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I.  INTRODUCTION 
 

 Theoretical and experimental research for the pro-
pagation process of ultrashort laser pulses (in fs) in a 
medium have been the subject of intensive research within 
the last few years [1, 3, 9, 12]. Because of special pro-
perties of these pulses, during their propagation in the 
medium several new effects have been observed in 
comparison with the propagation process of short pulses (in 
ps), namely the effects of dispersion and nonlinear effects 
of higher orders. Under the influence of these effects, we 
have complicated changes both in amplitude and spectrum 
of the pulse. It splits into constituents and its spectrum also 
evolves into several bands which are known as optical 
shock and self-frequency shift phenomena [1, 3, 5, 8]. 
These effects should be studied in detail for future concrete 
applications of ultrashort pulses, especially in the domain 
of optical communication.  

 We apply the general formalism used for the pulse 
propagation problem in [7] for the one-dimensional case. 
This formalism is based on the approximate expansion of 
the nonlinear wave equation, which treats the nonlinear 
processes involved in the problem as the perturbations. In 
Sec. II we will present the theoretical model and the basis 
of the method, and derive from these considerations 
a general equation for the pulse propagation process in the 
nonlinear dispersion medium with all orders of dispersion 
and nonlinearity. Using this formalism for the Kerr 
medium in considering the delayed nonlinear response of 
the medium, induced by the stimulated Raman scattering 
and the characteristic features both of the spectrum and the 
intensity of the pulse, we will obtain an approximate equa-
tion in the most condensed form, describing the propaga-
tion of the ultrashort pulses, called the Generalized Non-
linear Schrödinger Equation (GNLS). In Sec. III we derive 
a normalized form of this equation and demonstrate its 
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general features. We will analyze in detail the influence of 
the third-order dispersion (TOD), the self-steepening, and 
the self- shift frequency for the ultrashort pulses in some 
special cases. Section IV contains conclusions.  
 

 
II.  PROPAGATION  EQUATION  

FOR  ULTRASHORT  PULSES 
 
II.1. General form of the pulse propagation equation  
        in the nonlinear dispersion medium  

 The Maxwell equations can be used to obtain the 
following nonlinear wave equation for the electric field [1, 
2, 4, 7]  
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where ( , )lP r t
r r  and  ( , )nlP r t

r r  are the linear and nonlinear 
polarization, respectively.  
 The electric field E

r
 is treated as a superposition of mo-

nochromatic constituents with different frequencies and 
wavevectors centered at their central values 0ω  and 0.k

r
 

We confine our self only to consider the propagation of the 
electric field in an arbitrary direction, say Oz (usually 
chosen as the direction of 0k

r
), so we can write  

  ( ) ( ) ( ) 0 0
1, . , , . ,
2

i t ik zE r t x E z t x A z t e c cω− +⎡ ⎤= = +⎣ ⎦
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where xr  is the unit vector of the x axis perpendicular to the 
propagation direction, A(z, t) is the complex envelope func-
tion, and c.c denotes the complex conjugate of the first 
term.  
 For the homogeneous isotropic, medium the linear po-
larization vector of the medium is expressed as follows:  
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where ∗  denotes the convolution product displaying the 
causality: the response of the medium in the time t is 
caused by the action of the electric field in all previous 
times t’. The quantity (1)χ  is the susceptibility of the me-
dium. It is a scalar.  
 The nonlinear polarization vector is generally expressed 
as follows: 
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where ( )

1 2( , ,..., )n
nt t t t t tχ − − −  is the n-order nonlinear 

susceptibility. For the homogeneous isotropic medium, be-
cause of the spatial inversion symmetry, the elements of the 
even-order nonlinear susceptibility (2 )

1 2( ,..., )k
kt t t tχ − −  

disappear [1, 2, 4]. In the expression (5) we have only the 
nonlinear polarizations of odd orders. We consider in detail 
only the third-order nonlinear susceptibility (the Kerr 
medium). Then the tensor (3)χ  has 34 = 81 elements (as 
a matrix with 3 lines and 27 columns), but only 21 of its 
elements are different from zero and three are independent 
[1]. We have therefore 
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 In the hierarchy of magnitudes the nonlinear polariza-
tion is much smaller than the electric field and the linear 
polarization 0( , ) ( , ) , ( , ) ( , ) ,nl l nlP z t P z t P z t E z tε<< <<

r r r r
 so 

it can be considered as a perturbation and we have the 
approximate formula [7]: . ( , ) 0.E z t∇ ≈

r
 Substituting these 

results into (1) we obtain the following scalar wave 
equation:  
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 Transforming the Eq. (6) to the Fourier space and using 
the properties of the Fourier Transform concerning the 
convolution and the derivatives of transformed functions 
we obtain the algebraic equation for the monochromatic 
part ω  of the pulse as follows:  
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where (1)( ) 1 ( )n ω χ ω= +  is the refractive index of the 
medium calculated at the frequency .ω  We can write this 
equation in another form: 



Propagation Technique for Ultrashort Pulses I 7

  

( )

2
2

2
0

2
2

2
0

( , )
( )

( , )

( , )
( ) , 0

( , )

nl

nl

P k
k

E kc

P k
k E k

E kc

ωωβ ω
ωε

ωωβ ω ω
ωε

⎡ ⎤
+ + ×⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
× − + =⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

with the notation 

  ( ) ( ).n
c

ω ωβ β ω= =  

as the wave number of the part ω  in the medium. The sign 
– and + in front of the square root sign describe the wave 
propagating in or oppositely to the positive direction of the 
axis Oz, respectively. We are interested only in the 
propagation in the positive direction, so we will consider 
only the equation in the second square parenthesis.  
 Because ( ),nlP k ω  is the perturbation in the comparison 
with the field ( ), ,E k ω  the nonlinear term in the square 
root is small and we can perform the Taylor expansion for 
this term [7]: 
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 Because the frequencies ω  of the monochromatic parts 
of the pulse concentrate around the central frequency 0 ,ω  
we change the variables 0 0, k k kω ω ω→ + → +  in the 
above equation and expand around 0.ω  It follows that  
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 The notations 0 0 0 0'( ); "( ); '( ); "( )...n nβ ω β ω ω ω  are first-
order and second-order derivatives of the respective func-
tions, calculated at the value 0.ω  
 To obtain the pulse propagation function in the medium 
we should perform the inverse Fourier Transform of the 
Eq. (10). It follows that 
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are higher-order perturbations, F and 1F −  denote the Fourier 
and the inverse Fourier Transforms.  
 Equation (11) with the concrete form for the nonlinear 
polarization (5) and the initial condition for the input pulse 
permit us to consider the pulse evolution in the propagation 
in the medium. It is the most general form for the one-
dimensional case because it contains all orders of dis-
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persion and nonlinearity. This equation is very complicated 
and can not be solved explicitly by any analytical method, 
so we should reduce it to a simpler approximate form. In 
case of ultrashort pulses, using specific properties of their 
spectrum and intensity we can simplify the Eq. (11) by 
neglecting the higher-order nonlinear perturbations and 
only preserving the linear and nonlinear terms with their 
lower-order derivatives. Before doing this we should 
consider in more detail the nonlinear polarization of the 
medium in the propagation of ultrashort pulses.  
 
II.2. Nonlinear polarization of the medium.  
     Raman response function 

 The nonlinear polarization of the medium is given by 
(5), where the property of the medium is characterized by 
the quantity (3)

1 2 3( , , ).xxxx t t t t t tχ − − −  Besides its dependen-
cies of the microscopic structure of the molecules and their 
ordering in the medium, it also depends on the characteris-
tics of the propagating pulses. The microscopic processes 
usually have the characteristic time of femtoseconds (the 
characteristic time for the electron response is of the order 
0.1 fs, for the nuclei and lattice 10 fs [9]). For the pico-
second pulses the nonlinear response of the medium can be 
considered as instantaneous. In this case the nonlinear 
susceptibility can be written as follows [2, 3, 9]:  

( ) ( ) ( )(3) (3)
1 2 3 1 2 3( , , ) .xxxx t t t t t t t t t t t tχ χ δ δ δ− − − = − − −  (13) 

 Here (3)χ  is a real constant of the order 10-22m/V2, and 
( )it tδ −  (i = 1, 2, 3) are the Dirac functions. The reduced 

equation obtained in this case from (11) is the well-known 
NLS equation [1, 2, 4, 5]. It perfectly describes the experi-
mental observations for the propagation process. 
 When input pulses are shorter than 4-5 ps (tens or hun-

dreds fs) the assumption of the instantaneous response of 
the medium is no longer valid because the time width of 
the pulses is comparable with the characteristic times of the 
microscopic processes. Some additional terms describing 
the delayed response of the medium should be included in 
the expression (13). This delayed response is related to the 
reduced Raman scattering on the molecules of the medium 
[7, 12]. Using the Lorentz atomic model in the adiabatic 
approximation [1, 7, 9] we can present the nonlinear sus-
ceptibility of the medium in the following form [3, 9]:  
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1 1 2 3
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R R R
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 In the expression for the nonlinear susceptibility (14) 
we have two contributions, one of the electron layer and 
one of the nuclei plus the crystal lattice. The electron 
response is considered as instantaneous, the delayed 
response of the nuclei and the lattice is characterized by the 
function hR(t) called the Raman response function. It has 
the following form [2, 7, 9]:  

  ( )2

2 2
/1 2

12
1 2

( ) sin .t
Rh t e tττ τ τ

τ τ
−+

=  (15) 

 The Raman response function satisfies the normaliza-
tion condition 0 ( ) 1.Rh t dt∞ =∫  The constants 1,Rf τ and 2τ  
depend on the medium. For the material applied usually in 
the production of the optical fibers SiO2 these parame-
ters have been measured [2, 11]: 1 212.2 fs, 32 fs,τ τ≈ ≈  

0.18Rf ≈  (see Fig. 1)  
 The Fourier Transform of the hR(t) (also called the 
Raman response function, but at the frequency )ω  has the 
following form:  

 

Fig. 1. Raman Response function from the experimental data [11] for SiO2 (a) and from the Lorentz model (b) 
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 The imaginary part of ( )g ω  is called the Raman ampli-
fication function [9, 10, 12]. We see from the above formula 
that the Raman amplification function of the medium has 
very broad support, especially it does not disappear in the 
low frequencies. This fact has important influence on the 
propagation process of the ultrashort pulses. The Raman 
scattering leads to a continuous downshift in the spectrum of 
the pulse. This so called self-shift frequency [2, 12] is 
considered in detail in the next parts of our paper.  

 
II.3. Generalized Nonlinear Schrödinger Equation 

 Substituting the expression (14) into (5), after expand-
ing the terms containing the powers of the intensity of the 
electric field and neglecting the high-order harmonics (be-
cause the phase-matching condition is not fulfilled), we ob-
tain the following expression for the nonlinear polarization:  
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 The physical properties of the medium do not depend 
on the choice of the beginning of the time scale, so the 
second term in (17) can be rewritten in the following form: 
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 Expanding to the first order of the square of the module 
of the envelope under the integral sign in (18) and using the 
normalization condition for the function hR(t) leads to the 
result  
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where TR is the characteristic time for the Raman scattering 
effect: 
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 From these results we can write the nonlinear polariza-
tion in the following form:  
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 As it has been recognized above, the general Eq. (11) is 
very complicated, so we should reduce it into an 
approximate form. It is worth noting that the time and 
intensity characters of the ultrashort pulses are quite 
different in comparison with those of the short pulses. It 
follows that their spectrum is much broader and the pulse 
power is larger, so in the Eq. (11) we should consider the 
third-order dispersion terms [2, 3, 5] and the first-order 
term of the Kerr nonlinearity [1, 4].  
 Substituting the expression for the nonlinear polariza-
tion (21) into (11), after omitting the fast oscillating terms, 
we obtain the following simplest approximate pulse propa-
gation equation: 
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 Expanding further the Eq. (22) and neglecting the high-
order derivatives of the nonlinear term we have  
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 Using the new parameters and variables  
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where 0τ  and P0 stand respectively for the time width and 
the maximal power in the top of the envelope function, we 
can rewrite the Eq. (23) in the normalized form:  
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 The Eq. (26) is the lowest-order approximate form 
when we consider the higher-order dispersion and non-
linearity effects in the general propagation Eq. (11). It is 
one of the most useful approximate forms describing the 
propagation process of the ultrashort pulses, called the 
generalized nonlinear Schrödinger equation [3, 5, 8, 9]. 
Some general remarks concerning the application of this 
equation will be given in the next Section.  
 
 

III.  IMPACT  OF  DISPERSION  
AND  HIGHER-ORDER  NONLINEAR  EFFECTS  

ON  THE  ULTRASHORT  PULSES 
 
 The propagation equation for the ultrashort pulses (26) 
has a more complicated form than the nonlinear Schrödin-
ger equation describing the propagation of the short pulses 
[1, 2, 4, 5] because it contains the higher-order dispersive 
and nonlinear terms. The parameters characterizing these 
effects: 3 , , RSδ τ  govern respectively the effects of TOD, 
self-steepening and the self-shift frequency. From the 
formulas (25) we see that when 0τ  decreases, i.e. the pulse 
is shorter, the magnitude of these parameters increases, the 
higher-order effects should be considered.  
 Under the influence of TOD both the pulse shape and 
spectrum change in a complicated way. When the propaga-
tion distance is larger the oscillation of the envelope func-
tion is stronger, creating a long trailing edge to the later 
time, and the spectrum is broadened into two sides and 
splits to the several peaks [2, 5].  

 Self-steepening of the pulse leads to the formation of 
a steep front in the trailing edge of the pulse, resembling 
the usual shock wave formation. This effect is called 
the optical shock. The pulse becomes more asymmetric in 
the propagation and its tail finally breaks up [1, 4, 5, 8].  
 In the stimulated Raman scattering the Stokes process is 
more effective than the anti-Stokes process [2, 12]. This 
fact leads to the so-called self-shift frequency of the pulse. 
As a result the spectrum is shifted down to the low-
frequency region. In other words, the medium “amplifies” 
the long wavelength parts of the pulse. The pulse losses its 
energy and changes complicatedly when it enters deeply 
into medium.  
 For the ultrashort pulses with the width 0 50 fsτ ≈  and 
the carrier wavelength 0 1.55 μm,λ ≈  the higher-order para-
meters in (25) during their propagation in the medium SiO2 
have the values 3 0.03, 0.03, 0.1.RSδ τ≈ ≈ ≈  These values 
are smaller than one, so the higher-order effects are con-
sidered as the perturbations in comparison with the Kerr 
effect. Therefore when the pulse propagates in a silica opti-
cal fiber, the self-shift frequency effect dominates over the 
TOD and the self-steepening for the pulses with the width of 
hundreds and tens femtoseconds. The self-steepening 
becomes important only for the pulses of nearly 3 fs [2, 5].  
 When 0τ  has the value of picoseconds or larger, the 
values of 3 ,δ  S and Rτ  are very small and they can be ne-
glected. The Eq. (26) reduces to the well-known NLS 
equation for the short pulses [1, 2, 4].  
 
 

IV.  CONCLUSIONS 
 
 In this paper we derived the Generalized Nonlinear 
Schrödinger (GNLS) Equation for the propagation process 
of the ultrashort pulses in the Kerr medium. The influence 
of the higher-order dispersive and nonlinear effects, 
especially the nonlinear effect induced by the stimulated 
Raman scattering, have been considered in detail.  
 Because the GNLS equation is strongly nonlinear, the 
problem of solving it is a difficult task. Until now we have 
not been able to find any exact analytical solution for this 
equation in the general case. Several approximate methods 
of solving it are applied. This is the subject of our next 
paper.  
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