters nfeatures]=size(centers); 

    particle_table=zeros(ncenters,nfeatures); 

    for j=1:particles, 

     particle = transformed_data(j,:); 

     for k=1:nfeatures 

       particle_table(:,k) = particle(k); 

     end 

    distances = (particle_table - centers)'; 

    distances_2 = sum(distances.^2); 

    exponential_distances = exp(-distances_2/sigma_2); 

    Y(j,i)=sum(exponential_distances)/ncenters; 

    end 

 
Table 3. Modified Code Running Times 

Environment 
Total 
time 
secs 

Bayesian time 
secs % of total 

MatLab™(PC) 1 694 1 483 88 
MatLab™(PC) new 1 450 1 250 86 
Octave(PC) 22 334 21 788 98 
Octave(PC) new 19 341 18 811 97 
Octave (Altix) new 15 729 15 346 98 

 
 The outputs of the modified codes were verified and the 
running times measured. The modifications of the code 
resulted in a 14% reduction in the wall clock time of the 
code (see Table 3). The modified code was ported to the 
3700 and the results verified. Running time on the 3700 
was 19% less than the PC. Approximately 98% of the time 
on the Altix was spent in the Bayesian calculations. 
 

 
IV.  MEX-C 

 
MatLab™ is an interpretive language and thus the 

performance of MatLab™ codes (especially under Octave) 
is poor. Each of the lines in the MatLab™ code is an action 
on a matrix so each line operates on every element of the 
matrix. The execution of each assignment requires the 
reading of one or more matrices and the writing of a matrix, 
a memory intensive process. 

To speed up the code, the Parzen double loop was 
converted to a MatLab™ Mex-C function. By combining 
the MatLab™ lines into a doubly nested for loop, the 
intermediate calculations do not need to be saved and read 
back but may be maintained in local registers and/or cache. 
The greatest difficulty in writing the function was that the 
C code had to handle the MatLab™ API for passing data to 
functions. MatLab™ passes data to its functions via the 4-
tuple  

int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] 

where 
nlhs is the number of output matrices 
plhs is a structure that describes these matrices 
nrhs is the number of input matrices 
prhs is a structure that describes these matrices 



M. Lanzagorta, J. Eversole and W. Anderson 60

 Information about the arrays may be retrieved by the 
calls 

 elements = mxGetNumberOfElements(prhs[0]); 

 nrows = mxGetM(prhs[0]); 

 ncols = mxGetN(prhs[0]); 

 xval = mxGetPr(prhs[0]); 

where elements is the number of elements n the matrix, 
nrows is the number of rows, ncols is the number of co-
lumns, and xval is a pointer to the starting address of the 
matrix. Output matrices can be created via  

plhs[0] =mxCreateDoubleMatrix(nrows,ncols,mxREAL); 

 yval = mxGetPr(plhs[0]); 

where nrow and ncols are the number of rows and columns 
of the matrix, mxREAL defines the data type of the matrix 
elements (in this case real) and yval is a pointer to the start 
of the output matrix. MatLab™ uses the Fortran column 
major format for storing data, not the C row major format.  

While the function was 80 lines, the loop itself was 
only 12 lines. 

For (j=0; j<nparticles; j++) { 

 yvarx=0; 

 for (i=0;i<ncenters;i++) { 

  distances_2 = 0; 

  for(k=0;k<nfeatures;k++){ 

   distances=xvar2[k*nparticles+j] – xvar1[k*ncenters+i]; 

   distances_2 += distances*distances; 

  } 

  yvarx += exp(-distances_2/sigma_2)/ncenters; 

 } 

 yvar[j] = yvarx; 

} 

Table 4. Code timings parzen MatLab™ vs Mex-C 

Environment Total time 
secs 

Bayesian 
time 
secs 

% of total 

Octave 15 729 15 346 98 
Mex-C 1 918 1 788 93 

 
 Writing the MEX-C code required a substantial initial 
learning curve, but once the first function was completed, 
writing additional functions of equal complexity required 
less than one-tenth of the time. Table 4 shows the improve-
ments in the performance of the code when using the Mex-
C function. The running time of the new Mex-C code was 
comparable to the original running time of the MatLab™ C 
program on the PC. 

V.  PARALLELIZATION 
 

The outer loop in the parzen Mex-C function is 
transversed once for each particle (~1 million times) with 
no dependencies between particles, making this an ideal 
candidate for OpenMP parallelization. Octave was origi-
nally installed using the g++ C compiler. Unfortunately the 
versions of g++ available on the system did not support 
OpenMP, so Octave was reinstalled using the Intel icc 
compiler. The new compiler required that the < operator be 
defined for complex data types so that operator was added 
to oct_scort.cc. With this change the MatLab code ran 
successfully under the installation of Octave using the icc 
compiler. To create multi-threaded code, the omp include 
was added to the beginning of the source code file 

#include <omp.h>  

and the following two lines were also added before the 
code listed in Section IV.  

omp_set_num_threads(ompthreads); 

#pragma omp parallel for private(i, k, distances_2, 

distances, yvarx). 

 The first line sets the number of threads that the loop 
will be run in parallel, while the second line (the pragma) 
tells the compiler that each thread needs its own private 
copy of the 5 variables i, k, distances_2, distances, and 
yvarx. Unfortunately the OpenMP directive that reads the 
number of threads from an environment variable does not 
work within the Octave environment so the number of 
threads must be hard coded. The code was now run on the 
Altix 3700 on 16 threads (see Table 5). Parallelization of 
the Parzen function over 16 threads resulted in a speedup of 
14 in the running time of this function and an overall 
speedup of about 7.5. The Bayesian calculations instead of 
taking 93% of the time, now took a little less than half.  

 
Table 5. Altix 3700 1 processor vs 16 processors 

Environment Total time 
secs 

Bayesian time 
secs % of total 

1 thread 1 918 1788 93 
16 threads 259 126 49 

 

 Parallelization of the Parzen function over 16 threads 
resulted in a speedup of 14 in the running time of this 
function and an overall speedup of about 7.5  
 Further analysis of the code identified two more bottle-
necks. First, the reading of the input files by MatLab™ 
functions was very slow so a Mex-C function was written 



Development of Biological Warfare Sensors Using SGI High Performance Computers 61

that first determined the size of the input file and then read 
its contents. This resulted in an order of magnitude speed-
up in reading the raw data files. Second, the calculation of 
the features of files required the evaluation of the log10 of 
each element of a vector of variables. Again a Mex-C 
function was written to perform the logarithm and OpenMP 
directives inserted to run the calculation multi-threaded. 
Table 6 shows the improvements in performance resulting 
from these two changes. A 20% reduction was obtained in 
the running time of the program. The change in the time of 
the Bayesian function calculation is a result of the variance 
seen between individual runs of the code. 

 
Table 6. NRL Altix 3700 16 processors 

Environment Total time 
secs 

Bayesian time 
secs % of total 

Old 259 126 49 
New 209 119 53 

 

 The test data was run for a varying number of threads. 
The results are given in Table 7. 

 

Table 7. Benchmarks on NRL SGI Machines 

Machine   3700 4700 ICE 

1 thread  1 838 1898 305 
2 threads 936 972 164 
4 threads 533 543 98 
6 threads 410 364 76 
8 threads 352 299 66 
12 threads 266 222 N/A 
16 threads. 201 180 N/A 
20 threads. 189 156 N/A 

 

 OpenMP parallelization is available only over the set of 
processors (cores) that share a common memory. For the 
3700 and 4700 this is the entire machine. For the ICE 
machine OpenMP is limited to the number of cores (8) that 
are available on a single node. Running on only one thread 
the Xeon based ICE machine ran six times faster than the 
Itanium based Altix machines. We attribute this to a faster 
clock rate, a faster memory bus, and the improved 
architecture of the Xeon processor. For all of the SGI 
machines as more processors were used, the wall clock 
time declined as gains continue to be obtained from the 
use of more threads.  
 An examination of the kernel of the Parzen function 
indicates each pass through the loop requires two “ad-

ditions”, a multiply, and two read “memory” accesses, 
(where the memory access may be from cache or from 
memory). The large sizes of the two matrices in the kernel 
(xvar1 and xvar2) and the storage of the data in them in 
column major order and not contiguously as accessed 
greatly increases the number of reads from memory vs 
cache. Thus, the kernel is memory bandwidth limited. For 
the test case, nearly 7 000 Gigabytes of data must be 
accessed. On the ICE machine where the Bayesian part of 
the calculation took 68 seconds, this corresponds to 
a 10 GB memory read rate compared to the 3.4 GB peak 
rate from memory (some of the data will be cached and so 
these rates are not contradictory). 
. 
 

VI.  FULL  DATA  RUNS 
 
 The code was now run on the 3700 for the full data set 
of 993 files, The initial run failed because when MatLab™ 
reads a file with specified dimensions it zero pads the array 
if the file is too small. This was not taken into account 
when we wrote the Mex-C file. None of the files in our test 
set required zero filling, but some of the files in the full set 
did. After the Mex-C read function was modified to zero 
fill when the file size was too short, the code ran properly. 
The additional running time to zero fill the input arrays was 
insignificant compared to the running time of the total 
program. Production runs were also made on the 4700 and 
ICE machines. Based on our benchmarking runs, 32 pro-
cessors were used on the 3700 and 4700 while eight cores 
were used on the ICE 

 
Table 8. Full Data Time-to-solutions 

Machine 
Number  

of 
processors 

Total time 
hh:mm:ss 

Bayesian 
time 

hh:mm:ss 

% of 
total 

3700 32 2:36:21 1:13:52 47 
4700 32 2:17:23 1:13:45 55 
ICE 8 1:16:26 0:41:02 54 

 

 Even though the peak gigaflop rate of the 32 processors 
on the Altix machines was two times that of a node (8 
cores) of the ICE machines the code ran almost two times 
faster on ICE than on the Altix. The improved time-to-
solution for the ICE machine arises from a two times 
improvement of I/O hen reading data from disk and 
improved locality of data on ICE. 
 Another way of processing the data would be to divide 
the 993-file data set into subsets and have each instance of 



M. Lanzagorta, J. Eversole and W. Anderson 62

the code process only a single subset. The MatLab™ code 
was modified so each run of the code handled only a subset 
of the data files. When all of the subsets have been 
processed the output files are merged together into a single 
output file. Dividing the data into 8 subsets and using 
14 processors per subset, the entire data set was processed 
in ~37 minutes wall clock time on the 3700. 
 
 

VII.  CONCLUSIONS 
 

The SGI computers at NRL provided a significant 
performance improvement in support of the biological 
sensor detection work of the Optical Sciences Division. 
The reduction of the time-to-solution for a single run from 
tens of hours to tens of minutes will permit researchers at 
NRL to more rapidly develop, evaluate, and field new 
sensor systems. While a significant effort by the CSC staff 
was required in installing Octave and optimizing and 
parallelizing the MatLab™ code, most of this was spent in 
the initial phases of the learning curve. In the future, 
researchers in Optical Science will do modifications and 
porting to other machines. The use of Octave rather than a 
commercial package meant that no additional initial or 
ongoing software expenses were incurred. In addition, no 
additional hardware was needed as the code is running on 
hardware already at the laboratory. 

 

Acknowledgements 

The authors are indebted to the developers and 
maintainers for the Octave software. We also wish to thank 
Dr. Nichols A. Romero of the User Productivity Enhance-
ment and Technology Transfer (PET) Group for his 
guidance in optimising the MatLab™ code to run under 
Octave. Casey Jacobson and Jeff Wiley of NRL provide 
much help in explaining the working of the code. Ken Hill, 
the NRL SGI site rep provided much insight into the 
internal workings of the SGI machines that allowed us to 
more fully understand the timing results that we saw. 
Funding support for the BW algorithm effort by DTRA 
Joint Science and Technology Office Chemical and 
Biological Detection Capability Area under the Defense 
Technology Objective CB.50 is gratefully acknowledged. 
 
 
References 
  [1]  C. A. Primmerman, Detection of Biological Agents. Linc. 

Lab.J. 12 (1), 3-32 (2003). 
  [2]  J. D. Eversole, W. K. Cary Jr., C. S. Scotto, R. Pierson, 

M. Spence and A. J. Campillo, Continuous, bioaerosol 
monitoring using UV excitation fluorescence: outdoor test 
results. Field Analytical Chemistry and Technology 15, 
205-212 (2001). 

  [3]  V. Sivaprakasam, A. Huston, C. Scotto and J. Eversole, 
Multiple UV Wavelength Excitation and Fluorescence of 
Bioaerosols. Opt. Express 12, 4457-4466 (2004). 

  [4]  http://www.mathworks.com 
  [5]  http://www.interactivesupercomputing.com 
  [6]  http://www.gnu.org/software/octave 
 

 
 
 
  

                                                 
 
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Special Issue 2009, 57-62 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




