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I.  INTRODUCTION 
 

 The SGI Altix 4700 at Leibniz Supercomputing Centre 
(LRZ) is one of the most powerful computers in Germany. 
It has 9728 cores, 39 TByte of main memory, and delivers 
a peak performance of 62.3 Tflop/s. A prominent feature of 
an Altix is its ccNUMA architecture. The machine at LRZ 
has two other special features. It has two types of nodes 
and a two-dimensional torus network connecting the nodes. 
There are 13 so-called high-bandwidth nodes in which two 
cores are connected to one memory channel and there are 
six high-density nodes in which four cores are connected to 
one memory channel, i.e. in the high-density nodes the 
memory bandwidth per core is halved. Each node has 512 
cores out of which two (or four) are reserved for the 
operating system on the high-bandwidth (or high-density) 
nodes.  
 The torus network is sketched in Fig. 1. The network of 
the machine has a hierarchical structure. Within a node the 
bisection bandwidth per blade is 2 × 0.8 GByte/s (one 
blade comprises eight cores in the high-bandwidth nodes 
and 16 cores in the high-density nodes). Between two ’ver-
tical’ nodes it is 2 × 0.4 GByte/s (bisection indicated by cut 
a in Fig. 1), between ’horizontal’ nodes it is 2 × 0.2 GByte/s 

(bisection indicated by cut b in Fig. 1), and for the whole 
system it is further reduced to 2 × 0.1 GByte/s.  
 

 
Fig. 1. Two-dimensional torus network of the SGI Altix 4700 
nodes at LRZ. Bisections of two nodes with different network 

bandwidths are indicated by cut a and cut b (see text) 
 

 In this paper we try to get some deeper understanding 
of the machine. One aspect is to use different parallelisa-
tion strategies on the ccNUMA architecture. The second 
aspect is the influence of the different types of nodes. In 
addition, we compare the Altix 4700 with two other 
supercomputers, an IBM p690 cluster and a Cray XT4. In 
all cases we are interested in achieving high scalability. In 
our study we use the Berlin Quantum Chromodynamics 
Program (BQCD). BQCD has various communication 
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methods implemented: MPI, OpenMP, a combination of 
both, as well as shmem (single sided communication) in the 
hopping matrix multiplication (see Sect. III).  
 BQCD is used in benchmarks for supercomputer 
procurements at our centres. The benchmark version im-
plicitly measures two important aspects of supercomputer 
applications: effective network- and memory and band-
width. In addition, QCD is an application that scales very 
well and reliable performance measurements on a large 
number of cores can be obtained within minutes. Produc-
tion versions of BQCD and other QCD programs are highly 
tuned including assembler parts in the kernel [1, 2]. Here 
we employ the high level Fortran90 version as an example 
of a typical supercomputer application. 
 In the following paper we start by giving a short 
overview of numerical simulations of QCD and a short 
introduction to the computational aspects of QCD simula-
tions. Then we present and discuss our results.  
 
 
II.  OVERVIEW  OF  NUMERICAL  SIMULATIONS 

OF  QCD 
 
 QCD is the theory of strongly interacting elementary 
particles. The theory describes particle properties like 
masses and decay constants from first principles. The 
starting point of QCD is an infinite-dimensional integral. 
To deal with the theory on the computer space-time 
continuum is replaced by a four-dimensional regular finite 
lattice with (anti-) periodic boundary conditions. After this 
discretisation, the integral is finite-dimensional but still 
rather high-dimensional. The high-dimensional integral is 
solved by Monte-Carlo methods. BQCD is a program that 
simulates QCD with the Hybrid Monte-Carlo algorithm [3].  
 The basic building blocks of QCD are called quarks 
(matter particles) and gluons (particles mediating the 
interaction of quarks). The quark fields cannot be 
represented directly on a computer. In the computations 
they appear as large sparse matrices which describe 
systems of linear equations. QCD programs spend most of 
their execution time in solving these systems of linear 
equations. In the solver and an overall QCD program the 
multiplication of the so-called hopping matrix with a vector 
is the dominant operation. The hopping matrix multiplica-
tion is communication intensive.  
 
 

III.  COMPUTATIONAL  ASPECTS 
 
 To go more into detail, let us describe the structure of 
the hopping matrix and the systems of linear equations.  

 QCD is defined on a four-dimensional Cartesian lattice. 
The lattice has three spatial and one time direction. Its size 
is denoted by 3 .s tL L×  On the links of the lattice, field U 
which represents the gluons is defined. U is a function of 
the four directions μ = 1, 2, 3, 4 and the lattice sites denoted 
by i (see the right-hand side of Fig. 2). Uμ(i) is a 3 × 3 
complex matrix. The U field is part of the hopping matrix. 
It is constant in the solver. On the sites of the lattice, field 
ϕ  which represents the quarks is defined. ( )iϕ  is a 4 × 3 
complex matrix. These kinds of fields are the vectors in our 
systems of linear equations. In our Fortran program U and 
ϕ  have the following data structure:  

            complex(8) u(3, 3, Ls, Ls, Ls, Lt)  

            complex(8) psi(4, 3, Ls, Ls, Ls, Lt)  

 In practice the four dimensions (Ls, Ls, Ls, Lt) are 
collapsed to a single one and there is one array u for each 
of the four dimensions. In a pseudo code notation the 
matrix multiplication reads:  

  psi_out := hopping_matrix[u] * psi_in  

 The entries of the hopping matrix are given by a four-
dimensional nearest neighbour stencil as indicated in 
Fig. 2, i.e. the hopping matrix has nine entries per row. The 
entries are the Uμ(i) matrices.  
 
 

 
Fig. 2. Nearest neighbour stencil underlying the hopping matrix. 
The central point is i, where i is a short cut for a point given by 
four coordinates (x, y, z, t). On the right-hand side the 
corresponding Cartesian coordinate system and the variables 
involved are indicated for one dimension. U is called the gauge 
field which is defined on the links of the lattice. The field ϕ  is 
defined on the lattice sites. Index μ stands for a direction and μ̂  is 
                              a unit vector in μ-direction  
 
 At the single CPU level QCD programs benefit from 
the fact that the basic operations involve the small complex 
matrices Uμ(i) and ( ).iϕ  One can perform at the order of 
ten floating point operations per memory access. As a rule 
of thumb, the resulting performance is about 20-25% of 
peak when programming in Fortran or C. The single CPU 
performance can be considerably improved by employing 
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low level programming techniques like assembler or multi-
media streaming functions.  
 QCD programs are parallelised by domain decomposi-
tion. The nearest neighbour structure of the hopping matrix 
implies that the boundary values (surfaces) of psi_in have to 
be exchanged between neighbouring processes in every 
iteration of the solver. In production runs where one aims 
at sustained performance in the Tflop/s range the domains 
become so small that their surface to volume ratio is at the 
order of one or even larger. In Table 1 we give that ratio for 
the lattices and numbers of processes we consider here. The 
ratio depends on the actual decomposition. For example, if 
the lattice is decomposed into sub-lattices of size 3 ,s tl l×  
the surface to volume ratio 3 2 3(2 6 ) /( ).s s t s tl l l l l× + × × ×  In 
general the four dimensions of the local lattice can have 
different extension lx, ly, lz, and lt.  

 
Table 1. Surface to volume ratios 

Number  
of processes 64 128 256 512 1024 2048 3072 4096 

243 × 48 
lattice 0.833 1.000 1.167 1.333  

483 × 96 
lattice 0.417 0.500 0.583 0.667 0.833 1.000 1.083 1.167 

 
 
 Decomposing the lattice for a large number of proc-
esses has two effects. First, at some stage a domain might 
completely fit into the data cache. Second, the data from 
the relatively large surface of the small domains has to be 
communicated to eight nearest neighbour processes. The 
communication becomes dominant for large numbers of 
processes. It requires an excellent network. For lattice sizes 
that are used in actual simulations the network is the 
challenge. In our examples we mainly use the 483 × 96 
lattice which is relatively large for today’s supercomputers. 
For the comparison with other machines we use the 
243 × 48 lattice which is 16 times smaller but has a similar 
surface to volume ratios as the 483 × 96 lattice and thus 
similar communication requirements as that lattice but on 
fewer processes (see Table 1).  
 
 

IV.  RESULTS 
 
 All the presented results are for the entire conjugate 
gradient (cg) solver of BQCD. This is essentially the 
overall performance of the program in practical simula-
tions. The performance measurement is based on an instru-
mented code and manually counted operations in the source 
code. In all tables we give four results. First, we give the 

overall performance including communication overhead in 
Gflop/s.  The overall performance is plotted in Figures 3, 4,  
 
 

 
Fig. 3. Strong scaling of BQCD for the 483 × 96 lattice on SGI 

Altix 4700 using different communication setups (see text) 

 

 
Fig. 4. Performance comparison of three platforms  

(24 × 48 lattice) 

 

 
Fig. 5. Performance comparison of three platforms 

(48 × 96 lattice) 
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and 5. Second, we give the compute performance per core, 
i.e. the performance that was measured in program regions 
outside MPI (or shmem) functions. This quantity indicates 
whether one is in a memory bound region, where the 
quantity would be constant, or one can profit from data 
caching, where the quantity would grow. Third, we give the 
effective MPI (or shmem) bandwidth per process. In an 
ideal network this quantity should be constant for any 
number of processes. Fourth, we give the MPI overhead, 
i.e. the fraction of time spent in communication routines. 
Typically the overhead grows with increasing numbers of 
processes because the surface to volume ratio increases.  
 We study strong scaling of simulations on the 483 × 96 
lattice. On the Altix we look into four setups, namely 
running with  
 1. MPI on high-bandwidth nodes,  
 2.  MPI on high-density nodes,  
 3.  MPI plus two OpenMP threads per process on high-

bandwidth nodes,  
 4.  shmem on high-bandwidth nodes,  
followed by  
 5.  a comparison with the other platforms.  
 
IV.1. MPI on high-bandwidth nodes  

 Results for this setup are given in Table 2. The overall 
performance scales very well up to 2048 cores and 
becomes worse for higher numbers of cores.  

 
Table 2. Performance on high band-width nodes 

Number  
of cores 64 128 256 512 1024 2048 3072 4096

Overall 
performance 
[Gflop/s] 

52 100 194 406 758 1568 1707 2213

Compute perf. 
per core 
[Mflop/s] 

954 947 977 1106 1171 1607 1450 1535

MPI perf. 
per proc. 
[MByte/s] 

464 450 379 350 306 262 178 171

MPI overhead 
[%] 14 17 22 28 37 52 62 65

 
    
 The main reason for the good scaling is the utilisation 
of the data cache. The compute performance increases from 
about 950 up to 1600 Mflop/s per core. At the same time 
the MPI overhead stems not only from the increasing 
surface to volume ratio but also from decreasing effective 
MPI bandwidth. This effect is quite pronounced. Up to 
2048 cores this can be compensated by data caching. In 
that case the communication loss is already 52%.  

IV.2. MPI on high-density nodes  

 Results for this setup are given in Table 3. Again the 
overall performance scales very well up to 2048 cores, 
which in this case is the largest job possible in the system 
configuration.  

 
Table 3. Performance on high-density nodes 

Number  
of cores 64 128 256 512 1024 2048

Overall performance 
[Gflop/s] 33 65 129 306 574 1136

Compute 
performance per core 
Mflop/s] 

611 611 643 839 925 1130

MPI performance  
per process  
[MByte/s] 

305 313 262 262 218 192

MPI overhead 
[%] 14 16 22 29 39 51 

 
 
 Up to 256 cores the compute performance per core is 
roughly constant. This is the memory bound region. In 
these cases the compute performance is about 65% of the 
performance obtained on high-bandwidth nodes, which 
shows a clear dependency on the memory bandwidth. For 
higher numbers of cores the data caches come into play and 
the compute performance grows up to 79% of the value 
from high-bandwidth nodes. The overall performance 
behaves similarly. In the high-density partition the MPI 
bandwidth varies less than in the high-bandwidth partition. 
On 2048 cores the MPI bandwidth is 63% of the bandwidth 
measured on 64 cores. For the high-bandwidth partition the 
corresponding value is 56%.  
 
IV.3. MPI plus two OpenMP threads on high-band  
         width nodes  

 On a shared memory system or a system with shared 
memory properties it is tempting to reduce the com-
munication overhead by working with more than one 
thread per MPI process. By doing this the domains per MPI 
process become larger and as a consequence less data has 
to be communicated for a given problem size. Therefore we 
tried to use two OpenMP threads per MPI process. The 
idea is that the two threads work on the two cores of the 
same (dual core) Itanium processor of the Altix. Results for 
this setup are given in Table 4. In this setup we find good 
scaling up to even 3072 cores.  
 However, the absolute performance is slightly lower 
than the performance in the high-density case. The MPI 
bandwidth  per core is higher than in the high-bandwidth 
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Table 4. Performance on high band-width nodes for MPI plus 2 
OpenMP threads 

Number  
of cores 64 128 256 512 1024 2048 3072

Overall 
performance 
[Gflop/s] 

32 59 119 254 529 1054 1586

Compute 
performance per 
core [Mflop/s] 

543 540 559 685 704 893 1121

MPI performance 
per process 
[MByte/s] 

905 520 516 387 544 373 315

MPI overhead 
[%] 7 14 17 28 27 47 54 

 

case but the compute performance per core is significantly 
lower. This effect can already be observed in small test 
cases where we put an 83 × 16 lattice on two cores using 
two MPI processes or two OpenMP threads. Using threads 
the performance was only 78% of the MPI case. To get that 
reasonable OpenMP performance it is important to pin 
threads to processor cores and control page allocation. On 
the Altix this can be accomplished by employing the 
omplace command. In our tests the OpenMP performance 
is roughly halved when omplace is not employed.  
 
IV.4. shmem on high-bandwidth nodes  

 The last setup we have tried on the Altix is replacing 
the MPI_sendrecv in the hopping matrix multiplication by 
single sided communication functions from the shmem 
library (we used shmem_put). Results for this setup are 
given in Table 5.  
 

Table 5. Performance on high band-width nodes using shmem 

Number  
of cores 64 128 256 512 1024 2048

Overall 
performance 
[Gflop/s] 

51 93 161 225 409 706

Compute 
performance per 
core [Mflop/s] 

988 1062 1094 1122 1141 1247

Shmem 
performance per 
process [MByte/s] 

301 187 131 67 76 63

Shmem overhead 
[%] 20 31 42 61 65 72 

 
 Up to 256 cores the overall performance is comparable 
to the MPI setup. For higher numbers of cores the scaling 
becomes worse. While the first three setups scale practi-
cally linearly up to 2048 cores, the parallel efficiency on 

2048 cores with shmem is only 0.43 (related to 64 cores). 
The striking observation for this setup is that the effective 
MPI bandwidth is much lower than in the other cases. We 
think that this effect is due to the latencies of the shmem 
communication that add up in many function calls. In 
contrast to MPI, the shmem library does not contain 
a function for transferring block-strided data. There are 
only functions for contiguous blocks or strided data with 
block size one. In Fortran90 notation the array sections cor-
responding to surfaces are:  

psi(:,   :,   :,   :,   :,   1)         psi(:,   :,   :,   :,   :,   l_t) 

psi(:,   :,   :,   :,   1,   :)         psi(:,   :,   :,   :,   l_z,   :) 

psi(:,   :,   :,   1,   :,   :)         psi(:,   :,   :,   l_y,   :,   :) 

psi(:,   :,   1,   :,   :,   :)         psi(:,   :,   l_x,   :,   :,   :) 

 Only the array sections defined in the first line consist 
of one contiguous block each while all other array sections 
are block-strided. Hence shmem has to be called much 
more often than MPI and latencies add up.  

 
IV.5. Comparison with other platforms  

 For comparison we repeated some measurements using 
pure MPI communication on an IBM p690 cluster and 
a Cray XT4. On those platforms resource usage was limited 
to 512 cores. To challenge MPI communication we 
measured on a 243 × 48 lattice in addition to the 483 × 96 
lattice (cf. Table 1). Simulating on the large lattice requires 
approximately 160 GByte of main memory. On the XT4 
this was not available on 64 and 128 cores. Results are 
compiled in Table 6. The overall performance is plotted in 
Figures 4 and 5.  
 On both lattices the Altix delivers the best overall 
performance except for the large lattice on 128 cores where 
the p690 performs slightly better.  
 On the Altix the performance figures from the small 
lattice behave similar to the ones from the large lattice (see 
Sect. IV.1). The role of the data cache is even more 
pronounced on the small lattice where the compute 
performance reaches up to 2.6 Gflop/s per core. On both 
lattices the MPI bandwidth decreases in a similar way 
when the number of cores is increased.  
 From Figures 4 and 5 one can see directly that scaling 
to 512 cores is not good on the p690. On the p690 we find 
a sweet spot for both lattices where the MPI performance is 
much better than in the other cases. On the small lattice the 
compute performance is significantly increased at the same 
time. The effect is super-linear scaling from 64 to 256 
cores. In order to try to explain the drop in performance on 
512 cores we have to come back to network latencies. We 
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explained the poor shmem performance by latencies that 
add up. On the p690 we also see the effect that the MPI 
performance decreases when using the maximal number of 
cores. In addition we see that the compute performance 
decreases, too. This effect can be explained by latencies as 
well because the global sum is not excluded in the 
measurement of the compute performance. Large network 
latencies lead to relatively slow global reduction functions, 
which introduces additional communication overhead. The 
effect can also be noticed for the small lattice on the Altix. 
But there it is quite small.  

 
Table 6. Comparison of performance results from three platforms. 
The columns contain the same kind of information as the rows in 

the other performance tables 

Lattice Platform Number  
of cores 

Overall 
perf. 

[Gflop/s] 

Comp. perf. 
per core 
[Mflop/s] 

MPI perf. 
per proc. 
[MByte/s] 

MPI 
overhead 

[%] 
64 34 621 631 14 

256 132 666 517 22 Cray XT4 
512 291 721 693 21 

64 23 737 115 51 
256 197 1279 441 40 IBM p690 
512 246 955 247 50 

64 57 1202 541 26 
128 124 1687 424 43 
256 245 2641 321 64 

243 × 48 

SGI  
Altix 4700 

512  445 2443 330 64 
256  141 639 455 14 Cray XT4 
512 282 627 601 12 

64 46 911 281 21 
128 104 971 503 16 IBM p690 
512 189 530 177 30 

64 52 954 464 14 
128 100 947 450 17 
256 194 977 379 22 

483 × 96 

SGI 
Altix 4700 

512 406 1106 350        28  

 
 
 The behaviour of the XT4 is much more constant in 
comparison to the other platforms. Both the compute 
performance per core and the MPI bandwidth vary much 
less. The machine has the smallest MPI overhead which 
also is quite constant. From this one would expect very 
high scalability what would have been interesting to check.  
 
 
 

V.  CONCLUSION 
 

 In this article we have used the BQCD simulation 
program to compare three communication modes and two 

node types on the SGI Altix at LRZ. In all cases we 
observed very good scaling up to 2048 cores except for 
shmem communication which scaled well up to 256 cores. 
According to our measurements, pure MPI communication is 
the method of choice. Combining MPI with OpenMP or 
replacing it by shmem gave a substantially lower perfor-
mance. On high-density nodes 65-79% of the high-band-
width performance was achieved. In a strictly memory- 
bound situation one would expect this value to be about 
50%.  
 We were surprised to discover that data caches play 
such an important role on the Altix. The cache size is 9 
MByte per dual core chip. In our measurements better 
cache utilisation compensates decreasing network band-
width when increasing the number of cores. The discussion 
of shmem as one communication method available on the 
Altix and the comparison with other machines led us to 
consider the effect of network latencies. Although network 
latencies were not measured directly, we could in some 
cases indirectly see their effect on the effective network 
bandwidth and the duration of global reduction operations. 
 It is interesting to see the interplay of network band-
width, network latency, and the memory hierarchy when 
studying strong scaling of a real world application on the 
Altix 4700 and other machines.  
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