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I.  INTRODUCTION 
 

 In 1997 K. Ma lanka [1] proposed a new formula for 

the zeta Riemann function valid on the whole complex 

plane   except a point s = 1: 
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where coeffcients Ak are given by 
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 This formula was rigorously proven by L. Baez-Duarte 

in 2003 [2]. In the subsequent preprint [3] the same author 

proved the new criterion for the Riemann Hypothesis, 

while its journal version appeared two years later [4]. The 

Riemann Hypothesis (RH) states that the nontrivial zeros ρ 

of the function ( )sζ  have the real part equal ( ) 1 2.ρℜ =  

Although Riemann did not request it, today it is often 

additionally demanded that zeros on the critical line 

( ) 1 2sℜ = should be simple. Baez-Duarte considered the 

sequence of numbers ck defined by: 
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He proved that RH is equivalent to the following rate of 

decreasing to zero of the above sequence: 

              ( )-3 4

kc k ε+
= O  for each  0.ε >     (2) 

Furthermore, if ε  can be put zero, i.e. if ( )-3 4 ,kc = kO  

then the zeros of ( )sζ  are simple. Baez-Duarte also proved 

in [4] that it is not possible to replace 3/4 by 3/4 + !. 

 Neither in [4] nor in [6] is it explicitly written whether 

the sequence ck starts from k = 0 or k = 1. However in [4] 

a few formulas contain k = 0, i.e. summation starts from c0. 

The point is that if we allow k = 0, for which c0 = 6/π2, then 

the inversion formula (see e.g. [7]) is fulfilled: 
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However, we see no application of the above formula, 

except for a possibility of checking some of the statements 

made in [13]. Furthermore, if the Baez-Duarte sequence ck 

starts from k = 0 then the following identity holds: 
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It is an application of the general formal identity: 
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where ak should not increase too fast with k to ensure conver-

gence of series1. Putting here aj = (–1)jbj gives the usual for-

mula appearing in the finite difference theory (see [14] §1): 
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The identity (4) can be used to establish the connection 

with the Riesz criterion for RH (original paper [9], dis-

cussed in [4, 11]). Riesz has considered the function:  
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Unconditionally it can be proved that ( )1/ 2( ) ,R x x ε+= O  

see [8] §14.32. Riesz has proved that the Riemann Hypo-

thesis is equivalent to slower increasing of the function 

R(x): 

  ( )1/ 4( )RH R x x ε+⇔ = O  (7) 

But from (4) we get: 
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thus the generating function for ck can be expressed by 

R(x). In [10] it is proven that for any real number 3 2δ > −  

we have 

  ( )1( ) ( ).kR x O x c O kδ δ+= ⇔ =   (9) 

The proof is based on the relation ( ) .kR k k c≈  

 

 

II.  COMPUTER  EXPERIMENTS 

 

 The criterion (2) seemed to be very well suited for 

computer verification. At the end of [3] Baez-Duarte wrote 

a sentence “A test for the first ck up to k = 1000 shows 

a very pleasant smooth curve”. However, for larger values 

of k the true behavior of the sequence turned out to be more 

complicated: instead of monotonic tending to zero there 

appeared oscillations and ck changed the sign at first 

                                                 
1 Indeed, collecting on the l.h.s. terms multiplying aj we get: 
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and summing over j gives r.h.s. 

for2 k = 19320: c19319 = –1.7870567×10–13 while c19320 = 

9.170232808...×10–12. The next sign change is: c22526 = 

2.2292905301...× 10–13 but c22527 = –6.5057526 × 10–12. 

 To our knowledge, the first plot of ck for k up to 95000 

appeared in the book [5] published in Polish. The same plot 

was reproduced in [4]. Data used to make this plot consisted 

of ck calculated every 500-th k – it is very time consuming to 

get ck directly from (1). Indeed, for large j the values of  (2j 

+ 2) very quickly become practically equal to 1, thus the 

summation of alternating series gives wrong results when not 

performed with a sufficient number of digits accuracy. For 

example, Table 1 presents values of the partial sums for c12000 

recorded every thousand summands (the calculation was 

performed with precision of 9000 digits). 

 

Table 1. 

n ( )
( )0

12000 1
1

2 2

jn

j j jζ=
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&  

1000 8.6575528427959311728 × 101492 

2000 1.0610772171540382076 × 102346 

3000 2.6820721693716011525 × 102928 

4000 8.4511383022435967124 × 103314 

5000 1.8751018390471552047 × 103537 

6000 8.3417729099514988532 × 103609 

7000 1.3393584564622537177 × 103537 

8000 4.2255691511217983562 × 103314 

9000 8.9402405645720038417 × 102927 

10000 2.1221544343080764152 × 102345 

11000 7.8705025843599374298 × 101491 

12000 –1.6973092190852083930 × 10–7 

 

 

 Let us remark that the partial sums for n and 12000–n are 

of the same order. The binomial coeficients become very 

large numbers in the middle and to get accurate value of ck 

one needs a lot of digits accuracy during the calculation. 

Ma lanka has used Mathematica to perform these 

calculation. Over three years ago we started to calculate ck 

using the free package PARI/GP [12] developed especially 

for number theoretical purposes, which allows practically 

arbitrary accuracy arithmetics both fixed-point as well as 

floating-point. We started to calculate consecutive ck for 

each k with the help of the following script in Pari: 

                                                 
2 in fact if the sequence ck starts from k = 0 the first sign change 
occurs for 2

0 6 0c π= >  and ( )2 4 2 4

1 6 90 6 90c π π π π= − = − ≈  
( )430 0π≈ − <  (more precisely c1 =  –0.3160113011...) 
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 The problem encountered during these calculations was 

that it seemed not possible to change the accuracy of 

calculation while running the script (the command \p 3500 

above). Thus we had to change the precision by hand. It 

turned out that when the precision was to small, produced 

values of ck were completely wrong, differing from the 

correct ones by ten to a very large power. The rule learned 

from these examples for precision set to make calculations 

confident was that the number of digits should be at least 

enough to distinguish between 1 and 1 + 1/2k in the zeta 

appearing in (1), i.e. the precision set to calculate ck should 

be at least \p = k * log10(2). Table 2 presents the real 

example we saw during the calculations: when the 

precision was set to 60000 digits the values of ck for k 

between 198000 and 200000 were (198000 × log10(2) = 

59603.93914, 200000 × log10(2) = 60205.99913): 

 

 

Table 2. 

k ck 

198000 –8.1809420017968747912 × 10–9 

198500 –8.1130397250007379108 × 10–9 

199000 –8.0431163120575296823 × 10–9 

199500 3.4122583912205353616 × 1049 

200000 –1.9276608381598523688 × 10200 

 

 

 Ma lanka kindly sent me the values of ck from his 

calculations up to k = 95000 with k jumping in intervals of 

500, i.e. k = 500l. In autumn 2005, I started to continue 

working on the cluster of 8 processors Xeon 2.8 GHz, with 

4 GB RAM per node of two processors3, with the aim to 

reach k = 200000 also every 500-th value of k using 

PARI/GP computer algebra system [12]. Over the five 

months of computations I have used between 4 and 6 

processors to calculate ck in different intervals of k. When 

these calculations were running I found the paper [4] where 

                                                 
3 Because we have used 32-bits version of PARI/GP I was able to 

use 2^31 bytes =2 GB of RAM per process.

explicit formulae for ck in terms of zeros of ( )sζ  were 

given. Quite recently there appeared a paper [6] where 

a prescription to obtain ck very quickly were also given. In 

view of these developments there is no need to continue 

very time-consuming calculations based on the formula (1). 

The only benefit of these calculations was the possibility to 

compare ck obtained by means of formulae presented in [4] 

and [6] against those ck obtained from the generic formula 

(1). It should be stressed that calculations based on (1) do 

not assume the validity of Riemann Hypothesis in contrast 

to formulae presented by Ma lanka or below. Using these 

formulae ck can be calculated very quickly for practically 

arbitrary k – it is very time-consuming to calculate ck 

without assuming RH. 

 

 

III.  EXPLICIT  FORMULAE 

 

 The formulae presented in [4] and [6] expressing ck 

directly in terms of the zeros of ( )sζ  are essentially 

the same, they differ in the manner they were derived. 

Ma lanka has used the binomial transforms discussed in 

[14] while Baez-Duarte is developing the whole machinery 

by himself. The formulae of these two authors can be 

written as a sum of two parts: quickly decreasing with k 

trend kc  and oscillations :kc  

  k k kc c c= +   

where: 

  
( )

( ) ( )2

2
2

1 1, ( 1) 2

(2 1) (2 1)2

mm

k

m

B k m
c

m m

π

ζπ

∞

=

+ −
= −

Γ − −
  (10) 

and oscillating part: 
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where it is assumed that zeros of ( )sζ  are simple: 

'( ) 0ζ ρ ≠  and the sum is over all (i.e. on the positive as 

well as negative imaginary axis) nontrivial zeros of the 

( ),sζ  i.e. ( ) 0ζ ρ =  and 0ρℑ ≠  and 

  
( ) ( )

( , )
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w z
B w z

w z

Γ Γ
=

Γ +
  

 \p 3500 /* precision set to 3500 digits */ 
 allocatemem(250000000) 
 range=10000 /* the largest subscript in c_k */ 
 denomin=vector(range); 
 for (n=1, range, denomin[n]=zeta(2*n)); 
 default(format, "e22.20") 
 { 
 for (k=1, range, c=sum(j=0,k,((-1)^j)*binomial(k,j)/denomin[j+1]); 
 write("c_k.dat",k," ", c)) 
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is the Beta function. In fact, Baez-Duarte is skipping the 

trend remarking only that it is of the order o(1/k) (Remark  

1.6 in [4]). Theoretically the formula for kc  is valid in the 

limit of large k, but surprisingly the numbers produced 

from the above formulae (10) and (11) are practically the 

same as obtained from the generic formula (1) for all k, e.g. 

already for k = 2 we get c2 = –0.25699711 from (1), while 

(10) and (11) give c2 = –0.256969863 and accuracy 

increases with k. It suggests that the integrals Jk appearing 

in [4] in the proof of the Theorem 1.5 are decreasing to 

zero rather fast with k. 

 First let us consider the trend. It can be calculated 

directly from (10): 

( )

( )( ) ( ) ( ) ( )

( ) ( )

( )

2

2

2

1

2

1 1 2

1 2 1 2 2 2 1

k

mm

m

c

k k k m m m m m

π

π

ζ

∞

−

= − ×

−
×

+ + + + − −
 

! !

 

    Using this formula we were able to produce every 500-th 

value of kc  for k = 500, 1000, ...109 performing calcula-

tions in Pari with 100 digits accuracy in about 4 hours. For 

large k we have used the following asymptotic expansion 

of (12): 
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 It can be further simplified to: 

  
( )

( )

2

2

1 2
.

2 3
kc

k

π

ζ
= −  (14) 

The comparison of these formulae is given in Table 3. 

 Now we consider the oscillating part .kc  Since 

PARI/GP does not have built in B(x, y) function, we had to 

use the ( )zΓ  functions instead. Because of the fast growth 

of the ( )xΓ  function even in PARI/GP it was not possible 

to pursue with formula (11) for large k. Namely it crashes 

for k = 356000 because of overflow. But there is the 

following asymptotic formula (see e.g. [15], §1.8.7): 
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thus we have 

                     ( ) ( ), ~ aB a x x a− Γ        for x large.         (15) 

Using it for large k and assuming the Riemann Hypothesis: 

( )1 2 , 1 2 1l l l l li iρ γ ρ γ ρ= + = − = − after collecting together 

in pairs conjugate zeros we get: 
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where I have denoted: 

  
( )

1

2
,

'

l

l

l

ρ

α
ζ ρ

! "+! "
Γ# $# $
% &# $= ℜ

# $
% &

 (17) 

(12)

Table 3. 

k kc  from Eq. (12) kc  from Eq. (13) kc  from Eq. (14) 

1 –2.60052406393 × 10–1 –4.0752814729 × 103 –1.6421193331 × 101 

10 –6.9069591105 × 10–2 –2.0455052855 × 101 –1.6421193331 × 10–1 

102 –1.4804264464 × 10–3 –5.9943727867 × 10–3 –1.6421193331 × 10–3 

103 –1.6248041420 × 10–5 –1.6824923096 × 10–5 –1.6421193331 × 10–5 

104 –1.6403755367 × 10–7 –1.6418022398 × 10–7 –1.6421193331 × 10–7 

105 –1.6419448299 × 10–9 –1.6420436474 × 10–9 –1.6421193331 × 10–9 

106 –1.6421018816 × 10–11 –1.6421113244 × 10–11 –1.6421193331 × 10–11 

107 –1.6421175880 × 10–13 –1.6421185279 × 10–13 –1.6421193331 × 10–13 

108 –1.6421191586 × 10–15 –1.6421192526 × 10–15 –1.6421193331 × 10–15 

109 –1.6421193157 × 10–17 –1.6421193251 × 10–17 –1.6421193331 × 10–17 
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In (16) the decreasing of ck like 3 4k − is obtained as an 

overall amplitude of the “waves” composed of the cosines 

and sines with the “frequencies” proportional to imaginary 

parts of the nontrivial zeros of ( ).sζ  The coeffcients lα  

and lβ  decrease to zero very fast with l. Namely using the 

Hadamard product for ( ):sζ  
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where C = 0.57721566490153286... is the Euler constant, 

the derivative of ( )sζ  at zeros can be computed. Taking 

into account miraculous simplifications, l l lρρ ρρ ρ+ =  

and the identity 

  ( ) ( )
( )

1 1
sin

z
z z

z

π

π
Γ + Γ − =  

I have obtained that: 

  
4 4
, .l l

l le e
πγ πγα β− −∝ ∝  (19) 

Because imaginary parts of zeros take large values, it 

suffices to sum in (16) over a few first zeros. I have used 

10 zeros and Table IV gives coefficients lα  and lβ  and 

comparison with (19).  

 However, calculations with the first zero γ1 = 

14.13472514173469... give numbers which differ much 

less than 1% (see l = 1 and l = 2 in Table IV) from those 

calculated with a larger number of terms in (16) as  well 

 

Fig. 1. The plot of ck for k   (1, 106). At k = 200000 a small gap is 

visible to distinguish between ck calculated from generic formula 

              (1) and from explicit formulas presented in Sec. 3 

 

 

 

Fig. 2. The plot of 3/ 4

kk c  for k ∈ 2 (106, 109) 

 

 

Table 4 

 αl βl 
4le πϕ−  

1 2.029173866 × 10–5 –3.315924256 × 10–5 1.50914 × 10–5 

2 –3.333265938 × 10–8 –1.298336420 × 10–7 6.75315 × 10–8 

3 2.886139424 × 10–9 –4.153918097 × 10–9 2.94404 × 10–9 

4 4.813880001 × 10–11 –6.332017430 × 10–11 4.19039 × 10–11 

5 7.546769513 × 10–12 7.526891498 × 10–12 5.83506 × 10–12 

6 6.162524600 × 10–14 1.942118979 × 10–13 1.51209 × 10–13 

7 –1.578482027 × 10–14 1.184829593 × 10–14 1.10374 × 10–14 

8 –1.071381892 × 10–15 –2.209146437 × 10–15 1.66491 × 10–15 

9 9.328038737 × 10–19 –7.472197226 × 10–17 4.22403 × 10–17 

10 1.747829093 × 10–17 1.122667624 × 10–17 1.05303 × 10–17 



M. Wolf  52

as with ck for k < 200000 obtained directly from (1) 

without assuming RH. The plots of ck for k up to 109 ob-

tained from those formulae are given in the Fig. 1 and 

Fig. 2. In Fig. 2 there is a logarithmic k-axis and thus the 

plot has a constant “wavelength”, not depending on k like 

in Fig. 1. The envelope is given by: 
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and was obtained in the following way: First we main-

tained in (16) only the first zero 1 11 2 :ρ γ= +  
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Next we made use of the identity: 
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to obtain: 
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from which (20) follows and a numerical value of A is 

obtained from 1α  and 1β  in Table 4. Here φ  = –0.54916 

(= 56.497°). Let us remark that this value of A agrees very 

well with the amplitude reported by Beltraminelli and 

Merlini [16]. It is interesting to note that lhs of the above 

formula is valid not only for integer k but also for real k, 

thus using the approximation ( )
kc R k k≈  derived in [10] 

we can write for large x: 
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 There is another way of checking accuracy of the above 

equation (23). Namely assuming that (23) is true and 

denoting by k’ and k’’ two consecutive zeros of ck’ = 0,  

ck’’ = 0 we get for 1:γ  

  
( ) ( )( )1

2
.

log '' 1 ' 1k k

π
γ =

+ +
 (25) 

 To make sense, in the latter approach an independent of 

(23) and relatively fast method of calculating ck is needed. 

In fact in [4] Baez-Duarte gives among others following 

formula being the transformation of (1): 
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 Using this expression we have searched numerically 

for sign changes of ck up to k = 109 and Table 5 presents 

1γ  calculated from the above formula (25) together 

with consecutive zeros extrapolated from integer values 

using the linear approximation (let us remind that 

sin(x) has derivative 1±  at zeros!). The correct value is 

1γ = 14.13472514173469379045725... . 

 

 

Table 5. 

 extrapolated zero 'k  γ1 from Eq. (25) 

1 19319.0191151 0.66394362155812867 

2 22526.0331312 40.91301517418643030 

3 41868.9707418 10.13657613078084811 

4 60094.3311655 17.38744852979003230 

5 98378.2514809 12.74744116303923005 

6 149320.1629630 15.05785832239914317 

7 236817.0977574 13.62376898016027559 

8 366000.4553802 14.43265811387491946 

9 573460.6753253 13.99205468779138406 

10 891841.3774543 14.22828231751450665 

11 1393469.2943691 14.07955314904129825 

12 2173554.0482344 14.13327453400666383 

13 3387835.5708183 14.15682029348025265 

14 5283842.8916393 14.13659885512530467 

15 8247263.1465316 14.11229699162269810 

16 12864372.4128156 14.13284964864925287 

17 20052822.4883780 14.15424390183719722 

18 31271608.9210745 14.14046804681939058 

19 48805962.1935733 14.11501826908551253 

20 76145459.4891092 14.12608973663948854 

21 118689214.0783221 14.15568694594979885 

22 185076299.0519995 14.14304477168657435 

23 288851950.0033488 14.11488330063446422 

24 450663149.7663923 14.12567920473796440 

25 702517003.8056590 14.15292988626078933 
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 In Fig. 2 the plot of k3/4ck is presented. The Baez-Duarte 

criterion requires this ”wave” to be contained in the strip of 

parallel lines for all k. Violation of the RH would manifest 

as an increase of the amplitude of the combination k3/4ck for 

large k. This point is elaborated in more detail by Ma lanka 

in [6]. Here we will make some further comments on this 

issue. First it should be remarked that the r.h.s. of (16) 

consists of products of three terms: the first depending only 

on k (the overall factor k3/4), the second depending only on 

imaginary parts of nontrivial zeros of ζ  (the coefficients 

lα  and lβ ) and third ingredients depending both on k and l 

(the trigonometric functions). Assume there are some zeros 

of ζ  off critical line. We can split the sum over zeros ρ  in 

(11) in two parts: one over zeros on critical line and second 

over zeros off critical line. This second sum should violate 

the overall term k–3/4 present in the first sum. Let
( )o

iγ  

denote the imaginary parts of the zeros lying off critical 

line (“o” stands for “off”). It is not clear whether 

asymptotic similar to (19) will be valid for zeros off critical 

line, but it seems to be reasonable to assume that it should 

not differ significantly from (19). Then the contribution to 

ck of such zeros off critical line should contain a factor of 

the order 
( )

.
o

le
γ−

 Because the value of the imaginary part 
( )o

lγ  of the hypothetical zero off critical line should be 

extremely large, perhaps even as large as 10100 can be 

expected, the combined contribution to ck coming from the 

second sum seems to be extremely small, thus to see 

violation of the Baez-Duarte criterion the values of k 

should be larger than famous Skewes number and look 

something like 1010 ."   Such a big index k should cause that 

the first term in (16) overcame the smallness of the second 

term depending only on ( ) .o

lγ  

 The plot in Fig. 2 is a perfect sine of one wavelength 

thus it gives visual justification of the above statement that 

c  is in fact determined by the first zero γ1. The same 

phenomenon was mentioned by Ma lanka in [6]. 

 

 

4.  FINAL  REMARKS 

 

 The formula (16) together with a few coefficients lα  

and lβ  taken from Table 4 allows to compute values of ck 

for arbitrary large k. Other criteria for RH, like the value of 

the de Bruijn-Newman constant [17], are vulnerable to the 

Lehmer pairs of zeros of ( ).sζ  It is hard to see the reason 

for violation of the inequality 3 4const .kc k −<  We have 

checked that at the first Lehmer pair ρ6709 = 0.5 + 

7005.06286617i and ρ6710 = 0.5 + 7005.1005646i the 

derivative has value 'iζ (0.5 + 7005.06286617i) = 

3.2229849698 + 0.74179951875i and a similar value for 

the second zero, thus there is no chance to get values of ck 

violating (2) in this way. It seems to be an open problem 

how to connect the value of the largest k for which 
3 4const kc k −<  to the number of zeros lying on the critical 

line. Let us mention that for the Li's criterion [18] which 

states that if the numbers 

  
( )

( )( )1

1

1
log

1 !

n
n

n n s

d
s s

n ds
λ ξ−

=
=

−
  (27) 

fullill 0nλ >  for each n then RH is true it is known that if 

the first n Li's constants nλ are positive then every zero ρ  

of ( )sζ  with nρℑ <  lies on the critical line 1 2ρℜ =  

[19]. 

 After a few months of computer experiments with ck we 

believe that Baez-Duarte sequence is one of the most 

important and mysterious sequences in the whole mathe-

matics. 
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